
Towards Hardware Architecture for Memory
Efficient IPv4/IPv6 Lookup in 100 Gbps Networks

Jiřı́ Matoušek, Martin Skačan, Jan Kořenek
IT4Innovations Centre of Excellence
Faculty of Information Technology

Brno University of Technology
Božetěchova 2, Brno, 612 66, Czech Republic

imatousek@fit.vutbr.cz, xskaca00@stud.fit.vutbr.cz, korenek@fit.vutbr.cz

Abstract—With growing speed of computer networks, core
routers have to increase performance of longest prefix match
(LPM) operation on IP addresses. While existing LPM algorithms
are able to achieve high throughput for IPv4 addresses, an IPv6
processing speed is limited. To achieve 100 Gbps throughput,
LPM operation has to be processed in dedicated hardware and a
forwarding table has to fit into an on-chip memory. Current LPM
algorithms need large memory to store IPv6 forwarding tables or
use compression with dynamic data structres, which can not be
simply implemented in hardware. Therefore, we provide analysis
of available forwarding tables of core routers and propose a
new representation of prefix sets. The proposed representation
has very low memory demands and is suitable for high-speed
pipelined processing, which is shown on a new highly pipelined
hardware architecture with 100 Gbps throughput.

Keywords—IP address, Longest Prefix Match, Memory

I. INTRODUCTION

Internet speed and network link capacities are growing very
fast, which brings new challenges for design and architectures
of all active network elements, especially core routers. Current
backbone networks widely use 10 Gbps links and will be
upgraded to support 40 Gbps or 100 Gbps throughput [1] in
the near future. Moreover, the growing number of devices
connected to the Internet has a direct impact on the increasing
number of entries in forwarding tables, as is shown for example
in [2]. These trends push still increasing requirements on speed
and size of memory for storing forwarding tables.

The most time critical operation of IP packet forwarding
is Longest Prefix Match (LPM). This operation looks up an
entry in a forwarding table, which contains the longest prefix
equal to a destination IP address of an incoming packet.

To achieve wire-speed 100 Gbps throughput, it is necessary
to perform more than 160 million LPM operations per second.
In such a situation, a new matching result has to be provided
every 6 ns, which is possible to achieve only with dedicated
hardware [3]. However, such architectures usually suffer from
slow and energy intensive accesses to an external memory.
To achieve high throughput and low power consumption, it is
necessary to store the forwarding table in an on-chip memory.

Therefore, we provide analysis of available IPv4 and IPv6
forwarding tables and propose a new representation of prefix
sets, which can be stored in a small on-chip memory. The
proposed representation of prefix sets provides a good memory
efficiency ratio not only for IPv6, but also for IPv4 addresses.

Moreover, it is suitable for high-speed pipelined processing,
which is shown on a new highly pipelined hardware archi-
tecture with 100 Gbps throughput. The proposed architecture
consists of pipeline stages with exactly the same processing
elements. Therefore, IPv4 addresses can be processed by the
first part of the IPv6 pipeline to reduce utilization of hardware
resources.

The rest of the paper is organized as follows. Section II
contains a brief summary of related LPM algorithms. Next
section (III) describes performed analysis. Details of the pro-
posed novel representation are provided in section IV, while
the hardware architecture able to work with a forwarding table
in such representation is shown in section V. Experimental
results are summarized in section VI. The paper is concluded
in section VII, which also contains remarks about our future
work in this area.

II. RELATED WORK

Many commercial devices utilize TCAM devices to perform
LPM operation. TCAM is able to provide a matching result in
just one clock cycle. However, it is expensive, power-hungry,
and slow in updating its content. Therefore, many algorithmic
solutions to LPM have been proposed [4], [5], [6], [7].

The majority of LPM algorithms is based on a trie data
structure [4]. It encodes a set of prefixes from a forwarding
table into a binary tree. Each node of the tree has up to two
pointers to child nodes where left and right child nodes repre-
sent prefixes created from the parent’s prefix by appending 0
and 1, respectively. LPM is then performed by traversing the
trie from the root to leaves according to bit values of a packet’s
destination address taken from the most significant bit to the
least significant bit. The last prefix node visited during such
traversal represents the longest matching prefix.

The trie data structure is well designed to implement
adding, removing and prefix matching operations. However,
because of the high number of pointers, the trie is not a
memory efficient representation of a prefix set. Moreover, it
does not scale well with the length of the destination IP address
because it allows processing of only one input bit in each step.

In order to allow processing of multiple input bits per step,
multibit tries have been designed. One of the best known
implementation of the multibit trie approach is called Tree
Bitmap (TBM) [5]. Prefixes from a forwarding table are within

978-1-4673-6136-1/13/$31.00 c©2013 IEEE 108

Fig. 1. Tree Bitmap Mapping and Encoding

Fig. 2. Shape Shifting Trie Node Encoding

TBM stored in a 2SL-tree, where each TBM node can contain
up to 2SL − 1 trie nodes. The parameter SL is called stride
length and it specifies the number of input bits processed in
each step. Mapping TBM nodes with SL = 3 to the trie is
shown in Figure 1.

Structure of the TBM node is also shown in Figure 1. The
node contains two pairs consisting of a bitmap and a pointer,
which allow to access ordinary child- (external) or prefix-
(internal) related information. Such a compact representation
allows the node to be read from a memory in just one clock
cycle and use of bitmaps makes TBM easy to implement in
hardware. The fixed structure of the node also simplifies per-
forming incremental updates of the forwarding table. However,
it may introduce high memory overhead, especially in a sparse
prefix tree.

Shape Shifting Trie (SST) [6] is another multibit trie
algorithm. It is based on TBM but it reduces memory overhead
introduced by TBM when representing a sparse prefix tree. In-
stead of having nodes with a fixed structure, SST allows nodes
to adapt to a structure of an underlying trie. This adaptivity
is allowed by another bitmap (shape bitmap) introduced in a
node’s representation (see Figure 2) and is constrained only by
the parameter K, which specifies the maximum number of trie
nodes represented by the SST node. Even though SST shows
very low memory demands, its computational complexity is
usually unacceptable. Moreover, to the best of our knowledge,
there is no hardware architecture for SST.

An LPM architecture for 100 Gbps networks with currently
the lowest memory demands has been described in [7]. This
algorithm, which will be further referred to as Prefix Parti-
tioning Lookup Algorithm (or PPLA), also uses the trie data
structure. However, the trie is utilized only for partitioning a
set of prefixes into several disjoint subsets, which are stored
in separate binary search trees or 2–3 trees, each of them
processed in a separate processing pipeline. PPLA has good
memory efficiency (1 B of memory for storing 1 B of IPv4
or IPv6 prefix) [7], but building this internal representation is
connected with very high pre-processing overhead. Moreover,
memory demands of PPLA grows linearly with the number

TABLE I. DETAILS OF PREFIX SETS

Prefix Set Prefixes Source Date
IPv4

rrc00 332 118 http://data.ris.ripe.net/ 2010-06-03
AS2.0 386 653 http://bgp.potaroo.net/ 2011-12-13
IPv4-space 220 779 http://bgp.potaroo.net/ 2011-12-21
route-views 442 748 http://archive.routeviews.org/ 2012-09-20

IPv6
AS1221 10 518 http://bgp.potaroo.net/ 2012-09-21
AS6447 10 814 http://bgp.potaroo.net/ 2012-09-21

TABLE II. MEMORY DEMANDS OF DIFFERENT LPM ALGORITHMS

Memory Demands [Kb]
Prefix Set Prefixes Trie TBM (SL=5) SST (K=32)

IPv4
rrc00 332 118 47 639.677 9 689.432 6 930.441
AS2.0 386 653 104 596.712 30 714.061 15 001.143
IPv4-space 220 779 24 252.430 5 702.065 4 081.008
route-views 442 748 62 650.455 11 942.068 8 774.961

IPv6
AS1221 10 518 3 518.297 1 275.422 588.516
AS6447 10 814 3 673.781 1 326.521 617.124

of stored prefixes, which is more than memory demands of
trie-based LPM algorithms. When prefixes are stored in a data
structure based on the trie or in the trie itself, nodes close
to the root are shared by several prefixes and less memory is
used to store the forwarding table. Therefore, we focus our
analysis on Trie, TBM, and SST algorithms, which all utilize
this property to compress the prefix set.

III. ANALYSIS

Our analysis is based on real IPv4/IPv6 forwarding tables
acquired from different sources on different days. Details of
all prefix sets extracted from forwarding tables are summarized
in Table I. Experiments with these data were performed using
Netbench tool [8].

First of all, we have performed analysis of memory de-
mands of selected LPM algorithms. The value of the parameter
SL was chosen with respect to minimal memory demands of
TBM. TBM algorithm with SL = 5 and SST algorithm with
K = 32 have nodes, which can represent almost the same
number of underlying trie nodes.

As can be seen in Table II, the lowest memory demands can
be achieved with SST. However, as stated in section II, there
is no hardware architecture for this algorithm. On the other
hand, TBM is easy to implement in hardware but shows higher
memory demands than SST. In order to design a hardware
architecture with low memory demnads, it will be necessary
to combine positive aspects of both TBM (easy to implement
in hardware) and SST (low memory demands).

Therefore, we have focused on analysis of structural char-
acteristics of a TBM data structure. In this analysis we have
performed a classification of TBM nodes according to the
number of prefixes within the node and the number of its child
nodes. Such measurement has been done for representations
of AS2.0 (IPv4) and AS1221 (IPv6) prefix sets with results
presented in Tables III and IV, respectively.

Results for both prefix sets show two significant sets of
nodes with high memory overhead when encoded in a standard
TBM format. The first set consists of leaf nodes, most of which
contain no more than 4 prefixes. The second significant set

109

TABLE III. CLASSIFICATION OF NODES REPRESENTING AS2.0
(386 653 PREFIXES, 595 219 NODES)

Child Nodes
Prefixes 0 1 2 3 4 5 6 7 8

0 0 230 142 13 072 6 882 5 245 3 590 3 322 3 802 12 156
1 249 277 5 894 3 803 2 467 3 739 1 538 2 011 795 1 731
2 17 185 3 117 3 600 1 412 2 282 642 650 303 678
3 4 685 1 005 1 740 537 685 242 247 128 256
4 3 341 451 478 200 238 127 106 65 148
5 569 67 48 22 47 20 14 13 42
6 163 25 17 11 17 7 8 1 33
7 31 6 1 0 3 4 2 7 27

TABLE IV. CLASSIFICATION OF NODES REPRESENTING AS1221
(10 518 PREFIXES, 25 063 NODES)

Child Nodes
Prefixes 0 1 2 3 4 5 6 7 8

0 0 11 303 1 666 812 538 184 145 131 249
1 8 965 547 142 19 17 3 2 1 1
2 193 21 14 4 3 0 1 0 0
3 50 3 3 3 1 0 1 0 0
4 29 3 1 1 3 1 1 0 0
5 0 1 0 1 0 0 0 0 0

Fig. 3. Newly Proposed Node Types

contains internal nodes without prefixes, where the majority
of such nodes have at most 4 or exactly 8 child nodes. We
will try to optimize encoding for the most common type of
nodes from these two significant sets.

IV. PREFIX SET REPRESENTATION

Performed analysis has shown possibilities for further
improvements of TBM’s memory demands. Based on these
results, we propose novel, optimized encoding for nodes with
up to three child nodes and containing up to three prefixes.
Such nodes are illustrated in Figure 3. Other situations in the
trie (higher amount of branches or prefixes close to each other)
will be covered by the standard TBM node with SL = 5. Since
this TBM node can also more effectively encode nodes with
4 prefixes and/or 4 child nodes, which were also identified
as nodes significant from optimization point of view, new
encoding for such nodes is not proposed.

All newly proposed node types can be divided into three
groups according to the number of trie branches, which can
be represented by nodes of that type. A segment of the trie
with only one branch can be represented either by a node of
the type 1 or 2. Nodes of the type 3 and 4 are utilized when
representing two branches of the trie and three branches are
covered by nodes of the type 5 or 6. In these pairs, when the
type of the node is odd, such node does not allow presence

of a prefix. Similarly, when the type of the node is even, the
node allows presence of a prefix but only at the lowest level of
the underlying trie. The number of bits required for encoding
of each new node type is shown in Figure 3. Encoding of
the TBM node with SL = 5 (including 2 b for node type
information) utilizes 95 b.

Mapping new nodes onto the trie is done from the root to
leaves by repeated applying of a procedure, which chooses the
best node for next unmapped position in the trie. The procedure
performs trial mapping of all types of node under current
circumstances and determines the best type using equation (2).
In equation (1) pi is the number of prefixes covered by the node
of the type i, ni is the number of trie nodes covered by the
node of the type i, and sizei is the number of bits utilized by
the representation of the node type i.

price(i) =

pi

sizei
if pi

sizei
> 0

ni

sizei
otherwise

(1)

7
max
i=1
{price(i)} (2)

V. HARDWARE ARCHITECTURE

The proposed prefix set representation can be classified as
the multibit trie approach. Multibit tries provide a matching
result in n steps, where n is the maximum height of a tree
representation of a prefix set. If we want to design a hardware
architecture for our representation, which permits 100 Gbps
throughput, we have to employ a processing pipeline with a
separate pipeline stage for each level of the tree. Thanks to
distributed nature of FPGA on-chip memory, each pipeline
stage can have its own block of memory.

The pipelined hardware architecture for the proposed prefix
set representation is shown in Figure 4. Except the pipeline
itself, there is also shown an architecture of a single processing
element (PE). Its operation is similar to processing of instruc-
tions in a standard CPU. At the beginning, PE fetches a node
from a given address in the mem. Then, a node type is decoded
in the Type dec and finally, based on the result of decoding,
the node is “executed”, i.e. processed by the corresponding
Type proc block.

Because of the utilization of the processing pipeline, we
can obtain a new matching result in each clock cycle. In
order to achieve 100 Gbps throughput, a clock cycle can not
be longer than 6 ns. This is ensured by a possibility to insert
intra-stage registers between successive PE operations (fetch,
decode, execute), which all separately meet this timing.

VI. EXPERIMENTAL RESULTS

In order to examine our novel prefix set representation, we
have implemented mapping of new node types onto the trie.
Therefore, we have been able to perform similar experiments
as those performed during analysis of current LPM algorithms
(see section III). First of all, we have measured memory
demands of our mapping scheme when representing IPv4 and
IPv6 prefix sets from Table I. The results of this measurement
are presented in Table V together with information about

110

Fig. 4. Processing Pipeline With Detail of One Processing Element (PE)

TABLE V. MEMORY DEMANDS OF PROPOSED MAPPING SCHEME AND
ITS COMPARISON TO TBM (SL = 5) AND SST (K = 32)

Prefix Set Prefixes New Nodes [Kb] TBM Savings SST Savings
IPv4

rrc00 332 118 6 979.760 27.965 % - 0.712 %
AS2.0 386 653 12 681.440 58.711 % 15.464 %
IPv4-space 220 779 4 215.680 26.067 % - 3.300 %
route-views 442 748 8 825.680 26.096 % - 0.578 %

IPv6
AS1221 10 518 462.160 63.764 % 21.470 %
AS6447 10 814 486.720 63.309 % 21.131 %

savings of our approach compared to TBM (SL = 5) and
SST (K = 32). As can be seen, our mapping scheme reduces
memory demands for representing IPv4 prefix sets by more
than 25 % when compared to TBM and almost reaches results
of SST. IPv6 prefix sets can be represented with even higher
savings — more than 20 % when compared to SST. It is also
clear that the proposed mapping scheme allows to represent
all used prefix sets in an on-chip memory of current FPGAs
(most of Xilinx Virtex-6 LXT FPGAs [9], all Xilinx Virtex-
6 SXT and HXT FPGAs [9], and all Xilinx Virtex-7 FPGAs
[10]).

To compare memory efficiency of our algorithm with
PPLA, we have computed bytes of memory to bytes of prefixes
ratio, which is for PPLA reported in [7]. We have also
determined this ratio for our measurements of TBM and SST
memory demands. Computed values can be found in Table
VI. Since average memory efficiency of PPLA is 1.00 for IPv4
prefix sets and 0.90 for IP6 prefix sets, presented results clearly
show that our mapping sheme is better than PPLA in terms of
memory efficiency.

VII. CONCLUSION AND FUTURE WORK

The paper has proposed the new memory efficient hardware
architecture for longest prefix matching in 100 Gbps networks.
We have introduced the new representation of prefix sets,
which has very low memory demands and is suitable for high-
speed pipelined processing. As can be seen in experimental

TABLE VI. MEMORY EFFCIENCY RATIO (BYTES OF MEMORY /
BYTES OF PREFIXES) OF PROPOSED MAPPING SCHEME, TBM, AND SST

Prefix Set Prefixes New Nodes TBM (SL=5) SST (K=32)
IPv4

rrc00 332 118 0.673 0.934 0.668
AS2.0 386 653 1.050 2.542 1.242
IPv4-space 220 779 0.611 0.826 0.592
route-views 442 748 0.640 0.863 0.634

IPv6
AS1221 10 518 0.703 1.940 0.895
AS6447 10 814 0.720 1.963 0.913

results, the new representation of prefix sets has better memory
efficiecy ratio than TBM and is comparable to SST algorithm.
It is important to note that SST algorithm uses a dynamic
data structure to store a forwarding table and, therefore, it
is not suitable for hardware implementation. The proposed
architecture utilize the new representation of prefix sets and
pipeline processing to achieve 100 Gbps throughput. As all
pipeline stages consist of the same processing elements, the
architecture can be easily implemented in hardware and IPv4
and IPv6 addresses can be processed within the single pipeline.

As future work, we want to optimize node encoding and
utilize partial dynamic reconfiguration to change distribution of
memory blocks among pipeline stages according to the actual
prefix set.

ACKNOWLEDGMENT

This work was supported by the research programme
MSM 0021630528, the IT4Innovations Centre of Excellence
CZ.1.05/1.1.00/02.0070, and the grant BUT FIT-S-11-1.

REFERENCES

[1] Part 3: Carrier Sense Multiple Access with Collision Detection
(CSMA/CD) Access Method and Physical Layer Specifications; Amend-
ment 4: Media Access Control Parameters, Physical Layers, and
Management Parameters for 40 Gb/s and 100 Gb/s Operation, IEEE
Std. 802.3ba-2010, Jun. 2010.

[2] (2013, Jan.) IPv6 / IPv4 Comparative Statistics. [Online]. Available:
http://bgp.potaroo.net/v6/v6rpt.html

[3] M. Á. Ruiz-Sánchez, E. W. Biersack, and W. Dabbous, “Survey and
Taxonomy of IP Address Lookup Algorithms,” IEEE Netw., vol. 15,
no. 2, pp. 8–23, Mar. 2001, ISSN 0890-8044.

[4] E. Fredkin, “Trie Memory,” Communications of the ACM, vol. 3, no. 9,
pp. 490–499, Sep. 1960, ISSN 0001-0782.

[5] W. Eatherton, G. Varghese, and Z. Dittia, “Tree Bitmap: Hard-
ware/Software IP Lookups with Incremental Updates,” SIGCOMM
Comput. Commun. Rev., vol. 34, no. 2, pp. 97–122, Apr. 2004, ISSN
0146-4833.

[6] H. Song, J. Turner, and J. Lockwood, “Shape Shifting Tries for Faster
IP Route Lookup,” in Proc. of the 13th IEEE International Conference
on Network Protocols (ICNP’05). IEEE Computer Society, 2005, pp.
358–367, ISBN 0-7695-2437-0.

[7] H. Le and V. K. Prasanna, “Scalable Tree-based Architectures for
IPv4/v6 Lookup Using Prefix Partitioning,” IEEE Trans. Comput.,
vol. 61, no. 7, pp. 1026–1039, Jul. 2012, ISSN 0018-9340.

[8] V. Pus, J. Tobola, V. Kosar, J. Kastil, and J. Korenek, “Netbench:
Framework for Evaluation of Packet Processing Algorithms,” in Seventh
ACM/IEEE Symposium on Architecture for Networking and Communi-
cations Systems (ANCS’11). IEEE Computer Society, Oct. 2011, pp.
95–96, ISBN 978-0-7695-4521-9.

[9] “Virtex-6 Family Overview. DS150(v2.4),” Xilinx, Inc., Jan. 2012.
[10] “7 Series FPGAs Overview. DS180(v1.13),” Xilinx, Inc., Nov. 2012.

111

