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Abstract. A new cellular automaton-based approach allowing to gen-
erate sorting networks is presented. Since the traditional table-based
transition function in this case involves excessive number of rules, a
program-based representation of the transition function is applied. The
sorting networks are encoded by the cell states and generated during
the cellular automaton development. The obtained results are compared
with our previous approaches utilizing cellular automata.
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1 Introduction

In nature, development is a biological process of ontogeny representing the for-
mation of a multicellular organism from a zygote. It is influenced by the genetic
information of the organism and the environment in which the development is
carried out. In the area of computer science and evolutionary algorithms in par-
ticular, the artificial (or computational) development has been inspired by this
biological phenomena. Computational development is usually considered as a
non-trivial and indirect mapping from genotypes to phenotypes in an evolution-
ary algorithm to provide a more flexibility in the construction process of a candi-
date solution than that is achievable by direct mappings. In such case the geno-
type has to contain a prescription for the construction of target object. While the
genetic operators work with the genotypes, the fitness calculation (evaluation of
the candidate solutions) is applied on phenotypes created by means of the devel-
opment. The principles of the computational development together with a brief
biological background and selected application of this bio-inspired approach are
summarized in [13]. There are several approaches to perform the development,
for example Miller’s developmental cartesian genetic programming [11], Koza’s
developmental genetic programming [8], instruction-based development [5] or
cellular automata [12].

This paper proposes a method for the evolutionary design of cellular au-
tomata allowing to generate functional structures encoded by the states produced
during the cellular automaton development. In order to overcome the problem of
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scale when evolving CAs with higher number of cell states, the instruction-based
approach to represent the local transition function of the CA will be applied.
The concept of instruction-based CA was introduced in [3] and demonstrated on
non-trivial problems such as replication and pattern development problem. An
encoding will be introduced that allows to represent parts of a sorting network
by means of cell states in a given development step of the CA. The hypothesis
we will work on in this paper is that if a suitable development algorithm (local
transition function) is found, then various patterns of cell states may be gener-
ated in a series of CA steps that encode a working sorting network. The obtained
results will be compared to the sorting networks developed using our previous
methods [4].

2 Related Work

In this paper, one-dimensional uniform cellular automata (CA) will be applied
whose concept was introduced in [12]. To calculate the next cell states, the cel-
lular neighborhood will involve the investigated cell and its left and right imme-
diate neighbors. Since a finite CA dimension will be considered, zero boundary
conditions will be considered to determine the states of boundary cells.

Cellular automata have been applied to solve many complex problems in
different areas. For example, Miller investigated the problem of evolving a devel-
opmental program inside a cell to create multicellular organism of an arbitrary
size and characteristic [10]. Tufte and Haddow utilized a FPGA-based platform
of Sblocks [7] for the online evolution of digital circuits. The evolutionary algo-
rithm was utilized to design the rules for the development of the CA [14].

Cellular automata have also been successfully applied as a developmental
method for generating digital circuits. Although both the uniform and non-
uniform CA demonstrated the ability to generate combinational circuits, the
non-uniform approach requires several times higher chromosome length which in
many cases exceeds the amount of information needed to encode the candidate
solution directly (e.g. using CGP) [1, 2]. This issue is caused by the need of
encoding different local transition function for each cell of the CA. Therefore, our
next research has mainly been devoted to uniform CAs and advanced techniques
of encoding of the local transition function allowing to reduce the search space
for the increasing number of cell states [3]. A method for generating sorting
networks by means of cellular automata was introduced in [4].

3 Sorting Networks and Their Design

A sorting network [9] is defined as a sequence of compare–swap operations (com-
parators) that depends only on the number of elements to be sorted, not on the
values of the elements. A compare–swap of two elements (a, b) compares and
exchanges a and b so that we obtain a ≤ b after the operation (a comparator
possesses 2 inputs and 2 outputs). Sorting networks represent a class of digital
circuits consisting of a finite sequence of comparators. Therefore, a pair (a, b),
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a < b represents a comparator whose first input is connected to wire of index
a and the second input to wire of index b of a sorting network. Figure 1 shows
an example of a 3-input sorting network. For the purposes of this paper we will
define the “width” of a comparator as the difference of the indices of wires the
comparator is connected to. As evident, all comparators of the width 0 or the
value exceeding the number of wires (inputs) of the sorting network are mean-
ingless according to the previous specification.

The number of compare–swap components and the circuit delay are two cru-
cial parameters of any sorting network. By delay we mean the minimal number
of groups of compare–swap components that can be executed sequentially. De-
signers try to minimize the number of comparators, delay or both parameters.

4 Sorting Network Development from Cell States

In [4], two different techniques were introduced for the development of sorting
networks by means of cellular automata: (1) an absolute encoding and (2) a
relative encoding. Each method is based on a suitable enhancement of the local
transition function of the CA. The fundamental principle of this enhancement
is based on including an additional information to the local transition function
(together with the new cell state) that represents a prescription for generating
a compare–swap component. In summary, this information includes connection
of a compare–swap element to the specific wires of the target sorting network.
During the process of the CA development, each cell determines its next state
according to a specific rule of the local transition function. The additional infor-
mation associated with this rule specifies a comparator to be generated by a cell
in a development step. Whilst the absolute encoding directly specifies connec-
tion of a comparator generated by a given cell after calculating its next state,
the relative encoding involves position of the cell and the additional information
in the transition function is used to calculate the comparator connection with
respect to the cell position. The initial state of the CA together with the en-
hanced local transition function is a subject of the evolutionary design process.
Those experiments have shown the possibility of involving the cellular automata
development to generate working sorting networks.

Fig. 1. (a) A three-input sorting network consists of three comparators connected in an
appropriate way to three wires. (b) Alternative symbol. This network can be described
using the sequence of integer pairs (0,1)(1,2)(0,1).
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This section introduces a new approach to developing sorting networks by
means of cellular automata that encodes the compare–swap operations by the
cell states rather than the additional information of the local transition function.
However, if the number of inputs of the sorting network increases, the number
of cell states increases too in order to be able to encode the connection of the
comparators to all the wires of the sorting network (which is needed to generate
a working solution). For example, the development of an 8-input sorting network
requires 8 cell states. If 3-cell neighborhood is considered, there are 83 = 512
rules of the transition function in total and in this case the search space (the
space of all the local transition functions) contains 8512 = 2.41×10462 candidate
solutions and the exploration of so huge search space using an evolutionary algo-
rithm becomes extremely difficult. In order to overcome this issue, the concept
of instruction-based development was adopted to cellular automata [3]. The key
idea of this approach is to evolve a program (a sequence of application-specific
instructions) for calculating the transition function rather than the complete
sequence of transition rules. Since the length of the chromosome encoding the
program is shorter, the size of the search space can be reduced substantially as
demonstrated in [3].

For the purposes of this paper the following rules will be considered for gener-
ating comparators from the cell states. Let p denote the position (index) of a cell
in the CA. Then p corresponds to the index of a wire of target sorting network
the first input of a comparator will be connected to. Let s denote the state of a
cell. Then s corresponds to the width of the comparator, thus its second input
will be connected to the wire of index p+s. A comparator (p, p+s) is generated
by the cell in a development step of the CA if (1) s is different from state 0, (2)
p+s does not exceed the index of the last wire of the target sorting network and
(3) neither wire p nor wire p + s is occupied by other comparator generated in
the same development step (The comparators generated in a development step
are independent each other and thus can be executed in parallel. It means that
the delay of the target sorting network may be reduced). The order of compara-
tors generated in a given development step is determined by the increasing cell
position which ensures the development process is deterministic.

For example, consider a 4-cell cellular automaton whose cells can possess
one of the states 0, 1, 2, 3. Assume that the CA performs three development
steps and the goal is to generate a 4-input sorting network as shown in Figure

Fig. 2. An example of generating 4-input sorting network by means of a cellular au-
tomaton.
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2a. After the first development step, the state of the CA is 1010. Therefore,
comparator A (0, 1) will be generated by the cell at position 0 because this cell
possesses non-zero state. According to the position of this cell, the first input
of the comparator will be connected to wire 0 and the cell state corresponds to
the width of the comparator (1), i.e. its second input will be connected to wire
of index 0 + 1 = 1. At the same time, comparator B is generated by the cell at
position 2. Similarly, the cell position 2 corresponds to the wire of connecting the
first comparator input and the cell state 1 determines width of the comarator, i.e.
the second input will be connected to wire 3. No other comparator is generated
in this development step because all the remaining cells possess state 0. After
the second development step the CA exhibits state 2210. Comparator C (0, 2)
is generated by the cell at position 0 – it is a comparator of width 2 because
it is generated by the cell possessing state 2. Similarly, comparator D (1, 3) is
generated by the cell at position 1. In the second development step of the CA, the
cell at position 2 does not generate any comparator because the appropriate wires
have already been occupied by the comparators generated from cells 0 and 1.
The last development step takes the CA into state 0111. In this step only the cell
at position 1 generates the comparator E (1, 2). The cell at position 2 does not
generate any comparator because the wire 2 has already been occupied and the
cell at position 3 also can not generate its comparator since it would exceed the
last wire of the sorting network. As evident, the 4-input sorting network can be
fully generated in 3 development steps. If more than one comparator is generated
in a single step, such comparators can be executed in parallel which reduces the
delay of the resulting network. It is a case of step 1 in which comparators (0, 1)
and (2, 3) were generated and step 2 that produced comparators (0, 2) and (1, 3).

The cell states are calculated by the program that represents the local tran-
sition function and is a subject of evolution. In order to determine the next state
of a cell, the states of cells in the cellular neighborhood are copied into the first
three elements of a temporary program memory (see Fig. 2b). Then the program
is executed and its instructions modify the program memory. Then the value of
the memory cell 3 is returned as the next state.

5 Evolutionary System Setup

The simple genetic algorithm (GA) will be utilized for the evolutionary design
of the cellular automaton that generates a target sorting network. The CA is
represented by a local transition function in the form of a program consisting
of a sequence of instructions [3]. Several sets of experiments will be presented
regarding the development of this kind of circuits using different setup of the
CA (the initial state, the number of instructions of the program and the number
of development steps of the CA).

The selection of proper instructions for a given problem represent a chal-
lenging task. Experiments were performed with a wide range of arithmetic, logic
and conditional instructions. However, one of the most promising instruction set
for generating sorting networks showed to be a modulo addition operation with
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Table 1. The set of instructions utilized for the development. N [a1], N [a2] denote the
cell states from the neighborhood positions determined by the instruction arguments
a1, a2. S[a1], S[a2], S[a3] represent state values specified directly by the arguments
a1, a2 and a3. |S| represents the number of cell states. W, C and E specifies the cell
state in the West, Central and East position in the cellular neighborhood respectively.
mod represents the modulo division.

Instruction Operation

IFW a1 a2 a3 if (N [a1] == W ) N [a1] = N [a2] else N [a1] = N [a3]
IFC a1 a2 a3 if (N [a1] == C) N [a1] = N [a2] else N [a1] = N [a3]
IFE a1 a2 a3 if (N [a1] == E) N [a1] = N [a2] else N [a1] = N [a3]

IFSW a1 a2 a3 if (S[a1] == W ) W = S[a2] else W = S[a3]
IFSC a1 a2 a3 if (S[a1] == C) C = S[a2] else C = S[a3]
IFSE a1 a2 a3 if (S[a1] == E) E = S[a2] else E = S[a3]
IFG a1 a2 a3 if (N [a1] == N [a2])N [a1] = N [a3]

IFGS a1 a2 a3 if (N [a1] == S[a2])N [a1] = S[a3]
IFNG a1 a2 a3 if (N [a1] ! = N [a2])N [a1] = N [a3]

IFNGS a1 a2 a3 if (N [a1] ! = S[a2])N [a1] = S[a3]
ADDM a1 a2 a3 N [a1] = (N [a2] + N [a3]) mod |S|

NOP empty operation

some conditional instructions for modifying the cell states. Each instruction is
encoded as a 4-tuple [op, a1, a2, a3], where op denotes the operation code of the
instruction and a1, a2 and a3 represent its arguments. The description of the
complete instruction set considered for the experiments is shown in Table 1.

In a single evolutionary experiment, a chromosome of the genetic algorithm
contains a fixed number of instructions that undergo changes during evolution in
order to create a suitable program for calculating the local transition function.
A gene of the chromosome is considered as a single element of the instruction.
In all the experiments, the population consists of 100 chromosomes which are
initialized randomly at the beginning of evolution. The chromosomes are selected
by means of the tournament operator with the base 4. Experiments have shown
that the crossover operator is not very suitable to evolve programs using linear
encoding, however, in this case a larger change in the chromosomes allows to
increase the convergence of the GA, therefore we use one-point crossover operator
with the probability 5%. Mutation represents a basic genetic operation to evolve
the programs and is performed by generating a new random value for a given
gene. In this paper four genes of the chromosome are selected randomly, each of
which is mutated with the probability 80%.

Each chromosome is evaluated as the complete test of the sorting network
generated by the corresponding CA. The fitness is calculated as the number of
correct output bits of the sorting network using all the binary input test vectors.
For example, there are 216 test vectors in case of 16-input sorting network.
Therefore, the fitness value of a perfect solution is Fmax = 16 · 216 = 1048576. If
the maximum fitness is not reached until 100k generations, then the evolutionary
run is terminated and considered as unsuccessful.
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6 Experimental Results and Discussion

The experiments were focused of the evolutionary development of 16-input sort-
ing networks by means of one-dimensional uniform cellular automata. 16-input
networks were chosen as a benchmark problem for the proposed developmental
encoding. This section presents the obtained results and discusses their proper-
ties as well as the features of the proposed approach. Note that the analysis of
results (i.e. the number of generations and properties of obtained sorting net-
works) is performed for successful runs only (in which the fitness reached the
maximal value Fmax).

Table 2. Statistical results of the CA-based sorting network development using the
homogeneous 0-valued initial state. The success rate is calculated as the number of
successful experiments out of 100 independent evolutionary runs.

parameters comparators generations [×103] program length success
initial st. prog. len. steps average max min average max min average max min rate

0000 10 13 – – – – – – – – – 0
0000 16 13 – – – – – – – – – 0
0000 20 13 99.2 ±2.8 104 97 39.2 ±21.1 63.9 7.6 17.2 ±0.8 18 16 4
0000 26 13 99.7 ±0.9 101 99 68.1 ±21.9 94.9 41.2 25.0 ±0.8 26 24 3
0000 10 14 104.0 ±0.0 104 104 32.3 ±29.1 72.3 3.8 9.7 ±0.5 10 9 3
0000 16 14 106.2 ±4.4 112 99 43.9 ±24.8 84.7 7.6 15.2 ±0.9 16 13 13
0000 20 14 109.1 ±2.8 112 104 42.1 ±30.4 98.3 3.7 18.8 ±1.0 20 17 12
0000 26 14 106.8 ±4.2 112 99 27.5 ±23.1 82.7 2.4 24.3 ±0.8 25 23 20

The experiments have shown that the initial CA state represents a crucial
parameter to achieve working results with a reasonable success rate. Table 2
shows the statistical results for a set of experiments considering a homogeneous
initial state consisting of only 0-state cells. In some cases the evolution has
succeeded and found programs that generate sorting networks using this initial
state. We have determined that the zero boundary conditions of the CA play
an important role in this set of experiments. If the CA state changes to an
other homogeneous state after the first development step, the zero boundary
conditions provide different state values in the cellular neighborhood allowing
the cell states to diverse during the subsequent steps and to generate suitable
comparator arrangements. As evident from Table 2, the success rate depends
especially on the number of development steps and the length of the program
to be evolved. We have determined that 20 instruction in a chromosome and
13 development steps are required to develop a working sorting network in this
set of experiments. As expectable, more development steps allows to generate
sorting networks with a higher success rate because more comparators can be
generated. However, no clear dependence has been observed for increasing the
program length for a given number of development steps. In some cases the
success rate is even lower for larger number of instructions in the chromosome.
This may be caused by increasing the cardinality of the search space in which
the evolution probably needs more generations to find a working solution.
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Table 3. Statistical results of the CA-based sorting network development using the
alternating initial state consisting of values 2 and 0. The success rate is calculated as
the number of successful experiments out of 100 independent evolutionary runs.

parameters comparators generations [×103] program length success
initial st. prog. len. steps average max min average max min average max min rate

2020 10 13 94.0 ±0.0 94 94 95.4 ±0.0 95.4 95.4 10.0 ±0.0 10 10 1
2020 16 13 96.4 ±3.1 100 90 28.2 ±27.2 89.4 5.9 14.4 ±0.7 16 14 7
2020 20 13 96.3 ±2.4 99 94 40.7 ±13.6 57.2 19.2 19.3 ±0.9 20 18 6
2020 26 13 95.5 ±1.5 97 94 48.7 ±35.3 84.1 13.3 24.5 ±0.5 25 24 2
2020 10 14 102.6 ±2.9 108 90 34.8 ±27.2 93.9 0.5 9.3 ±1.0 10 7 31
2020 16 14 102.5 ±2.8 106 90 35.0 ±27.2 89.4 1.6 15.0 ±1.0 16 13 45
2020 20 14 103.8 ±4.0 112 90 38.7 ±31.5 98.8 0.4 18.8 ±1.2 20 15 43
2020 26 14 103.1 ±3.1 110 90 28.3 ±25.4 83.6 0.8 24.1 ±1.2 26 21 36

Table 3 shows the statistical results for the experiments considering an initial
state with alternating values 2 and 0 (an alternating initial state). It is interesting
to observe that the success rate has increased in most cases just by changing the
initial CA state. Moreover, the evolution was able to find a solution even for 10
or 16 instructions in the chromosomes. Although the success rate is not very high
for 13 development steps, it has increased substantially for 14 steps (Table 3).
This fact indicates that the conditions for generating working sorting networks
are highly dependent on the initial state of the CA. However, it is very difficult to
identify the optimal initial state for 16-cell CA in which each cell may possess one
of 16 different values. The proposed initial states were determined experimentally
and the evolution has not optimized them in this stage of research.

Another interesting feature can be observed in the number of comparators
of the resulting sorting networks which exhibits lower values for the alternating
initial state (Table 3) in comparison with the experiments considering the homo-
geneous state (Table 2). This fact supports the hypothesis that the initial state
does not only influence the success rate but also the properties of the target
sorting networks. Note that the delay of the sorting networks are determined
by the number of development steps of the CA because the proposed encoding
ensures that the comparators generated in a single step can be performed in
parallel.

The approach proposed in this paper exhibits the following features in com-
parison with other techniques. In [4], two techniques were applied: (1) the abso-
lute encoding provided a sorting network with 75 comparators whose delay is 16
and (2) the relative encoding provided a sorting network with 92 comparators
whose delay is 14. In this paper, the best resulting sorting network consists of
78 comparators and its delay is 13. This network has been obtained by removing
redundant comparators from a SN consisting of 104 comparators. The resulting
sorting network and the corresponding program according to which the CA gen-
erated that network is shown in Figure 3. However, the average delay achieved
for different developmental setups in [4] was greater than 20 whilst in this pa-
per the delay is limited by the number of development steps of the CA (i.e. for
13 development steps the delay can not be larger). The currently best-known
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16-input sorting network consists of 60 comparators and its delay is 10 (e.g. see
[6]). Note that the significant difference in the proposed approach is that we
have used a developmental encoding whilst the currently best known result was
obtained using a direct representation with an explicit area/delay optimization
mechanism.

Fig. 3. (a) Evolved program for calculating the transition function of cellular automa-
ton, (b) a sorting network developed by the CA (redundant comparators were removed).

7 Conclusions

A generative approach was introduced for the development of sorting networks
by means of cellular automata. The encoding of sorting network comparators
is based on the positions of cell in the cellular automaton and the cell states.
The transition function of the cellular automaton is represented by a program
(consisting of simple application-specific instructions) that is a subject of evo-
lutionary design process. It was shown that the proposed method is able to
generate sorting networks whose properties are significantly influenced by the
initial state of the cellular automaton. Since the identification of a proper ini-
tial state represents a difficult task, it was performed experimentally for the
presented case studies. In order to increase the success rate and the quality of
the resulting solutions, more research is needed. Therefore, the design of initial
states by means of evolution as well as the utilization of advanced evolutionary
techniques for the design of the transition function represent areas in which the
future experiments will be performed.
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