
Reduction of FPGA Resources for Regular

Expression Matching by Relation Similarity

Vlastimil Košař

Brno University of Technology

Bozetechova 2, 612 66,

Brno, Czech Republic

Email: ikosar@fit.vutbr.cz

Jan Kořenek

Brno University of Technology

Bozetechova 2, 612 66,

Brno, Czech Republic

Email: korenek@fit.vutbr.cz

Abstract—Intrusion Detection Systems have to match large sets
of regular expressions to detect malicious traffic on multi-gigabit
networks. Many algorithms and architectures have been proposed
to accelerate pattern matching, but formal methods for reduction
of Nondeterministic finite automata have not been used yet. We
propose to use reduction of automata by similarity to match
larger set of regular expressions in FPGA. Proposed reduction
is able to decrease the number of states by more than 32% and
the amount of transitions by more than 31%. The amount of
look-up tables is reduced by more than 15% and the amount of
flip-flops by more than 34%.

I. INTRODUCTION

The requirements on securing networks from attacks, mali-

cious traffic and spreading of viruses and trojan horses rises in

context of steady growth of networks. Therefore importance

of Intrusion Detection Systems (IDS) for network security

rises. The most important part of an IDS is regular expression

matching. The regular expression matching is a time critical

operation for processors, therefore acceleration of regular

expression matching is studied.

First algorithm for mapping regular expressions to FPGA

was presented by Sindhu and Praasana in [1]. Clark et al.

introduced shared character decoder in [2]. Lin et al. proposed

to share prefixes, infixes and suffixes in [3]. Shared character

classes were introduced together with special implementation

blocks for some PCRE constructions by Sourdis et al. in

[4]. These approaches introduced reduction of utilized FPGA

logic by better architecture and algorithms, but formal NFA

reduction has not been used.

In this paper we propose to use a relation of similarity

for state reduction of NFA and mapping to FPGA by Clark

approach. Reductions of state graphs are commonly studied

and used in formal verification for state reduction [5], [6].

From existing reductions we have selected reduction by simi-

larity, which was introduced by Milner [5]. NFA reductions

such as [7] could also be used. Significant reduction of

FPGA resources utilization was achieved by NFA reduction

by similarity.

II. SIMULATION AND SIMILARITY

NFA created from regular expression set by Thompson

construction [8] is not usually minimal. Redundancy is given

by regular expressions and by relations among regular expres-

sions in the rule set. Due to this redundancy we focus on

NFA reduction. Minimization of NFA cannot be used, because

it is generally PSPACE-complete [9]. In contrary reduction

algorithms usually reduce state graphs in polynomial time.

From existing reductions we selected reduction by similarity,

which is suitable for state reduction of NFA for Snort rule set.

The similarity and simulation relation was first introduced

by Milner in [5] as a means to compare programs. Definitions

of simulation and similarity on state labeled graphs presented

by Henzinger et al. in [6] are used (Modified for an edge

labeled graph). A NFA is special case of an edge labeled graph,

if we omit notation of final states.

First we define an edge labeled graph. Next we define

simulation and similarity relation on this graph.

Definition 1 (Labeled Graph). An edge labeled graph G =
(V,E,A, 〈〈.〉〉) consist of a set V of vertices, a set E ⊆ V 2

of edges, a set A of labels and a function 〈〈.〉〉 : E → A

that maps each edge e to a label a ∈ A. We use post(v) =
{u|(v, u) ∈ E} for the successor set of the vertex v.

Definition 2 (Simulation). Simulation on edge labeled graph

is a binary relation ≤⊆ V 2 on the vertex set if u ≤ v implies:

1) for all vertices ú ∈ post(u), there is a vertex v́ ∈
post(v) such that ú ≤ v́ and 〈〈(u, ú)〉〉 = 〈〈(v, v́)〉〉.

Definition 3 (Similarity). A binary relation ≈S⊆ V 2 on the

vertex set is similarity if u ≈S v implies (u ≤ v) ∧ (v ≤ u):
The similarity relation ≈S is an equivalence relation and is a

symmetric subset of simulation relation.

We have used an algorithm for simulation reduction pre-

sented in [6] with time complexityO(mn) wherem is count of

edges and n is count of vertices and space complexity O(n2).
The algorithm consists of following four consecutive steps:

1) Default simulation relation, where each state simulate

each other

2) While simulation relation changes do:

a) For all possible combinations of states u and v do:

i) Check if state v simulate state u and modify

simulation relation accordingly

3) Create similarity relation



Clark et al. With Reduction Reduced by
Rule set LUT FF LUT FF LUT FF

[-] [-] [-] [-] [%] [%]

L7 decoder 1523 821 1285 549 15.6 33.1

Snort (1) 4592 3955 3621 2788 21.1 29.5

Snort (2) 832 201 757 108 9.0 46.3

Snort (3) 851 236 719 93 15.5 60.6

Snort (4) 815 186 700 72 14.1 61.2

Snort (5) 1196 339 1038 172 13.2 49.3

Snort (6) 691 53 656 15 5.1 71.7

Snort (7) 677 99 638 58 5.8 41.4

Snort (1-7) 9654 5069 8129 3306 15.8 34.8

TABLE I
ESTIMATION OF UTILIZATION OF FPGA RESOURCES FOR VIRTEX-5

4) Join similar states

Similarity relation can be used for NFA state reduction, if

we join states which are similar. Feature of this reduction is

that all final states are joined into one final state. Therefore the

match of a pattern can be detected, but concrete pattern cannot

be determined. Better reduction results can be obtained, if the

reduction will be used multiple times in forward and backward

variant. [7]

III. EXPERIMENTAL RESULTS

Reduction of NFA by similarity was evaluated on several

rule sets. We have used selected rule sets from the Snort

and a subset of regular expressions from the L7-decoder. The

Netbench framework [10] was used for implementation of the

reduction and for estimation of FPGA resource utilization.

We have used the Xilinx Virtex 5 FPGA architecture for the

estimation of FPGA resource usage.

The measured reduction results are shown in the table II.

The table contains the size of original ǫ-free NFA, the size of

reduced NFA and the amount of states and transitions, which

was removed by NFA reduction by similarity. The average

reduction of states is 32.3% and the average reduction of

transitions is 31.7% for the Snort rule sets.

We have selected the Clark et al. methodology of mapping

regular expressions to FPGA together with the sharing of

character classes for the evaluation. The pattern matching

unit is designed to accept one character per clock cycle.

The measured reduction results are shown in the table I.

The table contains the utilization of FPGA resources for

the implementation of pattern matching unit without NFA

reduction by similarity, the utilization of FPGA resources if

NFA reduction by similarity is used and finally how many

look-up tables (LUT) and flip-flops (FF) was removed by the

NFA reduction by similarity. The average reduction of LUTs

is 15.8% and the average reduction of FFs is 34.8% for the

Snort rule sets.

IV. CONCLUSION AND FUTURE WORK

In this paper we propose to use NFA reduction by similarity

to achieve efficient utilization of FPGA resources. This reduc-

tion is independent on concrete NFA mapping to the FPGA.

Original ǫ-NFA After reduction Reduced by
Rule set States Trans. States Trans. States Trans.

[-] [-] [-] [-] [%] [%]

L7 decoder 791 949 547 704 30.9 25.8

Snort (1) 3800 4409 2783 3320 26.8 24.7

Snort (2) 186 226 106 127 43.0 43.8

Snort (3) 218 314 89 115 51.2 63.4

Snort (4) 182 227 69 77 62.1 66.1

Snort (5) 322 368 168 196 47.8 46.7

Snort (6) 49 72 13 16 73.5 77.8

Snort (7) 95 117 56 67 41.1 42.7

Snort (1-7) 4852 5733 3284 3918 32.3 31.7

TABLE II
STATE AND TRANSITION COUNT FOR BOTH ORIGINAL ǫ-FREE NFA

(ǫ-NFA) AND REDUCED NFA

The NFA reduction by similarity is able to reduce significant

amount of FPGA resources.

In future work, we want to modify the algorithm to preserve

information about the matched rule. Another reduction algo-

rithms and architectures can be used together with simulation

reduction. For example special blocks for PCRE constructions

introduced in [4] reduce constructions that are irreducible by

reduction by similarity. We want to evaluate the reduction by

combined approaches in future work.

ACKNOWLEDGMENT

This research has been partially supported by the Research

Plan No. MSM, 0021630528 – Security-Oriented Research in

Information Technology and the grant BUT FIT-S-10-1.

REFERENCES

[1] R. Sidhu and V. K. Prasanna, “Fast Regular Expression Matching using
FPGAs,” in Proceedings of the 9th Annual IEEE Symposium on Field-

Programmable Custom Computing Machines (FCCM 2001), April 2001,
pp. 227–238.

[2] C. Clark and D. Schimmel, “Efficient Reconfigurable Logic Circuits
for Matching Complex Network Intrusion Detection Patterns,” in Field

Programmable Logic and Application, 13th International Conference,
Lisbon, Portugal, 2003, pp. 956–959.

[3] C.-H. Lin, C.-T. Huang, C.-P. Jiang, and S.-C. Chang, “Optimization
of regular expression pattern matching circuits on FPGA,” in Proc.

of Conference on Design, Automation and Test in Europe (DATE 06),
Munich, Germany, 2006, pp. 12–17.

[4] I. Sourdis, J. Bispo, J. Cardoso, and S. Vassiliadis, “Regular expression
matching in reconfigurable hardware,” Journal of Signal Processing

Systems, vol. 51, pp. 99–121, 2008.
[5] R. Milner, “An algebraic de nition of simulation between programs,” in

2nd IJCAI. British Computer Society, 1971, pp. 481–489.
[6] M. R. Henzinger, T. A. Henzinger, and P. W. Kopke, “Computing

simulations on finite and infinite graphs,” in Proceedings of the 36th
Annual Symposium on Foundations of Computer Science, ser. FOCS
’95. Washington, DC, USA: IEEE Computer Society, 1995, pp. 453–.

[7] L. Iliea and S. Yu, “Algorithms for computing small nfas,” in Mathe-
matical Foundations of Computer Science 2002, ser. Lecture Notes in
Computer Science. Springer Berlin / Heidelberg, 2002, vol. 2420, pp.
328–340.

[8] K. Thompson, “Programming techniques: Regular expression search
algorithm,” Commun. ACM, vol. 11, pp. 419–422, June 1968.

[9] T. Jiang and B. Ravikumar, “Minimal nfa problems are hard,” in
Automata, Languages and Programming, ser. Lecture Notes in Computer
Science. Springer Berlin / Heidelberg, 1991, vol. 510, pp. 629–640.

[10] Netbench, “Project WWW Page,”
http://merlin.fit.vutbr.cz/ant/netbench/index.html/,
2011.


