
Evolvable 2D computing matrix model for intrinsic evolution in commercial FPGAs
with native reconfiguration support

Rubén Salvador, Andrés Otero, Javier Mora,
Eduardo de la Torre, Teresa Riesgo

Centre of Industrial Electronics
Universidad Politécnica de Madrid

José Gutierrez Abascal, 2
28006, Madrid, Spain

Email: ruben.salvador@upm.es

Lukáš Sekanina
Faculty of Information Technology

Brno University of Technology
Božetěchova 2

612 66 Brno, Czech Republic
Email: sekanina@fit.vutbr.cz

Abstract

This paper addresses the modelling and validation of
an evolvable hardware architecture which can be mapped
on a 2D systolic structure implemented on commercial
reconfigurable FPGAs. The adaptation capabilities of the
architecture are exercised to validate its evolvability. The
underlying proposal is the use of a library of reconfigurable
components characterised by their partial bitstreams, which
are used by the Evolutionary Algorithm to find a solution
to a given task. Evolution of image noise filters is selected
as the proof of concept application. Results show that
computation speed of the resulting evolved circuit is higher
than with the Virtual Reconfigurable Circuits approach, and
this can be exploited on the evolution process by using
dynamic reconfiguration.

1. Introduction

Unconstrained evolution in commercial FPGAs by direct
bitstream manipulation is considered not possible because
random safe modifications of the bitstream are not possible.
Besides, its huge size turns the search space unmanage-
able, and, in addition, reconfiguration times using current
manufacturers support are still high enough to prevent this
technology to be embraced as a standard.

To overcome some of these limitations, evolvable hard-
ware in commercial FPGAs has been mostly built up to date
with the creation of an application specific reconfiguration
layer on top of the FPGA known as Virtual Reconfigurable
Circuit (VRC) [1]. Therefore, high reconfiguration speed
and suitable computation granularity is achieved. However,
the VRC introduces an extra area and delay overhead to

the operation of the circuit as compared with a direct
implementation of that functionality in the device fabric.

A different strategy is needed to implement evolvable
circuits in FPGAs. Xilinx Dynamic and Partial Reconfig-
uration (DPR) design flow allows partial bitstreams to be
dynamically loaded in the device. If there was a library
of reconfigurable components defined as partial bitstreams,
evolution could be performed nearer to the device fabric
without virtualizing the reconfiguration mechanism in a
VRC. This library of components can be seen as an evolu-
tion of the traditional ASIC standard cells but modified to
support on-line hardware adaptation.

VRCs typically perform computations within an array
of processing elements where data flows in one direction.
Instead, our proposed architecture is defined as a highly
regular and parallel two dimensional array of processing el-
ements arranged as a systolic structure. The selection of this
kind of 2D processing structure obeys to its widely known
features in digital VLSI signal processing. However, after
going through the state of the art the authors have not found
any work studying whether this traditional architecture has
been exercised to check its evolvability.

This work proposes such an architecture and its asso-
ciated evolutionary framework aiming to demonstrate the
architecture adaptation capabilities and the suitability of
the proposal as a whole to be used for adaptive hardware
in commercial FPGAs with native online reconfiguration
for intrinsic evolution. Therefore, a detailed analysis and
synthesis of the architecture is performed starting from an
equivalent VRC. A software model is implemented and
used to validate the architecture for noise removal in image
preprocessing tasks.

The support needed for the FPGA reconfiguration task is
introduced in [2] where a HW modular peripheral in charge

of controlling the reconfiguration process with relocation
capabilities is described. Presently, this block may achieve
250 MHz ICAP overclocking, if combined with a fast
link to an external memory as demonstrated also by other
authors in [3], [4].

Next Section contains a description of the underlying
motivation to tackle this work as our contribution to the
current State of the Art, which is analysed in Section
3. Section 4 provides a full description and analysis of
the architecture and the design steps given from the VRC
paradigm and the implications it has on the genotypic level.
We continue introducing the Evolutionary Algorithm (EA)
implemented in Section 5 to finish showing the results
obtained after running various tests in Section 6 before
concluding the paper.

2. Motivation of this work

As it can be derived from the previous Section, the
main motivation for this work is the integration of bio-
inspired processing architectures into commercial FPGAs
which contribute to solve the ever increasing demand on
complexity and flexibility.

When dealing with highly distributed, networked,
context-aware systems which may operate on very diverse
environments, maybe even unknown or inaccessible at
design time, it is very difficult to foresee all possible situ-
ations that may arise during system’s lifetime. In addition,
design and deployment methodologies for these systems
are specific and application dependent. Therefore, providing
them with adaptive behaviour would help in somehow
simplifying the design while increasing re-usability and
systems lifetime.

We envision a scenario in which a system with a set of
tasks previously implemented in software is operating under
certain conditions. At a given time, system maintainers (or
the system itself under commands of a higher intelligence
layer) may decide that running a hardware version of a
particular task (or adding a new one to the initial set)
would increase performance; however, let’s assume that
there is no hardware counterpart for this task. In such a
case the device can trigger an adaptation phase to evolve
a circuit which will eventually be able to perform that
particular task. As a consequence, if evolution succeeds,
a completely new circuit will have been automatically
synthesized autonomously by the system, ideally without
human intervention.

One of the main concerns in the evolvable hardware
community to accomplish the implementation of these
continuously adaptive systems, lies in the difficult task
of supplying the system with an objective function which
guides the change. However, in the suggested scenario, the
system already has a functionally valid software task (or

model) to be supplied as a goal to the EA whether when
hardware acceleration is required by the system or in the
case that any failure in the device happen to occur and a
different need of adaptation arises. This approach can also
be helpful if new tasks (new functionality required due to
changing requirements) are added to the system.

One of the key technologies needed to succeed in this
effort is a seamless use of DPR. However, device support
is still limited in this field. What this proposal addresses
is a use case of DPR in which a library of computational
elements of different granularity is available at run-time in
the form of partial bitstreams. Whether these are supplied
by the manufacturers (as today are complex IP cores for
integration at design time) or a seamless design flow is
made available which facilitates its design, a standard, val-
idated and functionally diverse library is needed, in a similar
way as standard cells for ASIC design are used to build-
up complex systems from smaller sub-components. With
this on-line library, a suited EA can be implemented in the
system to adapt its architecture by allocating-deallocating-
reallocating components from the library in different posi-
tions of the device.

Our approach to the selection of an appropriate adaptive
processing architecture for FPGAs may be seen from a
slightly different point of view as that offered by most of
the work which has been published up to date. Instead of
defining an architecture tuned to the commonly used EAs
to evolve some computational behaviour, our view is just
the opposite; merging widely used and well performing
processing architectures with an appropriately tuned EA
so as to enable adaptive processing-hardware (as opposed
to processing adaptive-hardware). In addition, it seems
reasonable that those architectures with a higher probability
to be successfully combined with bio-inspired adaptation
strategies, are precisely those with a higher biological
resemblance. For this reason we propose the use of a highly
regular, parallel and interconnected two dimensional array
of processing elements arranged like a systolic structure,
with connectivity limited to the closer neighbours and with
an inherent pipelining since this structure reminds typical
(biological) cells layouts [5] while being widely used in
VLSI signal processing.

3. Previous work on evolvable systems in FP-
GAs

Evolution of VRCs rely on Cartesian Genetic Program-
ming (CGP) [6], which was created to allow the evolution
of digital circuits at the gate level as an extension of
Genetic Programming (GP). It describes a digital circuit
as a directed graph, with a simple integer genotype which
describes the functionality and connections of each node
of the tree. The term Cartesian resembles the spatial

placement of the processing nodes in a grid where each
node can be accessed through its Cartesian coordinates. It
often uses a simple Evolutionary Strategy (ES) with small
populations of 1 parent and between 4 and 10 children.
Mutation at low rates is the only evolutionary operator since
recombination does not seem to affect the search in an
effective manner [7].

Further works extended CGP to functional level [8]
where instead of logic gates, CGP operates with higher
level components such as adders, comparators, shifters, etc.
This proposal has been successfully applied to the evolution
of image operators directly in FPGAs, whether the EA is
running on a processor embedded in the device [9] or as
a complete hardware implementation [10]. The mutation
rate reported to be optimal for this task is 5% of the
chromosome size, for a genotype length of 384 bits (VRC
sized 8x4 functional blocks). The proposal found in [11]
addresses an specific genotype-phenotype mapping inspired
by enzyme biology which makes use of an implicit context
representation so evolution of the system is independent of
the position of genes within the chromosome.

Regarding the use of native reconfiguration in FPGAs,
direct bitstream manipulation was initially proposed by
Adrian Thompson who worked with currently obsolete
XC6200 Xilinx chips where any (even randomly created)
bitstreams were allowed to be used [12]. The XC6200
family was later replaced by the Virtex family in which
the possibilities for direct evolution of configurations were
restricted. Several attempts to implement evolvable systems
were reported using JBits - a set of Java classes which
provided an easy way to read and modify the bitstreams
[13]. The JBits have not received enough support to become
a widely accepted standard. Later platforms utilized the
Internal Configuration Access Port (ICAP) that allowed the
FPGA to be reconfigured internally. Upegui and Sanchez
used the ICAP to manipulate only the LUT contents (in
one dimension) while keeping a fixed routing [14]. Finally,
Cancare, Santambrogio and Sciuto extended that concept
to two dimensions exploring thus the capabilities of recent
Virtex 4 devices [15]. However, only small circuits such as
an 8-bit parity generator or 4-bit counter were evolved.

4. Proposed architecture and genotypic impli-
cations

This section addresses the design progress given towards
the definition of a suitable architecture, starting from the
VRC concept and adapting it progressively throughout the
subsequent steps until an optimised architecture organiza-
tion, from the reconfiguration point of view, is achieved.
As different optimizations to the original architecture are
proposed, consequent changes in the genetic representation
of the individuals are analysed.

(a) (b)

Figure 1. Proposed adaptive processing architecture
(a) and internal configuration of a PE (b)

Figure 1a shows the proposed processing array, which
is an AxB matrix of Processing Elements (PE) connected
in a mesh-type fashion. It features a highly regular and
parallel two dimensional processing array arranged like a
systolic structure. Connections between blocks are fixed,
but a certain data processing front adaptation is allowed, as
will be shown below.

The final objective is to obtain an architecture with native
FPGA reconfiguration, without the need of a redundant
virtual reconfiguration layer. With the proposed library of
partially reconfigurable and re-allocatable components we
are able to cope with a similar degree of adaptation to the
application at hand as compared to using VRCs.

Candidate circuit evaluation requires the region of the
FPGA containing the processing matrix to be reconfigured.
This process can be abstracted as replacing pieces in a
puzzle. For each piece to allocate (PE to reconfigure) the
reconfiguration engine indexes into the library as expressed
by each gene in the chromosome, placing it in the correct
position of the matrix (puzzle).

Getting inspiration from CGP as a valuable EA to evolve
similar VRC-based architectures, a CGP-like encoding can
be defined, where each gene can be encoded as a string
of bits. Each gene acts here as a connection gene or as a
functionality gene. Differently, in this work, since a library
of partially reconfigurable components is available, another
genotype can be defined in which each gene is an integer
number pointing to an specific component of the library.

Contrary to previously proposed VRCs architectures, this
2D vertical and horizontal connection scheme is fixed to
constrain the search space dimensionality. However, certain
data processing front adaptation is allowed due to the
proposed PE-FB connection mapping. The initial PE is
composed of a Functional Block (FB), some additional
routing logic and a flip-flop as shown in Figure 1b. Because
of its already proved usefulness, the set of 16 functions
chosen as a first approach is the same as the one defined

in [16].

4.1. Elaborating on the architecture definition

As explained previously, each element is defined not only
by its functionality but also by the configuration of its
connections. This means that the mapping from the inputs
of the PE (W and N) to the inputs of the FB (X and
Y) is specific for each element of the library. Therefore,
if a PE is configured to the function Fi, PEFi (say, for
example, add, PE+), four different components (FB plus
routing logic configuration) can be defined according to
the configuration of the inputs, 〈FB1

+, FB
2
+, FB

3
+, FB

4
+〉.

Each of these four different components maps directly to an
element of the aforementioned library. The situation for this
intermediate architecture (as it is being optimized) is shown
in Figure 2a, which features a PE with 2 input multiplexers
and additional routing logic in the output. The following
mapping of the input connections applies:

N → Y//W → X (1)
N → X//W → Y (2)
N → X//N → Y (3)
W → X//W → Y (4)

Therefore, for each PE configured to a specific function
Fi, there exist 4 different combinations according to the
configuration of the input multiplexers. A similar analysis
can be applied for the output if Z is routed to S, E or S and
E simultaneously. This means another 3 options for each
of the 4 input combinations which results in 12 possible
different elements existing in the library for each defined
function. This makes a total of 192 possible components to
cover the full range of the 16 possible functions. Following
this argument, each gene can be encoded using 8 bits so
the implementation cost of the chromosome for the whole
array would be l = A × B × 8 bits. If A = 6, B = 6 (for
an array size similar to the state of the art) then l = 288
bits.

4.1.1. Optimizing the PE/FB connection mapping. If
the previous routing proposal is carefully analysed some
inconsistencies can be observed. For example, a PE in
position (a, b) (column a, row b) may be evolved so that
N is mapped to Y . However, the PE in position (a, b− 1)
may be evolved to not route the output Z of the FB to the
S port of the PE. To avoid this, the output routing logic is
eliminated routing the FB output directly to both ports of
the PE. This situation is shown in Figure 2b.

Now, for each PE configured to a specific function
Fi, PEFi

, there only exist 4 different elements according
to the configuration of the input multiplexer, since the
output routing has been eliminated. This makes a total of

W

N

S

E
X

Y

Z

FB

R

(a)

W

N

S

E
X

Y

Z

FB

R

(b)

Figure 2. (a) shows the PE and its generic internal
routing and (b) the PE with both outputs routed from
the FB output.

Figure 3. PE from the reconfiguration point of view

16× 4 = 64 possible components in the library for the 16
possible functions. In this case, each gene can be encoded
with 6 bits, which yields l = 6×6×6 = 216 bits to encode
the whole chromosome, reducing consequently the design
(search) space. This connection optimization eliminates the
need for the output routing logic, which besides saving
resources, avoids the mentioned routing inconsistencies.
However, constraints are imposed to evolution since data
flow is somehow more restricted now.

The final objective is being able to allocate-deallocate-
reallocate, at run time, different PEs in the array by means
of DPR. To avoid the area overhead introduced by the
multiplexers at the inputs of each FB, all of them are to be
eliminated, so a different component will exist in the library
of partial bitstreams for each possible combination of input
routing connections and FB functionality, as explained
previously. Figure 3 shows a PE from a DPR point of
view. There is one Bus Macro [17] for each port of the PE
(N,S,E,W), which works as the anchoring point in the
pieces of the puzzle. In this way, one PE can be replaced by
another one since all of them share a common connection
interface defined by these Bus Macros. For this initial
prototype, each PE has been oversized to occupy 2 CLB
columns x 1 clock region in a Virtex-5 device.

Table 1. Set of components in the library.
Code Function Description

0 N +W N + W (adder)
1 N << 1 N + N a

2 W << 1 W + W a

3 N +S W N + W with saturation
4 N +S N N + N with saturation a

5 W +S W W + W with saturation a

6 (N +W) >> 1 Average
7 255 Constant
8 N >> 1 Right shift N by 1
9 W >> 1 Right shift W by 1
10 N Identity
11 W Identity
12 max(N,W) Maximum
13 min(N,W) Minimum
14 N −S W Subtraction with saturation to 0
15 W −S N Subtraction with saturation to 0

a Improved implementation as a shifter

4.1.2. Optimizing by eliminating functional redundan-
cies. Dividing the set of 16 FBs’ functions according to its
arity, 0, 1 and 2 operand functions are found on the set.
In the case of 2 operand functions, we can further distin-
guish between commutative and non-commutative ones. Let
consider again the example of the adder, PE+, which as ex-
plained previously turns into 4 possible adder components
in the library. However, since this is a symmetric operation,
the two adders with an input configuration as (1) or (2) are
just the same from a functional point of view. Therefore,
they are merged into one single adder component, with
default routing configuration as in (1); N → Y//W → X .

After adapting the set of 16 functions chosen to the
architecture proposed and by applying the optimizations
mentioned, the resulting set of library components raised to
29. This requires 5 bits to encode each gene, which yields
l = 6×6×5 = 180 bits to encode the whole chromosome.

After some initial runs an additional reduction in the
number of functions was done, choosing just those reported
to have a higher degree of utilization for this task in [8].
The final set of 16 components included in the library can
be found in Table 1, which reduces the chromosome length
down to l = 6× 6× 4 = 144 bits.

4.1.3. Input/Output data strategy. While the previous
analysis refers to the PEs themselves, the input and output
data strategy at array level is analysed here. In relation to
the output, there are A+B output PEs (right/bottom borders
of the array), so the decision of which is the correct one
could be let to the evolution or fixed by design to any of
the output PEs. As a first approach the right-most, lowest,
PE is chosen as the matrix output since it seems to be
a reasonable decision, given the natural data flow defined
in the architecture, although some other data collection
mechanisms at the output will be analysed.

Regarding the input, since the intended processing task
is mask-based image noise filtering, a 3x3 window is used,

Data

Out

Figure 4. Input/Output data to the matrix

being let to evolution decide which pixels of the window
are going to be connected to each of the input PEs (those
situated in the left and upper borders). A new window will
appear at the inputs in each clock cycle by moving one
column to the right of the image. This means that each
input PE needs an associated multiplexer. Figure 4 shows
this input data strategy. For the selected array size of 6× 6
PEs, 12 input PEs exist, each of them with an associated
16-bit input multiplexer able to select any of the pixels of
the 3x3 window. In the genotype space, this results in 4
bits per gene, for a total of 12 input genes, which makes
the chromosome grow in 48 bits.

5. Genetic representation of the problem

Previous section analysed the architecture and the im-
plications that each refinement had on the chromosome
length. Now the description of the EA is introduced. As
explained previously, CGP encoding of the VRC concept
has been the source of inspiration for this work, sharing
many similarities with it. The chosen EA is a simple (1+λ)
Evolution Strategy in which each chromosome is composed
of a set of integer numbers representing input connection
genes and functionality genes:

〈InMux1, . . . , InMuxA+B , PE00, . . . , PEAB〉

where InMuxi stands for the configuration of the input
multiplexers of the matrix; PEj is an index pointing to the
library of components; and A and B are the height and
width of the matrix of PEs respectively. The length l of the
chromosome is therefore l = (A+B) +AxB.

The initial population is generated randomly. After eval-
uation, which is described below, selection acts accordingly
to CGP prescriptions. This means the fittest individual
is selected as parent for the next population; elitism is
enabled; and if two individuals score the same best fitness,
diversity of the population is maintained by selecting the
one which did not act as a parent in the previous generation
(if this is the case). The new population consists of the
selected parent and its mutants (no crossover operator). The
mutation operator modifies k randomly selected genes from

this parent until the new population is complete. Uniform
integer distribution (from 0 to 8 for input genes and from
0 to 15 for functionality genes) is used for this operator.

The evolution goal is to minimize the difference between
the filtered image and the original image. Mean Absolute
Error (MAE) is selected as fitness measure. To obtain
the fitness value of a candidate filter a 3 step process is
followed. First, the processing matrix is reconfigured with a
candidate circuit; afterwards, the corrupted image is filtered;
and finally the fitness value is calculated as:

MAE =
1

RC

R−1∑
r=0

C−1∑
c=0

|I(r, c)−K(r, c)| (5)

where R,C are the rows and columns of the image and
I,K the original and transformed images respectively.

Because of the inherent pipeline of the matrix, and due
to the parallel fitness computation, the time of evaluation
te for a single image can be expressed as:

te ≈ (lat+ (R× C)) 1
f

(6)

where lat stands for the initial latency of the matrix,
whose calculation is tricky, because the way the data front
propagates through the matrix changes with each candidate
configuration. However, an approximation to it has been
defined as the cycles it takes an input datum at PE00 to
propagate until PEAB which yields a reasonable expression
for latency such as lat = A + B − 1. However, compared
to the R× C product, lat can be neglected.

6. Experimental Set-Up and Results

To validate the proposed architecture and the EA, a high-
level software model of the system shown in Figure 5 has
been created using a mixed Python/C approach to combine
ease of implementation with a relative processing speed
(as compared to a HW implementation). In particular, the
simulation results shown validate the EA as well as the 2D
evolvable architecture and the fitness function utilized.

Different evolutionary runs have been done in order to
identify a suitable initial set of parameters. Tests have been
performed with matrix sizes ranging from 6x6 through 3x3.
However, simulations of the 6x6 matrix were extremely
slow, so the complete set of runs was not performed on
it. Besides, no improvements compared to smaller arrays
were observed in the runs performed so its results are not
included here. Mutation rate has been varied between 1%
and 20% approximately.

As opposed to the proposed reasonable value for latency,
initial runs seemed to offer better results for lat = A+B−2,
so this has been used for these tests. Table 2 shows the
results obtained for various (1+8)-ES runs during 100000
generations. All tests were repeated 5 times.

Figure 5. Proposed System Level Architecture

Table 2. MAE for different arrays and mutation rates
AxB k k(%) Best Best Gen. Avg. Avg. Gen.
5x5 1 2.86 2.9556 118 9.1326 150

(l = 35) 2 5.71 0.8111 30262 1.7614 20269
3 8.57 0.4845 62345 1.3388 57192
4 11.43 0.6607 33766 0.9875 40075
5 14.29 0.8198 96625 1.1933 72991

4x4 2 8.33 1.2353 14870 2.4631 8062
(l = 24) 3 12.50 0.5640 32177 1.2798 28974

4 16.67 0.7301 99292 1.0414 53675
5 20.83 0.6553 56143 0.9812 71256

Figures 6a–6c show the result of an average evolved
circuit over Lena’s image, which was used during evolution,
while Figures 6d–6l show the result of applying that same
circuit over a test set of 3 different images not seen during
evolution to prove the generality of the solution.

6.1. Time of evolution

As it can be derived from Table 2, an average performing
filter can be obtained within 50000 generations approx-
imately. For the used population of (1 + 8) that means
an average number of 400000 evaluations, AvgEvals, are
needed to obtain an acceptable filter. The time of evolution
can then be expressed as:

tevol = (te + treconfig)AvgEvals (7)

As stated in the Introduction section, if the enhanced
ICAP overclocked at 250 MHz is used, approximately
12 µs are needed to reconfigure a single PE. Since the
maximum tested mutation rate is 5 elements per evaluation,
a maximum of 60 µs are needed for reconfiguration, while
for a 256x256 pixels image the resulting time of evaluation
(as in (6)) is 262 µs. Therefore, it can be concluded that
for the average 400000 evaluations needed, a total evolution
time of 128 seconds are needed to obtain a working filter,

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6. Result of applying an average evolved circuit: (a) through (c) to the train image used for evolution; (d)
through (l) to an image test set to prove the generality of the solutions. Left column shows the original images;
centre column the corrupted images; and left column the result of filtering

which means around 3100 evaluations per second can be
achieved.

7. Conclusions

This work proposes a 2D mesh-type, systolic, processing
architecture widely used in VLSI signal processing which

has been exercised to check its evolvability so as to analyse
its feasibility as a solution for adaptive hardware in FPGAs
with native reconfiguration support. Though it does not yet
perform as well as other State of the Art proposals as VRCs
(but outperforms standard solutions as the median filter),
it clearly shows its feasibility to be considered as a valid
adaptive processing-architecture. Therefore, combined with

our enhanced DPR engine, this complete evolvable frame-
work represents a step forward in the implementation of
adaptive systems in commercial FPGAs since it makes na-
tive reconfiguration possible, overcoming traditional VRCs
drawbacks like area and delay overhead. Next step, which
is already being accomplished, is the integration of the EA,
the reconfigurable matrix and the DPR engine in the FPGA.

As future work on the EA side, we will focus on improv-
ing its search performance so the number of evaluations
needed to find a working solution is reduced. An adaptive
mutation rate scheme and crossover operators will be tested,
as well as a fitness landscape analysis performed to better
understand the search space. Also, a different EA such
as a Genetic Algorithm will be tried out, which may be
more convenient for this kind of combinatorial optimization
problem. Besides, since matrix latency has arose as an
important parameter to consider, it will be encoded as an
extra integer gene in the chromosome to evolve alongside
the solution.

Acknowledgement

This work was supported by the Spanish Ministry of Sci-
ence and Research under the project DR.SIMON (Dynamic
Reconfigurability for Scalability in Multimedia Oriented
Networks) with number TEC2008-06486-C02-01.

Lukas Sekanina has been supported by MSMT under
research program MSM0021630528 and by the grant of
the Czech Science Foundation GP103/10/1517.

References

[1] L. Sekanina, “Virtual Reconfigurable Circuits for Real-World
Applications of Evolvable Hardware,” Lecture Notes in Com-
puter Science, vol. 2003, no. 2606, pp. 186–197, 2003.

[2] A. Otero, A. Morales-Cas, J. Portilla, E. de la Torre,
and T. Riesgo, “A Modular Peripheral to Support Self-
Reconfiguration in SoCs,” in Digital System Design: Archi-
tectures, Methods and Tools (DSD), 2010 13th Euromicro
Conference on, 2010, pp. 88 –95.

[3] M. Shelburne, C. Patterson, P. Athanas, M. Jones, B. Martin,
and R. Fong, “Metawire: Using fpga configuration circuitry
to emulate a network-on-chip,” Computers Digital Tech-
niques, IET, vol. 4, no. 3, pp. 159 –169, 2010.

[4] C. Claus, R. Ahmed, F. Altenried, and W. Stechele, “Towards
rapid dynamic partial reconfiguration in video-based driver
assistance systems.” in ARC’10, 2010, pp. 55–67.

[5] D. Mange, M. Sipper, A. Stauffer, and G. Tempesti, “To-
wards Robust Integrated Circuits: The Embryonics Ap-
proach,” Proceedings of IEEE, vol. 88, no. 4, pp. 516–541,
2000.

[6] J. F. Miller and P. Thomson, “Cartesian Genetic
Programming,” in Proceedings of the European
Conference on Genetic Programming. London, UK:
Springer-Verlag, 2000, pp. 121–132. [Online]. Available:
http://portal.acm.org/citation.cfm?id=646808.704075

[7] J. F. Miller, “An empirical study of the efficiency of learning
boolean functions using a Cartesian Genetic Programming
approach,” in Proceedings of the Genetic and Evolutionary
Computation Conference, W. Banzhaf, J. Daida, A. E. Eiben,
M. H. Garzon, V. Honavar, M. Jakiela, and R. E. Smith, Eds.,
vol. 2. Orlando, Florida, USA: Morgan Kaufmann, 1999,
pp. 1135–1142.

[8] L. Sekanina, Evolvable Components - From Theory to
Hardware Implementations, ser. Natural Computing Series.
Springer Verlag, 2003.

[9] Z. Vasicek and L. Sekanina, “An Evolvable Hardware Sys-
tem in Xilinx Virtex II Pro FPGA,” International Journal of
Innovative Computing and Applications, vol. 1, no. 1, pp.
63–73, 2007.

[10] L. Sekanina and T. Martinek, Evolving Image Operators
Directly in Hardware, ser. EURASIP Book Series on Signal
Processing and Communications, Volume 8. Hindawi
Publishing Corporation, 2007, pp. 93–112.

[11] Y. Zhang, S. L. Smith, and A. M. Tyrrell, “Intrinsic Evolv-
able Hardware in Digital Filter Design,” in Applications of
Evolutionary Computing, ser. Lecture Notes in Computer
Science, G. R. Raidl, S. Cagnoni, J. Branke, D. W. Corne,
R. Drechsler, Y. Jin, C. G. Johnson, P. Machado, E. Mar-
chiori, F. Rothlauf, G. D. Smith, and G. Squillero, Eds.
Springer Berlin - Heidelberg, 2004, vol. 3005, pp. 389–398.

[12] A. Thompson, “Silicon Evolution,” in Proc. of Genetic
Programming GP’96. MIT Press, 1996, pp. 444–452.

[13] G. Hollingworth, S. Smith, and A. Tyrrell, “The Intrinsic
Evolution of Virtex Devices Through Internet Reconfigurable
Logic,” in Proc. of the 3rd International Conference on
Evolvable Systems: From Biology to Hardware ICES’00, ser.
LNCS, J. Miller, A. Thompson, and T. C. Fogarty, Eds., vol.
1801. Edinburgh, Scotland, UK: Springer, 2000, pp. 72–79.

[14] A. Upegui and E. Sanchez, “Evolving hardware with self-
reconfigurable connectivity in xilinx fpgas,” in The 1st
NASA/ESA Conference on Adaptive Hardware and Systems
(AHS–2006). Los Alamitos, CA, USA: IEEE Computer
Society, 2006, pp. 153–160.

[15] F. Cancare, M. Santambrogio, and D. Sciuto, “A direct
bitstream manipulation approach for Virtex4-based evolvable
systems ,” in Proceedings of 2010 IEEE International Sym-
posium on of Circuits and Systems. IEEE, 2010, pp. 853–
856.

[16] Z. Vasicek and L. Sekanina, “Evaluation of a New Platform
For Image Filter Evolution,” in Proc. of the 2007 NASA/ESA
Conference on Adaptive Hardware and Systems. IEEE
Computer Society, 2007, pp. 577–584.

[17] Xilinx Modular Design Flow. [Online]. Avail-
able: http://www.xilinx.com/itp/xilinx7/books/data/docs/dev/
dev0025 7.html

