
Evolution of Cache Replacement Policies

to Track Heavy-hitter Flows

Martin Zadnik1 and Marco Canini2

1 Brno University of Technology, Czech Republic. izadnik@fit.vutbr.cz
2 EPFL, Switzerland. marco.canini@epfl.ch

Abstract. Several important network applications cannot easily scale
to higher data rates without requiring focusing just on the large traffic
flows. Recent works have discussed algorithmic solutions that trade-off
accuracy to gain efficiency for filtering and tracking the so-called “heavy-
hitters”. However, a major limit is that flows must initially go through a
filtering process, making it impossible to track state associated with the
first few packets of the flow.

In this paper, we propose a different paradigm in tracking the large flows
which overcomes this limit. We view the problem as that of managing a
small flow cache with a finely tuned replacement policy that strives to
avoid evicting the heavy-hitters. Our scheme starts from recorded traffic
traces and uses Genetic Algorithms to evolve a replacement policy tai-
lored for supporting seamless, stateful traffic-processing. We evaluate our
scheme in terms of missed heavy-hitters: it performs close to the opti-
mal, oracle-based policy, and when compared to other standard policies,
it consistently outperforms them, even by a factor of two in most cases.

1 Introduction

Flow-based network traffic processing, that is, processing packets based on some
state information associated to the flows to which the packets belong, is a key
enabler for a variety of network services and applications. For example, this form
of stateful traffic processing is used in modern switches and routers that contain
flow tables to implement firewalls, NAT, QoS, and collect statistics.

Flow-based traffic processing faces scaling challenges in that it potentially
requires tracking and managing the state of millions of concurrent flows while
keeping up with ever increasing data rates. In a number of cases, it is not nec-
essary to track the state of each individual flow. Based on the generally known
observation that a small number of flows account for a large amount of network
traffic (e.g., see [1]), it has been suggested that scalable traffic measurement and
accounting can be done by accurately measuring only the few large flows [2]. This
can be generalized to other applications where the application goals can be met
well enough by just focusing on the so called “heavy-hitters”. For example, a traf-
fic shaping system may focus on rate-limiting the large flows while the low-rate
flows can utilize a small share of bandwidth at their will.

In [2], a memory-efficient structure called the Multistage filter has been intro-
duced to define a scalable and efficient algorithm for identifying heavy-hitters.
The limit of this approach is that a flow will only be accounted for once its
traffic volume has passed the filter and until this time no state can be assigned
to that flow. As this limit is intrinsic to the filtering approach, the works that
have extended the method above (e.g., [3, 4]) have inherited this limit.

However, associating flow state since a flow’s first packet is critical for certain
applications. For example, classifying traffic based on application identification
(e.g., [5]) require statistics or payload data collected from the first few packets of
a flow. In addition, network security schemes implement stateful processing for
the initial packets of each flow. Further, OpenFlow switches [6] are managed by
a controller that acts upon the first packet of each flow and installs flow-specific
rules into the switch flow table. Therefore, filtering approaches are not always
applicable and other approaches must be utilized despite their higher costs.

In this paper, we treat the problem of identifying and tracking heavy-hitters
as that of finding a cache replacement policy that strives to avoid evicting the
heavy-hitters from the flow table (from now flow cache). The intuition is that,
if in the presence of a full cache and a new flow starting (causing a cache miss)
the policy only chooses to evict flows that are not heavy-hitters (or unlikely),
then the state of heavy-hitters is definitely preserved in the cache since their
first packet. Effectively, compared to filtering, we trade-off the absence of false
negatives and, partially, memory efficiency to support tracking with state the
heavy-hitters from their initial packets.

In order to find such a replacement policy we utilize Genetic Algorithms
(GA). GA explore the space of possible solutions in search for a solution that
exploits characteristics learned from recorded traffic traces and tailor the replace-
ment policy to traffic patterns which could hardly be considered when manually
designing a policy. We compare the evolved policies with other standard replace-
ment policies. In our trace-driven evaluation, our scheme performs the best, even
by a factor of two in most cases. The results demonstrate that our approach is
promising in supporting stateful traffic processing focused on the heavy-hitters.

2 Background

Genetic Algorithms. GA are widely used in various areas of science and engi-
neering to find solutions to optimization and search problems [7]. The main idea
is to evolve a set (a population) of candidate solutions to find better replace-
ment policy. A candidate solution is encoded as a genome which is an abstract
representation (e.g., a binary string) that can be modified with standard genetic
operators such as mutation and crossover. Starting from a population of ran-
domly generated candidate solutions the evolution happens in generations. In
each generation, some highly-scored solutions are selected to produce offspring.
The offspring are evaluated in terms of their fitness to the problem and form
a new generation. The evolution stops once a maximum number of generations
has been produced or a satisfactory fitness level has been reached.

In their recent work [8], Kaufmann et al. described the usage of GA to min-
imize data collisions in a CPU cache line by tuning the address mapping in an
application-specific way. We regard this work as orthogonal to ours in that they
optimize the selection of a cache line to avoid collisions, but maintain the original
replacement policy while we are concerned with the optimization of the cache
replacement policy within a single cache line.

Cache Replacement Policies. Least Recently Used (LRU) is a widely used
replacement policy for managing caches. However, LRU caches are susceptible
to the eviction of frequently used items during burst of new items. Many efforts
have been made to address the inability to cope with access patterns with weak
locality. For example, Segmented LRU (SLRU) [9] seeks to combine both locality
and frequency to achieve better hit ratios. An SLRU cache is divided into two
segments: a probationary segment and a protected segment. When the cache is
full and a miss occurs, the new item is added to the probationary segment and the
least recently used item of this segment is removed. If a cache hit corresponds to
an item in the probationary segment, the item is moved to the protected segment
taking the place of the least recently used item in that segment.

We proposed a minor variation of SLRU for tracking large flows called Single-
Step SLRU (S3-LRU) [10]. Compared to SLRU, S3-LRU does not order the items
within each segment by their last access, but on each cache hit it advances the
hit item of a single step toward the front of the cache (protected segment) by
swapping its position with that of the adjacent item. However, S3-LRU is only
marginally better than SLRU in certain cases as our evaluation demonstrates.

Molina [11] proposed an algorithm for evicting small flows from the flow table
using forecasts of the future flow volume based on the current volume and recent
flow growth rate. Statically partitioning the flow cache in several subsets makes
the approach efficient for identifying heavy-hitters. However, in this approach
heavy-hitters can be evicted before having a chance to significantly increase
their growth rate. For example, in our datasets we found that with this strategy
80% of the heavy-hitters witness a cache miss.

Filtering. Estan and Varghese [2] suggested a scalable traffic accounting
scheme which focuses upon the identification and monitoring of heavy-hitter
flows. In this scheme, only the packets which belong to flows identified as heavy-
hitters are recorded by the flow table. The identification algorithm takes advan-
tage of a memory-efficient data structure called Multistage filter. However, the
limit of this approach is that a flow will only be accounted for once its volume
has passed the identification stage, and no state in the flow table can be assigned
to this flow until that time. We consider their approach as complementary to
our scheme (also it would not be straight-forward to compare fairly).

3 Datasets

The definition of a flow changes based on the application. One that is commonly
used identifies a flow based on the 5-tuple composed of its IP addresses, port
numbers and protocol. In our work, a flow is a unidirectional stream of packets

Mawi Equinix

v.large large medium Total v.large large medium Total

Flows 0.23% 0.93% 9.43% 4.0M 0.00% 0.02% 0.35% 21.8M
Packets 31.97% 18.92% 20.71% 53.0M 0.36% 10.15% 17.07% 344.1M
Bytes 68.35% 17.13% 9.22% 33.5G 0.85% 24.01% 36.48% 207.7G

Table 1: Mawi dataset. (1 hour, 155 Mbps link, avg/min/max active flows: 67.3K/
56.5K/250.1K) Equinix dataset. (15 min, 10 Gbps link, avg/min/max active flows:
1.7M/179K/1.8M, only 160 instances of very large flows)

sharing the same 5-tuple, but our approach can be easily generalized to allow
the flow identifier to be a function of the header field values. A flow ends based
on an inactivity timeout of 60 s or based on the TCP connection tear down.

We define a heavy-hitter to be a flow that utilizes more than a certain per-
centage of a link bandwidth during its lifetime. Also, we only consider a flow
as heavy-hitter if it exceeds the threshold utilization for at least 5 s. Therefore,
we compute a flow’s link utilization as bytes

max(5,lifetime) . This excludes short-lived

flows with intensive bursts of packets that do not carry a significant amount
of traffic overall. Lowering the 5 s interval significantly increases the number
of heavy-hitters which potentially causes the GA to focus on short-lived flows
at the expenses of long-lived heavy-hitters, although the traffic volume due to
these short-lived flows is just a small fraction (e.g., with 1 s interval the number
of heavy-hitters increases by 50% while the number of additional bytes due to
heavy-hitters increases by less than 1%).

We group flows into three reference categories based on their link utilization:
very large flows (> 0.1% of the link capacity), large flows (between 0.1% and
0.01%), medium flows (between 0.01% and 0.001%). We then report how well
our approach performs for each category.

We use two traces of Internet backbone traffic: a 1-hour trace from the Mawi
archive collected at the 155 Mbps WIDE backbone link (samplepoint-F on March
20th 2008 at 14:00)3, and an anonymized, unidirectional 15-min trace from the
Caida archive collected at the 10 Gbps Equinix San Jose link (dirA on July 17th
2008 at 13:00 UTC) [12]. Table 1 summarizes the working dimensions of our
traces and shows a breakdown of the composition of the three flow categories.

4 Approach

Definitions. We regard the flow cache of size N as a list of up to N flow states
(or simply flows) F . This allows us to treat the cache management problem as
keeping the list of flows ordered by their probability of being evicted (highest
goes last). Then, the role of a replacement policy (RP) is to reorder flow states
based on their access pattern. Each packet causes one cache access and one
execution of the RP. If the current packet causes a cache miss (i.e., a new flow
arrives) and the cache is full, the flow at the end of the list is evicted.

3 http://mawi.wide.ad.jp/mawi

Formally, we can express a RP that is based solely on the access pattern as a
pair 〈s, U〉 where s is a scalar representing the zero-based position for inserting
new flow states and U is a vector (u1, u2, . . . , uN) which defines how the flows are
reordered. Specifically, when a flow F stored at position post(F) is accessed at
time t, its new position is chosen as post+1(F) = upost(F), while all flows stored
in between post+1(F) and post(F) see their position increased by one. For exam-
ple, the LRU policy for a cache of size 4 is expressed with LRU = 〈0, (0, 0, 0, 0)〉.
Evolution of Replacement Policies. Our goal is to find a RP that has the
least number of evicted heavy-hitters or, using caching terminology, minimizes
the miss rate for heavy-hitters. We use the number of heavy-hitters that witness
a cache miss as a metric to capture the effectiveness of a RP—the objective is
to reduce this number. Finding such a RP is difficult due to a large number
of factors including flow size distribution, flow rate, and other traffic dynamics.
We propose using GA to explore the space of possible RPs to identify the most
effective. We chose GA for its ability to infer useful discriminators from traffic
characteristics and to be easily customized to accommodate changes in the prob-
lem specification, e.g., different flow definitions, different traffic subpopulations
of interest [4], etc.

The vector-based definition of a RP is a good fit to encode the candidate
solution. It supports the standard genetic operators for mutation and crossover.
Mutation modifies a particular value in the vector with given probability pmut

while crossover swaps parts of the vector between two solutions with probability
pcross. The RP evolution is performed offline using network traces. The following
pseudo-code illustrates the evolution process:

population = GenerateRandomPopulation();

Evaluate(population); best = SelectBestIndividual(population)

while (not endcondition):

newpopulation = SelectNewPopulation(population + best, fitness);

CrossoverIndividuals(newpopulation, p_cross);

MutateIndividuals(newpopulation, p_mut);

FixInviableIndividuals(newpopulation);

Evaluate(newpopulation);

best = SelectBestIndividual(newpopulation + best);

population = newpopulation;

result = best;

We start with a population of C = 5 candidates generated at random. The
population size is a trade-off between evolution progress and population diversity.
A large population means having a long time between replacements of genera-
tions due to lengthy evaluation of all candidate solutions. On the other hand, a
small population cannot afford preserving currently low-scored solutions which
could become good solutions. We use a relatively small population so the evo-
lution process can progress faster allowing the RP to be adapted to ongoing
traffic. We will study adaptation mechanisms in future work. During each step
of evolution, 5 candidates are selected using tournament selection from a parent
population and the best individual so far. Then, crossover and, subsequently,
mutation operators are applied and the resulting offspring are evaluated with

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fig. 1: An example of a RP produced by GA using the Mawi dataset. The
arrows represent where to move a flow state when it is accessed. RP = 〈18,

(0, 0, 0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 13, 14, 14, 15, 15, 15, 16, 16, 16, 17, 18, 18, 18, 20, 22, 22, 22)〉.

a fitness function. The fitness function is the sum of cache misses for the flows
in the three reference groups weighted by the link utilization thresholds: 0.1%
for the first group, 0.01% for the second and 0.001% for the third4. Effectively,
the fitness function simulates the cache behavior with a candidate RP. To lower
the evolution time, we evaluate the fitness using only a small part of a traffic
trace, namely 5 min for Mawi and 1 min for Equinix. This has negligible impact
on the results because we use a small cache size which becomes full within few
seconds of simulation time. In each generation, the candidates are replaced by
the offspring and the best candidate so far is preserved (so called elitism).

Search Optimizations. Without imposing any constraint on the vector-
based definition of RP, we allow undesired candidate solutions: those that (i) do
not utilize the entire list due to unreachable positions in the update vector U ,
or (ii) worsen the position of a flow despite it being accessed. Excluding these
solutions reduces the search space, which helps GA to perform better and faster.
Using simple heuristics we ensure the reachability of all positions and that any
access improves the position of a flow. In our experiments, we observe that the
GA converges to a promising solution faster if we split the run of GA into two
consecutive phases, each with a different setup. The first phase is intended to
search through the space to quickly find various viable solutions. Therefore, mu-
tation changes the values in the vector to new, randomly-generated values. While
experimenting with GA, we found that pmut = 0.3 works well during this phase
but close values work well too. The probability of one-point crossover is set to
pcross = 0.3 which allows to exchange information (parts of vector) between the
selected parents. If there is no significant fitness improvement in the population,
we enter the second phase which focuses on optimization. The crossover operator
is no longer utilized as the possible solutions either differ significantly (crossover
would produce a hybrid that would quickly be discarded) or are very similar. We
modify the mutation operator to increase/decrease each vector value by one with
probability pmut = 0.5. In total, we produce 50 generations and we make 10 in-
dependent runs of GA, from which we select the best solution. Figure 1 presents
an example of a GA-produced RP while Figure 2 shows the fitness evolution in
a typical run of GA.

Discussion. So far we have considered a flow cache as an ordered list of
flow states. In such a simplistic model, the complexity of our scheme is O(n) in
the case of a hit and O(2 · n) in the case of a miss where n is the cache size.
However, the applications we target typically already have a certain hardware

4 This assigns higher importance to track true heavy-hitters.

 1e+06

 2e+06

 3e+06

 4e+06

 0 5 10 15 20 25 30 35 40 45 50

F
it

n
es

s

Generation

Min
Max
Average

Fig. 2: A typical run of GA. “Min” repre-
sents the best solution.

���
���
���
���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

���
���
���

���
���
���

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

���
���
���

���
���
���

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

������

��
��
��
��
��

��
��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

���
���
���
���

��
��
��
��

�� �
�
�
�

��
��
��
�� 0

 5
 10
 15
 20
 25
 30
 35
 40

4096 8192 12288 16384v
.l

.
h

h
 m

is
s

ra
te

 [
%

]

Cache size

LRU
SLRU
S3−LRU
GARP
ORC

Fig. 3: Missed very large heavy-hitters
vs. cache size (Mawi trace).

support for stateful traffic processing at wire speed. Our scheme is meant to be
implemented in hardware and integrated with the existing support for stateful
processing. A practical hardware implementation usually divides the cache into a
number of equally-sized lines which are managed independently. Each line is able
to accommodate multiple flow states and the lookup of a flow state is performed
in parallel by a set of comparators. Thus, the scheme runs with complexity O(1).
An hash value of the flow identifier is used to address a line in the cache. In such a
basic scheme called Näıve Hash Table (NHT), each line in the cache executes the
same RP. We evaluate our approach with these realistic settings. Our previous
work in [10] shows that a line size with up to 64 items can be implemented in an
FPGA (Field Programmable Gate Array). We choose to evolve RPs for a line
size of 32 items as we consider it a good trade-off between what can be easily
implemented in hardware and accuracy performance.

Finally, as our scheme operates online, the question arises how to maintain
low false negatives (cache misses for heavy-hitters) despite changing traffic con-
ditions. A plausible solution is to run our scheme in parallel with a Multistage
filter to estimate the number of flows evicted from the cache which are identified
as heavy-hitters by the filter. If this count exceeds a given threshold, we could
trigger the creation of a new RP based on recently recorded traffic traces. Due
to space limitations, we do not further discuss a complete solution and leave a
thorough study for future work.

5 Evaluation

In this section, we present the results of our evaluation with a software imple-
mentation of the flow cache which allows us to easily report on the cache misses.

We compare the performance of a genetically evolved RP (referred to as
GARP) with that of LRU, SLRU [9], S3-LRU [10] and the best possible policy,
which is based on an oracle (ORC). ORC uses the knowledge about active heavy-
hitters and their remaining duration to evict a flow that is not a heavy-hitter
if possible, otherwise the heavy-hitter that will end soonest. For SLRU and S3-
LRU, we select the insert position that performs the best across our datasets.
The values are 21 and 7 for SLRU and S3-LRU, respectively.

We experiment with cache size of 64K, 96K, 128K, 160K flow states for
Equinix, and 4K, 8K, 12K and 16K flow states for Mawi. We use line size of 32

RP Mawi Equinix
v.large large medium v.large large medium

LRU 19% 30% 10% 5% 25% 28%
SLRU 9% 19% 7% 3% 19% 18%
S3-LRU 7% 21% 11% 2% 16% 22%
GARP 3% 8% 6% 2% 9% 10%
ORC 0.3% 1% 9% 0% 0% 0%

GARP-Eq. 5% 9% 8%
GARP-Ma. 2% 11% 12%

Table 2: Comparison of cache misses for heavy-hitters between GARP and other RPs.
Cross-evaluation of GARP trained on different datasets. (Mawi – cache size: 8K, line
size: 32; Equinix – cache size: 128K, line size: 32)

states. In our experiments, the flow cache is approximately one order of magni-
tude smaller than the number of concurrently active flows.

Table 2 presents the number of heavy-hitters that experience a cache miss,
normalized by the total number of heavy-hitters in each category obtained on
the Mawi and Equinix datasets. In the case of Equinix dataset, the cache size
is large enough to accommodate all heavy-hitters and so ORC does not cause
any cache miss. However, using smaller cache sizes quickly deteriorates the cache
misses for any real RP because of the large number of non heavy-hitters (99%)
present in the Equinix dataset.

The results show that GARP consistently outperforms LRU and in most
instances performs at least two times better than the other RPs which already
have an ability to cope with access patterns with weak locality. Most of the
heavy-hitters witness just one cache miss. We note that when experimenting
with larger caches (see Figure 3) the difference in performance between policies
decreases as the cache itself can store a significant share of all concurrent flows.
However, it is often prohibitively expensive to have a large cache.

We perform a cross-evaluation to assess whether a GARP produced for one
network link is applicable to another or whether the performance are unsatis-
factory due to GA over-fitting for a particular training dataset. Second part of
Table 2 demonstrates that the difference between two GARPs evolved on dif-
ferent datasets is quite modest. The suffixes -Equinix and -Mawi indicate the
dataset the GARP was evolved on. These results indicate that our approach is
promising and might find more general applicability, e.g., with different defini-
tions of flows of interest [4]. Finally, to gain insight on the temporal stability
of GARP, we test the performance of RPs evolved on our datasets and applied
to traffic traces collected one year later than the training datasets (at the same
links). We find that the performance does not significantly decay (on average
less than 1.5% for Mawi and 2% for Equinix). Moreover, we evolve RPs on
these newer traces and we find that, for both Mawi and Equinix, the newly
obtained GARP is very similar to the GARP produced from the corresponding
older dataset: quantitatively, the differences between the RPs’ update vectors
expressed as mean squared error are 0.42 for Mawi and 0.57 for Equinix.

6 Replacement Policy Extension

We now extend the RP with the ability to exploit information from the header
fields of the packet that causes a cache hit. We consider two fields: packet size
and TCP flags – chosen based on the analysis (omitted for a lack of space) of
the statistical characteristics across the flow groups of the field values in our
datasets. One intriguing approach would be to replace the update vector U with
a matrix in which each row corresponds to a particular update vector for a given
set of input field values. For example, the first row could be the update vector
corresponding to the packet size 0 and the FIN TCP flag while the second row
could be for packet size 1, etc. However, this quickly brings to the well-known
problem of search space explosion.

We avoid this problem by maintaining a single update vector, but we com-
plement the selection of the new position with a decision tree that uses the field
values to increase by one, decrease by one, or maintain the position selected by
the update vector. Based on our experiments, increases/decreases of two or more
give worse results.

We only consider TCP flags (FIN, RST to decrease) and packet sizes of these
ranges: [0 - 359] to decrease, [360 - 1000] to maintain and [1001 - max. size] to
increase the update position. We determined these values from the analysis of
the difference in the distribution of packet sizes between heavy-hitters and other
flows in our datasets.

We tried using the current flow size (packets or bytes) as another parameter
of the decision tree, and found that it does not bring further improvements. This
is not entirely unexpected because the flow state’s current position is determined
by the history of all cache accesses, therefore the information from the current
number of packets is implicitly already used.

As this extension is agnostic of the specific way in which the update vector
is determined, we can apply it to all the considered RPs. Table 3 presents the
number of cache misses normalized as before obtained on the Mawi and Equinix
datasets with a cache size of 8K and 128K flow states, respectively. Each cache
line stores 32 flow states. The extension works well only for the policies that do
not progress the flow state right to the first position in the line. The GARP still
achieves the best performance but it sees a smaller improvement than S3-LRU.
This is because the GARP itself has already been optimized to the observed
traffic patterns (e.g., network scans), and applying a decision tree provides only a
little additional information. We leave it as future work to evolve the replacement
policy together with the decision tree.

7 Conclusions

We proposed a paradigm shift for scalable traffic processing focused on the large
flows, regarded as the problem of managing a small flow cache. By design, our
scheme allows to identify and track the heavy-hitters since their first packets.
We demonstrated that Genetic Algorithms can evolve cache replacement policies

Extended RP Mawi Equinix
v.large large medium v.large large medium

LRU 19% 29% 10% 5% 24% 28%
SLRU 9% 18% 7% 3% 18% 17%
S3-LRU 4% 16% 17% 0% 11% 14%
GARP 3% 7% 7% 0% 8% 9%
ORC 0.3% 1% 9% 0% 0% 0%

Table 3: Comparison of cache misses for heavy-hitters between extended GARP and
other extended RPs. (Mawi – cache: 8K, line size: 32; Equi. – cache: 128K, line: 32)

that obtain results close to optimal while consistently outperforming standard
policies. Finally, we believe that our approach can find more general applicability
in other network-based applications where performance critically depends upon
cache performance such as route caching.

Acknowledgements

This work was partially supported by the BUT FIT grant FIT-10-S-1 and the
research plan MSM0021630528. We thank the anonymous reviewers and our
shepherd, Alan Mislove, for their many helpful comments and suggestions.

References

[1] Feldmann, A., et al.: Deriving traffic demands for operational ip networks:
methodology and experience. IEEE/ACM Trans. Netw. 9(3) (2001) 265–280

[2] Estan, C., Varghese, G.: New directions in traffic measurement and accounting:
Focusing on the elephants, ignoring the mice. Trans. Comp. Syst. 21(3) (2003)

[3] Bu, T., Chen, A., Lee, P.P.C.: A Fast and Compact Method for Unveiling Signif-
icant Patterns in High Speed Networks. In: Proceedings of INFOCOM’07. (2007)

[4] Ramachandran, A., Seetharaman, S., Feamster, N., Vazirani, V.: Fast Monitoring
of Traffic Subpopulations. In: IMC ’08. (2008)

[5] Canini, M., Li, W., Zadnik, M., Moore, A.: Experience with High-Speed Auto-
mated Application-Identification for Network-Management. In: ANCS ’09. (2009)

[6] McKeown, N., et al.: Openflow: enabling innovation in campus networks. SIG-
COMM Comput. Commun. Rev. 38(2) (2008)

[7] Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (1989)

[8] Kaufmann, P., Plessl, C., Platzner, M.: EvoCaches: Application-specific Adapta-
tion of Cache Mappings. In: NASA/ESA Conference on AHS. (2009) 11–18

[9] Karedla, R., Love, J.S., Wherry, B.G.: Caching strategies to improve disk system
performance. Computer 27(3) (1994) 38–46

[10] Zadnik, M., Canini, M., Moore, A., Miller, D., Li, W.: Tracking elephant flows in
internet backbone traffic with an fpga-based cache. In: FPL’09. (2009) 640–644

[11] Molina, M.: A Scalable and Efficient Methodology for Flow Monitoring in the
Internet. In: Proceedings of the 18th ITC-18. (2003)

[12] Shannon, C., et al.: The caida anonymized 2008 internet traces (2008) http:

//www.caida.org/data/passive/passive 2008 dataset.xml.

