
Memory Optimizations for Packet Classification

Algorithms in FPGA

Viktor Puš

CESNET, z. s. p. o.

Zikova 4

Prague, Czech Republic

Email: pus@liberouter.org

Juraj Blaho, Jan Kořenek

Faculty of Information Technology

Brno University of Technology

Božetěchova 2, Brno, Czech Republic

Email: xblaho00@stud.fit.vutbr.cz, korenek@fit.vutbr.cz

Abstract—Packet classification algorithms are widely used in
network security devices. As network speeds are increasing, the
demand for hardware acceleration of packet classification in
FPGAs or ASICs is growing. Nowadays hardware architectures
can achieve multigigabit speeds only at the cost of large data

structures, which can not fit into the on-chip memory.

We propose novel method how to reduce data structure size
for the family of decomposition architectures at the cost of
additional pipelined processing with only small amount of logic
resources. The reduction significantly decreases overhead given
by the Cartesian product nature of classification rules. Therefore
the data structure can be compressed to 10% on average. As high
compression ratio is achieved, fast on-chip memory can be used
to store data structures and hardware architectures can process
network traffic at significantly higher speed.

I. INTRODUCTION

With the rapid development of computer networks, traffic

filtering has become one of the first steps in securing any

network or computer. Basic traffic filtering device is the

firewall, which performs per-packet decision based on the

given set of rules. As network speeds are increasing, the

demand for the speed of packet classification algorithms is

also growing.

The classification algorithm contains a set of rules ordered

by priority. Each rule defines a condition for all significant

packet header fields. These fields are usually: Source IP

Address, Destination IP Address, Source Port, Destination

Port, Protocol. A condition may be exact match, prefix match

(usually for IP addresses), range match (for ports), or a wild-

card (matching any value). The goal of a packet classification

algorithm is to find the matching rule with the highest priority.

The output of the algorithm is then the number of the matched

rule.

Software solutions for the packet classification problem are

available, but their performance is not sufficient for wirespeed

processing in the highest-speed networks. Existing FPGA and

ASIC architectures can achieve multigigabit speeds only at

the cost of large data structures and they must deal with great

memory overheads imposed by fields Cartesian product.

We propose a novel method that significantly reduces mem-

ory requirements for classification algorithms by fast pipelined

processing with only small amount of logic resources. As

the processing is pipelined, only system latency is increased,

but the throughput is not affected. The proposed method

utilizes classification rules structure and can be used for

any decomposition-based classification algorithm, where the

processing is split between the longest prefix match (LPM)

and rule matching operations.

The rest of the paper is organized as follows: in the next

section we discuss the related work and explain causes of the

excessive memory overhead. Section III introduces our new

method of lowering memory overheads of these algorithms,

together with the sketch of the proof of the algorithm cor-

rectness. Experimental results of our work are summed up in

Section IV, and Section V concludes the paper.

II. RELATED WORK

As the packet classification problem is inherently hard from

a theoretical standpoint [1], a large number of hardware and

software solutions [1], [4] have been proposed.

From the wide choice of available algorithms, we discuss

only those which are related to our work. All of them belong to

the family of decomposition-based methods. In decomposition

methods, packet classification is divided into several steps.

First step is the LPM operation, which is performed indepen-

dently in each dimension. From the given set of prefixes with

various lengths, the LPM algorithm finds the one that best

fits the given full-length value. Range conditions (such as port

ranges) in the ruleset are converted to prefixes, so that the

LPM may be performed in all dimensions. Figure 1 shows the

basic scheme of all Cartesian product algorithms.

The LPM operation is performed in IP packet routing, so it

is well studied topic. In fact, routing table lookup operation is

a classification in one dimension only – the destination IP

address. Basic algorithm for the LPM is a trie – the tree

algorithm processing one input bit at each tree level and

returning the last valid prefix visited. Trie is often modified

to process more input bits in each step and to reduce memory

requirements. Popular example of such algorithm is the Tree

Bitmap [3], but there are also many other solutions.

Result of the LPM stage is a vector of prefixes, each prefix

is represented by unique number. After the LPM, all fields of

the resulting LPM vector must be combined together to get

the resulting rule number. Basic Cartesian product algorithm

[6] precomputes a product table, which contains resulting rule



Fig. 1. Basic scheme of Cartesian product-based algorithms.

numbers for all possible combinations of prefixes. Because of

the multiplicative nature of the Cartesian product, this table

may become extremely large.

Multi Subset Crossproduct Algorithm [2] brings further

improvements to decomposition methods. The authors of this

work replace Cartesian products by pseudorules. Because

pseudorules expansion is similar to Cartesian product, authors

provide heuristics on how to break ruleset into several sub-

sets, eliminating the majority of pseudorules. The paper also

identifies rules that generate excessive amount of pseudorules.

These rules are called spoilers and are moved to small on-chip

TCAM.

We have recently published another Cartesian product-based

algorithm [5]. Our method uses specifically constructed hash

function to map all pseudorules (in the form of LPM result

vectors) onto correct rules. This way, it is no longer necessary

to store pseudorules, which saves a considerable amount of

memory. The algorithm also achieves high packet rate, and

the processing time for each packet is guaranteed to be

constant. But still, the number of pseudorules affects the size

of data structures of the perfect hash function. This means that

even this memory-optimized algorithm may be significantly

improved by reducing the number of pseudorules.

The algorithms mentioned in this section achieve very good

speeds, but their memory requirements may be limiting and

should be improved. Moreover, the general principle says that

smaller memory technologies achieve higher speeds (small

SRAM is faster than big DRAM), so that lowering the amount

of required memory may bring further increase in speed.

Our goal is to design a new method applicable for all

Cartesian product-based algorithms, as they all deal with

the same memory explosion. The two memory optimization

techniques introduced in [2] (spoilers removal and use of

subsets) are direct competition to our method, but all memory

reduction methods may be used together to produce even better

results.

III. MEMORY OPTIMIZATION

We describe in detail how pseudorules are created and why

this process increases the size of data structures in packet

classification algorithms. To cover all valid combinations of

LPM results, pseudorules must be added to the ruleset. In

fact, a pseudorule is always a special case of some rule. This

is best explained by the example of pseudorules generation in

Fig. 2.

Dimension 1 Dimension 2

0

1

R2

R3

P1

P2

R1

1

1

0

0

Fig. 2. Example rules and pseudorules.

Rule Dimension 1 Dimension 2 Target rule

R1 101 *

R2 * 10*

R3 * 100

P1 101 10* R1

P2 101 100 R1

TABLE I
EXAMPLE RULES AND PSEUDORULES.

We can see classification in two three-bit dimensions with

three rules. There is one trie for each dimension. Black circles

represent valid prefixes (possible results of LPM operation in

that dimension). There is, for example, no rule for packet

with header fields (101, 100), but the correct result is rule

R1(101, ∗)1. Therefore, pseudorule P1(101, 100) has to be

added to cover this situation. Tab. I contains all rules and

pseudorules together. Target rule in this table points to the

correct classification result of the pseudorule. The generation

of pseudorules has the character of Cartesian product, and it

may expand the ruleset significantly

Our method is based on the observation that many classifica-

tion rules often do not specify all the classification fields. For

example, if user wants to block a specific source IP address,

the rule does not specify destination IP address or port number.

We use term ANY for these field conditions. This means that

any destination IP and any port number can match this rule.

However, the rule can create many pseudorules because all

more specific destination IPs and ports have to be covered by

pseudorules.

Fig. 3 is an example for two fields, where an ANY value

in the rule produces many pseudorules. As the rule is quite

general, we must deal with all more specific pseudorules. The

situation is even worse for multiple fields.

1Symbol * denotes prefix or wildcard



Fig. 3. One of the most severe causes of pseudorules: ANY values in the
ruleset.

We address this issue and propose a solution to insert

a generalization stage (GS) into the classification algorithm

after LPM engines. The GS is able to replace LPM results with

more general ANY value in certain situations. As a result, the

number of output combinations is reduced after GS. This will

result in smaller data structures of the following stages of all

crossproduct algorithms.

The LPM result is compared to all values stored in the GS,

and in the case of match, additional information instructs the

GS to replace some of the other LPM results with the ANY

value (to perform generalization). In the example from Fig.

3, if LPM1 returns value A, then the result from LPM2 is

unimportant and may be replaced with more general ANY

value. Thanks to this replacement, the number of possible GS

outputs is reduced.

This concept is used generally for many fields, formally

we can write: The generalization rule (GR) is a 3-tuple R =
(b, v, G) where b is an index to the vector of LPM results

(which LPM result is to be compared), v is a value of particular

LPM result and G is a set of indices to the vector of LPM

results. The effect of one GR is: if LPM [b] = v, then foreach

index g ∈ G set LPM [g] := ANY . All GRs may be applied

together, their ordering is unimportant.

This scheme corresponds to the following situation: we

know that if a field LPM [b] has a particular value v, then

some other fields LPM [g], g ∈ G are unimportant, because

the result of classification is already determined.

It remains to find an algorithm to create GRs. First, we

need a list of all pseudorules. As an input we have a list of

classification rules ordered descending by priority. We need

to traverse this list from the rule with the highest priority and

for every rule create all corresponding pseudorules. For every

classification rule, the most general pseudorule, which is that

with the most ANY values, is created first. At the end we have

a list of all pseudorules ordered by their priority.

This ordering helps us in the next part of the algorithm

where GRs are created and some pseudorules are removed.

The algorithm tries to identify situations when a classification

rule defines value for a field with an index i and allows the

ANY value in fields with indices G. Then in certain cases,

for all LPM results with the same value at index i, values at

indices G may be replaced by ANY value, and the result of

the classification is still uniquely determined.

The algorithm traverses the list of pseudorules and tries to

create new GRs. There are several conditions that must be met

when creating a GR:

• The rule must contain at least one ANY value. This

condition is not explicitly stated in the algorithm, because

it is implicit: for rules with no ANY value, G would be

empty and the GR would make no sense.

• The same value of field at index i has not appeared earlier

in the list of pseudorules. If this condition is not true, we

cannot ensure that the value in this field unambiguously

determines the correct classification result.

• The ANY value has not appeared at the index i earlier

in the list of pseudorules. The reason for this condition

is the same as for the preceding one.

Each GR usually removes several pseudorules. If a GR

removes no pseudorule, or only a few of them, it may be

omitted without an effect on the classification correctness.

1: Input: List of pseudorules listp.

2: Create empty set of generalization rules R.

3: for all pseudorules pthis from listp do

4: for all i ∈ {0..n} do

5: if pthis[i] 6= ANY and not exist previous pprev ∈
listp such that (pprev[i] = pthis[i] or pprev[i] =
ANY ) then

6: Create new generalization rule Rnew =
(i, pthis[i], G), where G = {j|pthis[j] = ANY }.

7: Add Rnew to R.

8: Remove all pseudorules pafter that follow in listp
after pthis where pafter[i] = pthis[i] and exists

j ∈ G such that pafter[j] 6= ANY .

9: end if

10: end for

11: end for

12: Output: Set of generalization rules R, reduced list of

pseudorules listp.

A. Example

To demonstrate the function of our algorithm, consider rules

and pseudorules from Tab. I and Fig. 2.

There are two pseudorules in this example, both of them

are specific cases of the rule R1. But if LPM result in

Dimension 1 is 101, then the result of classification is already

unambiguously determined. Thus we create Generalization

Rule (1, 101, {2}). The Generalization Stage with this GR will

perform substitution of LPM results (101, 10∗) and (101, 100)
by (101, ∗). Therefore, pseudorules P1, P2 are not necessary

in the following steps of the classification algorithm and only

the original rules need to be stored in this simple example.

B. Correctness

We start with the assumption that the classification algo-

rithm without our optimization is correct. Namely we suppose

that the Rule search step from Fig. 1 is able to obtain correct

classification result from LPM results, with the knowledge

of all pseudorules. Therefore we may suppose that the Rule



Ruleset Rules Pseu. before Pseu. after Ratio

real1 68 168 000 27 888 0.166

real2 335 44 153 2 197 0.049

real3 1194 114 826 19 600 0.170

real4 1529 2 584 281 63 546 0.024

synth1 47 42 500 11 570 0.272

synth2 472 4 985 457 263 085 0.052

synth3 962 3 205 517 949 205 0.296

TABLE II
RESULTS OF GENERALIZATION RULES SEARCH.

search step performs linear search in the list of rules and

pseudorules, ordered by priority.

To prove the correctness of the generalization algorithm,

we have to show that after processing LPM results in the GS,

there is still enough information to obtain correct classification

result, with the knowledge of the reduced set of pseudorules.

The condition in the step 5 of the algorithm means that if

LPM result at the index i has the value pthis[i], and the packet

does not match any rule or pseudorule with higher priority,

then the classification result is unambiguously known. This is

because if the packet should be matched by a higher-priority

rule, then it will be matched correctly during the (supposed)

linear search in the Rule search step. Therefore, generalization

is performed only if the classification result is unambiguously

known.

All removed pseudorules must have the same or lower

priority than the actual rule. The condition in the step 8 of

the algorithm requires removed pseudorules to be specific

cases of the actual rule. And because the correct result of

the classification is already known, it is not necessary to store

more specific pseudorules of this rule to classify the packet

correctly.

IV. RESULTS

We performed analysis and Generalization Rules search

for several real-life firewall sets from the university campus

network, as well as synthetic ruleset generated by freely

available ClassBench tool [7].

The GR search process is based on multiple ANY values in

classification rules. The compression ratios for all mentioned

rulesets are shown in Table II. Number of pseudorules before

and after reduction are compared. Table III shows numbers

of GRs in each dimension. It can be seen that our method

reduces the number of pseudorules significantly, even if only

several GRs are added. Moreover, some fields don’t have any

generalization rule. This observation may be used to reduce

the number of FGEs and simplify hardware implementation

of the whole GS. For example only three FGEs are needed to

implement GS for all rulesets in Table III.

V. CONCLUSION

In this paper, we propose a novel method how to signifi-

cantly reduce memory resources for fast packet classification.

Generalization rules in the field

Ruleset SRC IP DST IP SRC Port DST Port

real1 18 0 0 7

real2 44 59 0 0

real3 12 0 0 0

real4 59 0 0 0

synth1 3 12 0 1

synth2 89 38 0 15

synth3 745 306 7 0

TABLE III
NUMBERS OF GENERALIZATION RULES IN SEPARATE FIELDS.

The presented method can be used for any decomposition-

based classification algorithm where the processing is split

between the longest prefix match and a rule matching opera-

tions. In addition, the proposed method is orthogonal to other

existing memory reduction approaches and provides further

reduction in memory needs.

The proposed reduction method achieves compression ratio

up to 0.024 and 0.1 on average for rulesets available to us.

It means that the memory size can be reduced 10 times on

average and about 50 times in the best case. The results depend

on the size of the ruleset and its structure. After the reduction,

small rulesets can fit into the faster on-chip memory and the

classification algorithm can be speed-up.

Our future work will focus on improving a compression

ratio. As can be seen in the Table II, Synth1 and Synth3

rulesets exhibit lower compression despite the large amount

of ANY fields. Our aim is to explore reasons leading to lower

compression and address them to improve proposed method.

ACKNOWLEDGMENT

This research has been partially supported by the Research

Plan No. MSM, 6383917201 – Optical National Research

Network and its New Applications, the Research Plan No.

MSM, 0021630528 – Security-Oriented Research in Informa-

tion Technology, and the grant BUT FIT-S-10-1.

REFERENCES

[1] F. Baboescu, S. Singh, and G. Varghese. Packet classification for core
routers: Is there an alternative to CAMs? In INFOCOM, 2003.

[2] S. Dharmapurikar, H. Song, J. Turner, and J. Lockwood. Fast packet
classification using Bloom filters. In ANCS ’06: Proceedings of the 2006

ACM/IEEE symposium on Architecture for networking and communica-

tions systems, pages 61–70, New York, NY, USA, 2006. ACM.
[3] W. Eatherton, G. Varghese, and Z. Dittia. Tree bitmap: hardware/software

IP lookups with incremental updates. SIGCOMM Computer Communi-

cation Review, 34(2):97–122, 2004.
[4] P. Gupta and N. McKeown. Algorithms for packet classification, 2001.
[5] V. Puš and J. Kořenek. Fast and scalable packet classification using perfect

hash functions. In FPGA ’09: Proceedings of the 17th international

ACM/SIGDA symposium on Field programmable gate arrays, New York,
NY, USA, 2009. ACM.

[6] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel. Fast and scalable
layer four switching. SIGCOMM Comput. Commun. Rev., 28(4):191–202,
1998.

[7] D. E. Taylor and J. S. Turner. Classbench: a packet classification
benchmark. IEEE/ACM Trans. Netw., 15(3):499–511, 2007.


