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ABSTRACT:  
 
In the paper, it is shown how testability analysis can be used both to modify digital data path 
for maximize testability at minimal costs and to offer information applicable during 
automated synthesis of a controller used to apply a test to the modified data path.   
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1   INTRODUCTION 

Many testability analysis (TA) approaches have been developed in the past. They can be 
classified according to several aspects. On the basis of abstraction level, they can be divided, 
e.g., to gate-level [4][8], register-transfer level, RTL, [3][5][10][13], functional level [2][16], 
behavioral level [12] or multilevel [6] approaches. According applicability of results, they can 
be divided to general-purpose, e.g., [2][4][12][13] and special-purpose (e.g., with results 
strongly tied to application of particular DFT technique as partial scan in [10]). According to 
data path (DP) analysis utilized, they can be divided to simpler probability-based (e.g., 
[3][5][8]) dealing with stochastic behavior of data flow, and exact structural-analysis based 
approaches (e.g., [4][10][13]). In most of the approaches, testability is evaluated by means of 
controllability (C) and observability (O) parameters; but, the approaches differ in the way, 
how C and O are defined and measured. TA method used in the paper can be classified as 
multilevel, general-purpose, structural-based TA approach with library-driven behavior and 
accuracy. During our previous research activities, we tried to take advantage of so called 
transparency principles utilized for enhancement of hierarchical TPG methods and to utilize 
in TA area [13] with several application areas like DFT area and synthetic benchmark-
generation area, all over the class of RTL digital circuits [9][13]. In [11], principle of a test 
controller synthesis method on basis of a special grammar was presented.  

During our last activities, we have decided to connect two important parts (DP modification, 
test controller synthesis) developed separately into one complex methodology. Because 
significant integer of our research and development work is completed now, we have decided 
to present a view of a framework in the paper as well as to make a comparison with similar 
approaches.  

The structure of the paper is as follows. First, transparency principles are presented. Next, 
language used to describe transparency information for each component is presented together 
with principle of automated extraction of the information. After that, TA principle is 
presented in brief together with applicability of its results in DP modification and test 
controller synthesis areas. At the end of the paper, brief summary is presented together with 
possible future research perspectives. 



2   KEY-CONCEPTS RELATED TO OUR APPROACH 

2.1 Introduction to Transparency Conceptions  
 

A lot of research efforts have been dedicated to the importance of modeling data flow in 
digital DP in order to estimate diagnostic parameters of the circuit more precisely using I/T-
Path model [1] or its derivative: as an example to one-to-one i-paths over equal-bit-width 
ports, see Fig. 1a) – i-path from port a to port y of multiplexer MX exists iff selection input 
sel is set to 0. Alike in Fig. 1b) – i-path from d to y of register R exists iff a rising edge 
appears on clk. In Fig. 1c) i-path from a to y of adder ADD exists iff b is set to all 0’s. 

 

 
Fig. 1. Illustration to i-paths 

 
Other works tried to enhance properties of above-mentioned model. E.g., in conception 

referred to as S/F-Path conception [3], it was shown I/T-Path’s strict “bijective mapping 
requirement” can be soften by analyzing DP separately for transferring test vectors/patterns 
(responses) between x and y ports: test vectors/patterns (responses) can be transferred from x 
to y iff a surjective (injective) mapping exists between x-data and y-data. Using this less-strict 
principle, much greater DP portion can be considered suitable for diagnostic data flow 
comparing to I/T-Path conception. Several variations of the approaches have been used in the 
area of generating so-called hierarchical tests [5, 6, 7, 11]. All of the approaches are often 
referred to as transparency conceptions, because they deal with modeling of situations, in 
which DP portion is “transparent” to transported data. 

 
 

2.2 Transparency Extraction Method  
 

Suppose a function of each component is described by means of a truth table. For general 
case of k-bit output functions (k≥1), we have developed a transparency extraction method 
which takes a set F = {fk-1,…, f0} of k n-input Boolean functions fi: {0,1}n → {0,1}, i = k-1,…, 
0 as its input (function fi is related to ith output bit) and generates transparency information at 
its output.  

Tab. 1: FA truth-table     Tab. 2: Surjective/Injective mappings found for FA 
FA inputs FA outputs 

x y cin z cout 
0 0 0 0 0 
0 0 1 1 0 
0 1 0 1 0 
0 1 1 0 1 
1 0 0 1 0 
1 0 1 0 1 
1 1 0 0 1 
1 1 1 1 1 

 
For illustration, let us present in Tab. II all information about surjections (Sf set containing 7 

mappings) and injections (If set contains 6 mappings) sets for FA in both binary (Tab. 1) and 
textual forms (Tab. 2). The extraction method is based on so-called horizontal line test [15]. 

 

Member 
of In Out Test Inner 

Encoding 
Information stored in 

the library 
Sf xycin zcout - (111,11,0) x(0)y(0)cin(0)|z(0)cout(0)| - 
Sf, If x z   ycin (100,10,011) x(0)|z(0)|y(0)cin(0) 
Sf, If y z xcin (010,10,101) y(0)|z(0)|x(0)cin(0) 
Sf, If cin z xy (001,10,110) cin(0)|z(0)|x(0)y(0) 
Sf, If cin cout xy (001,01,110) cin(0)|cout(0)|x(0)y(0) 
Sf, If y cout xcin (010,01,101) y(0)|cout(0)|xcin(0) 
Sf, If x cout ycin (100,01,011) x(0)|cout(0)|y(0)cin(0) 



2.3 Library Language 
 

Let us illustrate now how the extracted information that will be stored in a textual form (to 
be processed, e.g., by TASTE [14]) could look like: 

MODULE_TYPE FA1 
INTERFACE in@x(0) in@y(0) in@cin(0) out@z(0) out@cout(0)  
SUR x(0)y(0)cin(0)|z(0)cout(0)|-  
INJ 
BIJ x(0)|z(0)|y(0)cin(0) y(0)|z(0)|x(0)cin(0) cin(0)|z(0)|x(0)y(0)       

cin(0)|cout(0)|x(0)y(0) y(0)|cout(0)|x(0)cin(0)          
x(0)|cout(0)|y(0)cin(0) 

Except information related to one particular component type only (1-bit FA in our case), it 
is possible put more general information (covering entire class of circuits types – e.g. n-bit 
registers, adders, multiplexers) in the library.  
 
2.4 TA Principle 
 

After transparency-related information is stored in the library for each of particular 
component type or class of component types, it can be assigned to particular components 
design consists of. Structure of particular design can be described by means of a net-list. 
Afterwards, it is possible to construct two special digraphs for the DP:  
• test pattern data-flow digraph GS = (VS , ES) and  
• test response data-flow digraph GI = (VI , EI).  

Set of vertices of GS (GI) consists of ports. An oriented edge exists between two vertices iff 
surjection (injection) exists between the start-vertex and end-vertex data (i.e., iff it is possible 
to transfer test vectors (responses) from start-vertex to end-vertex). Also, each edge in GS (GI) 
is evaluated by a “transfer-condition” function µE: E → 2V, where E = ES ∪ EI, V = VS ∪ VI. 
Using µE, set of ports necessary to control an edge e ∈ E is assigned to the edge. 

 

 
Fig. 2. NL circuit 

 

 
Fig. 3. Modification of NL circuit 

For illustration to the graphs, let us suppose now NL circuit (see Fig. 2) is modified as 
depicted in Fig. 3 (multiplexer MUX1 is added to DP between MUL1.y(7:4) and R3.d in 
order to enhance testability of NL by breaking the most-nested loop). In Fig. 4, portion of GS 
(Fig. 4a) for adjusting test data from PI tst_in to input b of ADD1 (ADD1.b) is presented 
together with portion of GI (Fig. 4b) for observing test data from output y of MUL1 (MUL1.y) 
at PO out. In Fig. 4, following graphical notation is used. In full-line circles, ports of in-circuit 
components are depicted, in dash-line circles, PIs/POs are depicted and in a double-line circle, 
port the digraph portion belongs to is depicted. Circles connected by a full-line represent test 
path for the double-lined port and circles connected by dash-line represent paths to be 
controlled in order to ensure the data flow through full-line path. Each edge is evaluated by 
means of µE. For more information about TA principle, see e.g. [13] or [14]. 
 
2.5 Test Controller Synthesis 
 

Above-presented TA method can be utilized to detect and localize, which parts of the 
circuit DP cause low testability of the circuit. Consequently, the information can be used by 



DFT/SFT process taking TA result as a measure of DP quality from diagnostic point of view 
in order to modify DP in such a way testability is maximized at minimal costs. After DP is 
modified, it is necessary to appropriately modify original circuit controller about test 
controller part. Below, it will be shown how TA results can be utilized for automated 
construction of the test controller. First research in this area we have started in [11]. 
 

  
Fig. 4. Illustration to GS 

  

 
Fig. 5. Datapath/controller in (a) 

normal and (b) test modes of operation 

The controller can be described as a finite state machine (FSM) controlling data flow by 
consecutive enabling of DP portions. In a test mode, original circuit controller is disabled and 
tested DP is controlled by the test controller. Its task is to enable DPs in order to control flow 
of test patterns and corresponding responses to particular DP parts. For each path within the 
DP a FSM, generating all required enable, address and clock signals in right succession must 
exist. The right succession depends on the trace of the path (on succession of elements and 
their ports on control (pc) or observe (po) paths related to particular in-circuit node p). It is 
evident that the FSM which enables one particular path is a sub-FSM of the test controller. 
The arrangement of sub-FSMs in the test controller is the object of test scheduling discipline. 

A test controller can be formally described by means of FSM. Because of equivalence of 
FSMs and regular grammars, it is possible to create a grammar for a language, describing a 
path portion. On basis of the grammar, corresponding FSM can be generated. It is possible to 
construct automaton M, where L(M) = L(H) and H is a grammar generating a language of all 
paths in the circuit.  
    Let us imagine a language L, which describes all possible diagnostic DPs in the circuit 
structure. As an alphabet of L, set of all ports of the circuit can be used. Each string is a 
sequence of ports on the path. It is evident that it is regular language – the set of all paths is 
finite. It can also be seen that L is a prefix language. Such a language can be very easily 
created from test-vector/response transportation sets Sc/So: 

x1x2... xn ∈ L ↔ (x1,x2,... xn) ∈ Sc ∨ (x1,x2,... xn) ∈ So 
   Let us have a grammar H = (N, T, R, B), generating L. The meaning of symbols from the 4-tuple is 
as follows:  
• N = {B} ∪ {<a,X> | a ∈ T, X ⊆ T} is the set of nonterminals (each of them is a pair of a port and a port set. 

The meaning of the set X is a trace of the path, which leads to the port a. X helps to eliminate cycles in the 
grammar due to feedbacks in the circuit. If these cycles were not eliminated, language would be infinite),  

• T = {PI ∪ PO ∪ V} is the set of terminals,  
• R = R1  ∪ R2  ∪ R3 is the set of production rules, where 



o R1 = {B → a < a, {a}> |  < a, {a}> ∈ N ∧ a ∈ PI ∪ V} includes starting rules. Because each path 
can start at some in-circuit port or PI, each derivation can start from such a port, 

o R2 = {<b, X> →  ε |  X ⊆ T  ∧ b ∈ PI ∪ V} represents ending rules. Because each path can end at 
some in-circuit port or PO, each path can end at such a port. 

o R3 = {<a, X> → b <b,  X ∪ b>  |  X ⊆ V ∧ a ∈ T ∧ b ∈ T  ∧  (a , b) ∈ E ∧ b ∉ X} represents all 
other rules: the rule in form of <a, X> → b <b,  X ∪ b> will be added to the rule-set iff two main 
conditions will be fulfilled: 1. (a , b) ∈ E, i.e. it must exist an edge from the port a to the port b in 
the graph G and 2. b ∉ X, i.e. the path, which leads to the port b must never pass through the port b 
anytime before. The second condition assures that no loop occur in the grammar. Thus, the 
language described by grammar will be finite. 

• B∈N is a start symbol. 

 

Fig. 6.   Sub-FSM example for test-pattern part of  Fig. 4a 
 
In Fig. 6, a sub-FSM diagram corresponding to test pattern flow digraph depicted in Fig. 4a is 
shown. The path begins at primary input tst_in and ends at the input b of MOD1 module. The 
language describing such one particular path then consists of one string only: LMOD1.b = 
{tst_in MUX1.a MUX1.q REG3.d REG3.q MOD1.b}. HMOD1.b is is defined as follows: 
• N = {B, <tst_in, {tst_in}>, <MUX1.a, {tst_in, MUX1.a}>, <MUX1.q, {tst_in, MUX1.a, MUX1.q}>, …, 

<MOD1.b, {tst_in, MUX1.a, MUX1.q, REG3.d, REG3.q, MOD1.b}>} 
• T= {tst_in, MUX1.a, -N/T, MUX1.sel, MUX1.q, REG3.d, clk, REG3.clk, REG3.q, MOD1.b} 
• R = {B → tst_in <tst_in, {tst_in}>,  <tst_in, {tst_in}> → MUX1.a <MUX1.a, {tst_in, MUX1.a}>,  …, 

<MOD1.b, {tst_in, MUX1.a, MUX1.q, REG3.d, REG3.q, MOD1.b}> → ε } 
   The automaton created by means of above-mentioned method can be enriched about 
information needed to enable paths through circuit elements – there is not only need to trace a 
path but mainly to enable it. Thus, the FSM must be extended to a Mealy automaton: for the 
automaton M, where L(M) = L(H) is a language describing a path, Mealy automaton M’ = (Q, T, 2V × D, 
γ, λ, B, F) can be created with the output function λ = { (s, b, {(cp, x), …}) | s∈Q ∧ s=(<a, X>, b, <b,  X ∪ 
b>) ∧ a, b ∈ V ∧ µE(a, b)={(cp, x), …} }.  
   It can be seen that the output alphabet of the Mealy automaton is 2V × D. It means that output 
of the automaton are pairs like (cp, x), where cp ∈ V is a port to which a value x∈D must be 
assigned in order to enable a path through some edges of GS (GI). 
 For example, if the FSM depicted in Fig. 6 will be extended to  the Mealy automaton, the 
output function will be λ = {(B, tst_in, -), (<tst_in, {tst_in}>, MUX1.a, -), (<MUX1.a, {tst_in, MUX1.a}>, 
MUX1.q, {(MUX1.sel,”1”)}), (<MUX1.q, {tst_in, MUX1.a, MUX1.q}>, REG3.d, -), (<REG3.d, {tst_in, 
MUX1.a, MUX1.q, REG3.d}>, REG3.q, {(REG3.clk, “↑”)}), (<REG3.q, {tst_in, MUX1.a, MUX1.q, REG3.d, 
REG3.q}>, MOD1.b, -)}. 

3   CONCLUSION 

   In the paper, principle of utilizing TA results for automated data path modification 
(resulting in higher testability) as well as automated generation of corresponding 
synthesizable test controller were presented. There are two inputs TA requires: a net-list and a 



library of components (affecting TA accuracy). Also, principle of extracting information 
stored in the library was presented in the paper – so, significant integer of our research and 
development work could be introduced. Our further research will be dedicated especially to 
TA and S/DFT of hierarchical and system-on-a-chip digital and mixed-signal designs, which 
belong to the most popular approaches at present. Also, further experiments and comparisons 
are planned. 
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