
Evolution of Impulse Bursts Noise Filters

Zdenek Vasicek, Michal Bidlo, Lukas Sekanina

Faculty of Information Technology, Brno University of Technology

Bozetechova 2, 612 66 Brno, Czech Republic

E-mail: {vasicek,bidlom,sekanina}@fit.vutbr.cz

Jim Torresen, Kyrre Glette, Marcus Furuholmen

Department of Informatics, University of Oslo

P.O. Box 1080 Blindern, N-0316 Oslo, Norway

E-mail: {jimtoer,kyrrehg,marcusfu}@ifi.uio.no

Abstract

The paper deals with evolutionary design of impulse

burst noise filters. As proposed filters utilize the filtering

window of 5× 5 pixels, the design method has to be able to

manage 25 eight-bit inputs. The large number of inputs re-

sults in an evolutionary algorithm not able to produce rea-

sonably working filters because of the so-called scalability

problem of evolutionary circuit design. However, the filters

are designed using an extended version of Cartesian Ge-

netic Programming which enables to reduce the number of

inputs by selecting the most important of them. Experimen-

tal evaluation of the method has shown that evolved filters

exhibit better results than conventional solutions based on

various median filters.

1 Introduction

Impulse burst noise typically occurs in remote sens-

ing images such as satellite images. The main reason for

the occurrence of bursts is the interference of frequency

modulated carrying signal with the signals from other data

sources. This interference can occur several times during

a transmission of a single image and corrupt several im-

age pixels in one or more neighboring rows. Impulse burst

noise is often accompanied by salt and pepper noise and

multiplicative noise [8].

Various filters have been proposed to suppress this type

of noise in the recent years. Some of them were also imple-

mented in hardware. For the purposes of this paper, we can

divide these filters into two major groups. The first group

will contain general purpose filters for shot noise removal

which can be relatively easily implemented in hardware:

median filter [1], adaptive median filter [6] and weight me-

dian filter [2]. The second group will consist of specific

filters developed for impulse burst noise such as training-

based optimized soft morphological filters and variational

approaches [9, 8, 13, 3]. Unfortunately, it is much more dif-

ficult to implement these filters in hardware than the filters

of the first group.

Evolutionary algorithms have been employed to design

complete filter structures for various noise types in the re-

cent years. In particular, evolved shot noise filters outper-

form conventional filters (such as median and adaptive me-

dian filters) in terms of the quality of filtering as well as the

implementation cost on a chip [15, 16, 17]. Another advan-

tage of filters evolved for the shot noise is that they utilize

a small filtering window of 3× 3 pixels. The success of the

shot noise filters evolution is the main motivation for this

paper.

The goal of the paper is to show that efficient filters can

be evolved for impulse burst noise. Compared to the evo-

lution of the shot noise filters, we have to deal with several

problems. Preliminary experiments have shown that the fil-

tering window 3×3 is too small for this type of noise. Hence

proposed filters utilize the filtering window of 5 × 5 pixels.

The increase in the number of inputs from 9 to 25 makes

it impossible for the evolutionary algorithm to produce rea-

sonably working filters because of the so-called scalability

problem of evolutionary circuit design. In order to over-

come this problem, we propose to select only some of the

25 inputs and use them as the inputs to the filtering logic.

The filter structure will be designed using Cartesian Genetic

Programming (CGP) working at the functional level [14].

The selection of the pixels is controlled by a certain part

of the CGP chromosome. The aim is to evolve filters that

are suitable for hardware implementation. Furthermore, the

method should be portable to a Field Programmable Gate

Array (FPGA) in order to accelerate the design process as

presented, for example, in [16, 17].

The rest of the paper is organized as follows. Section 2

surveys the approaches to image filtering, in particular the

evolutionary methods used for image filter design. Section

3 describes evolutionary design of image filters using CGP.

In Section 4 a modified version of Cartesian Genetic Pro-

gramming is introduced for evolution of impulse burst noise

filters. Section 5 deals with the experimental evaluation of

proposed method. Obtained results are discussed in Sec-

tion 5. Finally, conclusions are given in Section 6.

2 Image filters

Impulse noise in general and impulse burst noise in par-

ticular belong to a class of nonlinear noises which have to

be suppressed by nonlinear filters.

The median filter is the most popular nonlinear filter for

removing the impulse noise [1]. The median filter utilizes

the fact that original and corrupted pixels are significantly

different and hence the corrupted pixels can easily be iden-

tified as non-medians. However, when the noise level in-

creases, some pixels remain corrupted and unfiltered. Al-

though the median filter becomes the most popular ap-

proach due to its straightforward hardware implementation,

there exist more advanced approaches which exhibit higher

filtration quality. The main disadvantage of the median fil-

ter is that it modifies almost all pixels and thus produces

smudged and detail less image. Among more sophisticated

approaches we find switching median filters [20], weighted

median filters [2], weighted order statistic filters [10] and

adaptive median filters [6].

The adaptive median filters produce significantly bet-

ter resulting images than conventional medians [7]; how-

ever, their implementation cost is relatively high in hard-

ware [19]. The adaptive median filter operates with a kernel

of Smax × Smax pixels. The kernel is divided into subker-

nels of the size 3 × 3, 5 × 5, . . . , Smax × Smax inputs. For

each subkernel, the minimum, maximum and median value

is calculated. In order to obtain the filtered pixel, the calcu-

lated values are processed by the algorithm described in [7].

The main difference between the common median filter and

the adaptive median filter is that the adaptive median filter

tries to detect and modify affected pixels only in order to

preserve as much information as possible.

Impulse burst noise is a specific kind of noise which is

difficult to filter even if a nonlinear filter is used. This is

caused by the fact that both the central pixel and the neigh-

boring pixels are corrupted. It has been shown, the median

filters are capable of removing the impulse bursts but at the

same time they usually destroy details too heavily. Other fil-

ters (e.g. weighted median), are not robust enough and tend

to leave a lot of impulse bursts in the filtered images [8].

The approaches based on impulse or spike detection do not

perform well in this task since they designed to detect iso-

lated impulses. Apart from median-based filters, training-

based optimized soft morphological filters were developed

to suppress impulse burst noise [9, 8]. These filters can re-

move line-type noise with horizontal or almost horizontal

orientations.

Besides the conventional algorithms, evolutionary algo-

rithms have been employed in image filter design task. Evo-

lutionary algorithms have been utilized either to find some

coefficients of a pre-designed filtering algorithm [4, 11] or

to devise a complete structure of a target image filter. As

the first approach only allows existing designs to be tuned,

the use of the second approach has led to introducing com-

pletely new filtering schemes, unknown so far [15]. Evolu-

tion of image filters is performed using Cartesian Genetic

Programming. A target filter1 is composed of functional

blocks implementing functions such as minimum, maxi-

mum, average or elementary logic functions. Each of the

blocks accepts two 8-bit operands and produces a single 8-

bit output. CGP is utilized to find suitable functions and

interconnects for these blocks. The objective of the evolu-

tion is to minimize the difference between the image pro-

cessed by a candidate filter and an uncorrupted version of

filtered image. The method was used to produce image

filters for various noise (salt and pepper noise, shot noise,

Gaussian noise), edge detectors and combinations of noise

types. Evolved filters exhibit better quality of filtering and

lower implementation cost in comparison to existing solu-

tions (in particular, the median and adaptive median filters)

[14, 15, 16, 17, 18].

2.1 Noise model

For the purposes of this paper the impulse burst noise is

modeled as follows. The burst noise can be characterized

using two parameters: p and q. Let p denote a probabil-

ity that a certain pixel belongs to an impulse burst. In fact,

this parameter determines the maximal amount of the cor-

rupted pixels of an input image. Let q be a parameter which

determines the maximal length of burst (i.e. the maximal

number of consecutive pixels which are affected by an im-

pulse). The number of burst fragments in the image depends

on both these parameters; the higher q, the lower number of

burst fragments for a given (constant) value of p.

Figure 1 shows an image (256 × 256 pixels) which is

corrupted by (a) 20% (p = 0.2) and (b) 40% (p = 0.4) im-

pulse burst noise; the parameter q possesses the value 128.

In this paper we will consider that the images are trans-

ferred as one-dimensional arrays in which the rows of the

image pixels are stored in sequence. The interferences dur-

ing the image transmission lead to the noise demonstrated

1Gray-scale images with 8 bit/pixel are considered.

(a) 20% noise (b) 40% noise

Figure 1. Image (barn) corrupted by impulse

burst noise of a various intensity

in Figure 1. The burst noise causes the impulses affect-

ing several pixels in sequence. We consider the impulses

which appear as a burst of pixels having the maximal pos-

sible value of the given representation (i.e. 255 in the 8-bit

grayscale images). With the increased noise intensity, more

consecutive rows may be affected and subsequent noise fil-

tration becomes difficult as the filtered value can not be de-

termined according to the values of the neighboring pixels.

Therefore, a larger filter window ought to be considered in

order to obtain a satisfactory quality of the filtered image.

As Figure 1 shows, the burst noise appears as a line-type

noise and considerably decreases the image quality espe-

cially when higher noise intensity is considered. Depend-

ing on the noise intensity, different amount of horizontal

strikes appear in those images. In this paper, we assume

that images are transferred row-wise, however, the same ef-

fect occurs (and the same filtering approach can be applied)

if images are transferred column-wise.

3 Evolutionary Design of Image Filters

This section describes the evolutionary method that has

been utilized to create image filters with 3 × 3 pixel filter

window [15]. In Section 4, we will describe an enhanced

approach by means of which the filters dealing with larger

filter window could be designed. Every image filter is con-

sidered as a function (a digital circuit in the case of hard-

ware implementation) of nine 8-bit inputs and a single 8-bit

output, which processes grayscale (8-bit/pixel) images. As

Fig. 2 shows, every pixel value of the filtered image is cal-

culated using a corresponding pixel and its eight neighbors

in the processed image.

In order to evolve an image filter which removes a given

type of noise from a corrupted image, we need (a) a set

of suitable functions (building blocks of the filter circuit)

and (b) an original (training) image to measure the fitness

values of the candidate filters (i.e., to evaluate the quality of

a candidate filter). The goal of the evolutionary algorithm

is to minimize the difference between the original image

and the filtered image. The generality of the evolved filters

(i.e., the ability to operate sufficiently also for other images

containing the same type of noise the filters have not been

trained for) is tested by means of a test set.

Image
filter

Input image Filtered image
I0

I1

I2

I3

I5

I4

I8

I7

I6

4
I0

I1

I2

I3

I4

I5

I6

I7

I8

5

5

8

3

4

8

1

2

5

Figure 2. The concept of filtering system that

utilizes 3 × 3 filter window

3.1 EA for filter evolution

The evolutionary design of the filter circuits is based

on Cartesian Genetic Programming (CGP) [12]. A candi-

date filter is represented using a graph which contains nc

(columns) × nr (rows) nodes placed in a grid. The role of

the EA is to find the interconnection of the programmable

nodes and the functions performed by the nodes. Each node

represents a two-input function that receives two 8-bit val-

ues and produces an 8-bit output. Table 1 shows the func-

tions we identified as suitable building blocks for the evo-

lutionary design of the impulse burst noise filters. It can

be observed that the functions are convenient for hardware

implementation (there are no functions that are very time-

consuming and require a lot of hardware resources, e.g.

multiplication or division). A node input may be connected

either to an output of another node, which is placed any-

where in the preceding columns or to a primary input of the

filter. The filter circuits are encoded as arrays of integers of

the size 3 × nr × nr + 1. For each node, three integers are

utilized which encode the connection of the node inputs and

function. The last integer of the array encodes the primary

output of the candidate filter.

Table 1. The list of functions that can be im-

plemented in each configurable node

code function description

0 255 constant

1 x identity

2 255 − x inversion

3 max(x, y) maximum

4 min(x, y) minimum

5 x ≫ 1 right shift by 1

6 x ≫ 2 right shift by 2

7 x + y + (addition)

8 x +S y + with saturation

9 (x + y) ≫ 1 average

10 y if (x > 127) else x condition

11 |x − y| absolute difference

12 x ∨ y bitwise OR

13 x ∧ y bitwise AND

14 x ⊕ y bitwise XOR

15 x ∧ y bitwise NAND

3.2 Fitness function

The design objective is to minimize the difference be-

tween the filtered image and the original image. Usually,

the mean difference per pixel also known as the mean ab-

solute error is minimized. Let u denote a corrupted image,

v the filtered image and w the original (uncorrupted) ver-

sion of u. The image size is K × K (K=256) pixels but

only the area of 254 × 254 pixels is considered because the

pixel values at the borders are ignored and thus remain un-

filtered. The fitness value of a candidate filter is obtained by

calculating the error function:

fitness =
1

(K − 2)2

K−2∑

i=1

K−2∑

j=1

|v(i, j) − w(i, j)|.

The objective is to design a filter producing images with

minimal error, i.e. the lower fitness value the better filter.

Note that practically it is impossible to obtain a filter pos-

sessing the zero fitness value (i.e. an ideal filter) since the

filter manipulates with corrupted images only (i.e. missing

and incomplete information) and it can not predict the orig-

inal values perfectly for an arbitrary input image. Only in

rare cases (e.g. a training image with simple pattern), it is

possible to evolve filter that possesses the zero fitness value

but this filter will not be probably robust (i.e., it will work

only for the selected training image). However, if a subopti-

mal solution fulfills a given criterion of quality, it is usually

considered as a solution to the problem.

It is evident that the robustness of evolved filter depends

on the selection of the training data. In our previous re-

search, it has been determined that an image containing

128 × 128 pixels provides the sufficient amount of train-

ing data for evolution of robust 3× 3 filters. As we utilize a

larger filter window in this work, we have chosen the train-

ing image consisting of 256 × 256 pixels.

4 Evolving burst noise filters

In order to create a robust burst noise filter, it is nec-

essary to increase the size of the filter window. Since the

burst noise affects a series of pixels (rather than only iso-

lated pixels), more information from the pixels surrounding

the corrupted pixels is needed to remove this type of noise

and obtain a satisfactory quality of filtered images. How-

ever, if the size of the filter window is increased (in our case

from 3 × 3 to 5 × 5), the search space that is needed to

be explored using EA grows enormously as each input of

the programmable node can connect one of the 25 primary

inputs. Preliminary experiments showed that the evolved

filter rarely utilizes more than a half of the number of pixels

inside the filter window. In order to overcome the scala-

bility problem of the utilized representation which employs

the 5×5 filter window, we propose the following approach.

Image
filter

Filtered image

I0

I1

I2

I3

I5

I4

I6

I7

I8

Pixel
selector

Input image

Figure 3. The concept of filtering using a 5×5
filter kernel followed by a selector

A special pixel selection mechanism (a selector) is intro-

duced into the filter to be evolved that allows us to choose

a subset of pixels from a larger filter window. Another ar-

chitecture employing the concept of selecting data elements

before passing them to a CGP circuit, in this case for a pat-

tern recognition system, has been proposed in [5]. The con-

cept of selector is illustrated in Figure 3. The output size

of the selector is specified by a parameter that determines

the number of pixels to be selected from the filter window

(i.e. processed by the filter). Let us denote this parameter as

S. This method reduces the search space and computational

effort needed to design a filter while keeping the possibility

to provide information to the filter circuit from anywhere of

a given portion inside the filter window.

For example, consider the 5× 5 filter window consisting

of 25 pixels from which only 9 pixels need to be included

in the filtering process (i.e. S = 9). This approach clearly

reduces the search space because each functional node may

select only from 9 inputs instead of 25 inputs of the filter

window.

4.1 Designing filters with selector

In order to integrate the selector into the design system,

it is needed to encode it as a part of the chromosome of the

evolutionary algorithm. Then the EA has to find (1) the cir-

cuit realizing the filter and (2) a suitable variation of indexes

from a given subset of the pixels in the filter window. The

following scheme will be utilized.

0 1 01 ... 0

Selector configuration Elements configuration

A B F A B F ...
1 1 1 2 2 2

A B F
N N N

O

 Output connection

Figure 4. Proposed encoding

Each chromosome of the EA encodes the selector to-

gether with the string describing a circuit using CGP. Figure

4 demonstrates the proposed encoding. The chromosome

consists of three parts. In the first part, the selector mech-

anism is encoded, the second part contains the CGP repre-

sentation of the evolving filter (i.e. configuration of each

node and their interconnections) and the last third part en-

codes the connection of the output. The selector is encoded

as a binary string that contains the same number of bits as

the number of pixels in the filter window (i.e. the selector

string consists of 25 bits for the 5x5 filter window). In or-

der to distinguish the pixels to be selected, the values of the

appropriate bits are set to logic 1 while the rest of the bits

possess logic 0. Each bit of the selector string (considered

from left to right) gradually corresponds to the appropriate

pixel of the filter window (considered from left to right and

from top to bottom). The number of logic 1’s corresponds

to the selector parameter S. The pixel selection process is

performed as follows. If the bit of the selector string corre-

sponding to the given pixel of the filter window possesses

logic 1, then the pixel will be selected, otherwise the pixel

will not be considered as an input of the filter.

A special mutation operator is utilized for the effective

modification of the selector. This operator takes as an in-

put two different indexes from the range 0 to S − 1 ac-

cording to which the appropriate bits of the selector string

are swapped. If a bit possessing logic 0 is swapped with

a bit possessing logic 1, then the selector is altered and a

new combination of pixels will be selected from the filter

window on the basis of the 1’s arrangement in the selector

string. Otherwise the mutation represents, in fact, a neutral

genetic operation that does not influence the candidate filter.

4.2 Evolutionary system setup

The evolutionary algorithm utilizes a single genetic oper-

ation – the mutation – which may modify up to 5% of genes

of the chromosome (this value was determined experimen-

tally). The index of a gene to be mutated is generated at

random. If the index hits one of the first 25 genes repre-

senting the selector string, a second index is generated and

the mutation of the selector is performed as described in the

previous paragraph. Otherwise, if the elements configura-

tion or output connection encoded in the rest of the chro-

mosome should be mutated, the value of the given gene is

replaced by a new random legal value. No crossover op-

erator is utilized in this type of EA. The EA operates with

the population of 8 individuals. The initial population is

generated randomly. Every new population consists of a

parent, which is considered as the fittest individual from the

previous population, and its mutants. In the case that two

or more individuals have received the same fitness score in

the previous generation, an individual which did not serve

as the parent in the previous population will be selected as

the new parent. This strategy was proven to be very use-

ful for the evolution using the CGP [12]. The single run of

the evolutionary process is stopped after producing 50,000

generations. We performed 150 independent experiments

for each setup (i.e., for the 3 × 3 and 5 × 5 filter window).

A candidate filter can use up to 9 pixels selected from

the 5 × 5 filter window. The filter may consist of up to

6 × 6 programmable nodes, each of which can possess the

functions from Table 1. A 256 × 256-pixel training image

was corrupted by 20% burst noise. This image is shown in

Figure 1a.

5 Experimental results

The experiments were conducted on a cluster consisting

of 100 PCs Pentium IV, 2.4GHz, 1GB RAM using the Sun

Grid Engine (SGE) that allows to run up to 100 independent

experiments in parallel. The evolution time of a single run

until the evolution reaches 50,000 generations is approxi-

mately 6 hours.

5.1 Evaluation of evolved filters

The evolved filters are evaluated using a set of real-world

images (256 × 256 pixels) that are corrupted by aforemen-

tioned impulse bursts noise with the intensity of 10%, 20%,

30%, 40% and 50%. This corresponds to the following pa-

rameters of the noise model: p = {0.1, 0.2, 0.3, 0.4, 0.5},

the parameter w has been chosen as w = 128. The test set

consists of the images having various properties – some of

them contain a lot of details and complex structures (e.g.

goldhill, bridge) some of them are easier to filter as they do

not contain many edges and details.

In order to evaluate the quality of the filtered images, we

will use the following widely used metrics: the mean abso-

lute error (MAE) and the peak signal to noise ratio (PSNR).

Let w denote the original 8-bit gray scale image, v denote

the filtered image (after suppressing the noise) and M × N

Table 2. The MAEs and PSNRs between original test images and corrupted images filtered by various

methods.

MAE PSNR

noise intensity noise intensity

image filter 10% 20% 30% 40% 50% 10% 20% 30% 40% 50%

airplane median 5 × 5 7.28 12.67 20.01 32.83 44.04 23.63 18.75 16.08 13.06 11.84

weighted 5 × 5 5.38 11.06 18.65 32.04 43.55 24.83 19.03 16.22 13.09 11.86

adaptive 5 × 5 2.29 6.36 12.02 24.02 34.27 27.99 20.98 18.03 14.25 12.85

evolved 3 × 3 4.29 5.42 7.16 10.44 13.96 24.90 23.76 22.40 20.49 19.10

evolved 5 × 5 0.87 1.77 2.81 4.55 7.25 33.51 29.96 27.38 23.91 21.01

original error 7.10 15.46 22.53 31.19 38.64 19.69 15.98 14.57 12.89 12.12

bird median 5 × 5 3.98 10.10 25.33 45.36 67.81 25.42 17.93 13.19 10.18 8.32

weighted 5 × 5 3.10 9.25 24.78 44.82 67.38 25.66 18.05 13.17 10.19 8.33

adaptive 5 × 5 1.75 6.30 18.51 34.12 53.89 27.61 19.38 14.33 11.33 9.25

evolved 3 × 3 0.59 1.18 2.48 4.12 6.17 36.14 32.77 28.67 25.67 23.73

evolved 5 × 5 0.26 0.55 1.18 2.65 5.38 44.76 40.80 30.68 24.58 20.41

original error 13.05 26.23 38.14 52.11 65.31 15.33 12.29 10.78 9.31 8.32

bridge median 5 × 5 13.38 20.69 35.98 57.78 80.20 21.17 16.05 12.09 9.14 7.42

weighted 5 × 5 10.27 18.12 34.26 56.31 79.40 22.08 16.18 12.06 9.15 7.41

adaptive 5 × 5 4.59 10.58 22.96 41.54 62.50 24.94 17.85 13.58 10.33 8.37

evolved 3 × 3 1.84 3.41 5.64 8.30 12.22 29.44 26.55 24.13 22.21 20.12

evolved 5 × 5 1.83 3.39 5.29 7.99 12.55 29.60 26.60 24.15 21.22 17.79

original error 14.38 28.38 42.37 56.34 71.01 14.46 11.54 9.83 8.56 7.55

goldhill median 5 × 5 9.83 18.93 35.31 54.96 79.20 22.94 15.75 11.61 9.18 7.41

weighted 5 × 5 7.50 17.08 33.81 53.76 78.41 23.78 15.84 11.63 9.20 7.41

adaptive 5 × 5 3.48 11.31 24.00 40.28 63.21 26.93 17.01 12.89 10.31 8.30

evolved 3 × 3 1.47 2.55 4.61 6.34 9.41 30.25 28.66 25.30 23.78 21.75

evolved 5 × 5 0.90 2.03 3.17 5.87 8.97 35.62 30.68 28.10 22.15 19.50

original error 14.23 28.28 43.04 58.13 71.85 14.61 11.59 9.75 8.41 7.53

lena median 5 × 5 7.68 15.73 31.42 52.04 77.72 22.69 16.49 11.89 9.32 7.25

weighted 5 × 5 5.70 14.09 30.09 50.96 76.71 23.22 16.54 11.90 9.31 7.27

adaptive 5 × 5 2.77 8.98 20.86 36.88 62.50 25.89 18.05 13.28 10.61 8.09

evolved 3 × 3 1.47 2.47 4.15 6.26 10.72 28.17 26.79 24.31 22.58 19.83

evolved 5 × 5 0.86 1.58 2.66 3.94 8.94 32.76 30.70 27.03 24.24 18.12

original error 14.64 28.47 43.63 57.71 72.63 14.23 11.42 9.50 8.32 7.30

express the size of the image. Then the mean absolute error

can be expressed as

MAE =
1

MN

∑

i,j

|w(i, j) − v(i, j)|

and the peak signal to noise ratio can be expressed as

PSNR = 10 log
10

2552

1

MN

∑
i,j(w(i, j) − v(i, j))2

In general, the lower value of MAE, the better quality of the

filtered image. On the contrary, the higher value of PSNR,

the better quality of the filtered image.

Table 2 shows the resulting values (i.e. MAE and PSNR)

for the five images selected from the test set filtered using

several approaches. The resulting images obtained by the

evolved filters are compared to the results of three conven-

tional approaches that include traditional median filter (de-

noted as ‘median’ in Table 2), center weighted median filter

considering the weight 5 (denoted as ‘weighted’) and adap-

tive median filter (denoted as ‘adaptive’). Since these fil-

tering methods provide low-quality of the filtered images if

the 3 × 3 filter window is used, only 5 × 5 window will be

included for the comparison with the evolved filters.

These results provided by the filters designed using an

evolutionary algorithm are described as ‘evolved’ in Table

2. In the first set of experiments, 3 × 3 filter window was

considered (without the selector) and the second set of ex-

periments utilized 5 × 5 filter window. The results include

the best filters that were obtained using our evolutionary ap-

proach.

In general, the center weighted median filter provides

sharper images in comparison with traditional median fil-

ter. The adaptive median represents the best median-based

filter with respect to the quality of the filtered images.

As the results from Table 2 show, the evolved filters rep-

resent the best solutions in comparison with the conven-

tional principles (the best result for the given noise intensity

and the criterion applied is written in bold). If the 5×5 filter

window is utilized, the filters exhibit better results against

the 3 × 3 filter window in most cases with respect to the

evaluation criteria applied. For the comparison of the fil-

tration quality using different filters, the original error is

included in Table 2 which represents the errors calculated

using the corrupted image and the original image. It is ev-

ident that the filters utilizing the 5 × 5 window provide the

best results in comparison with the 3×3 filter window from

the point of view of the MAE. If the PSNR is considered,

the filter utilizing the 3 × 3 window results as the best so-

lution in several cases for high noise ratio but not from the

point of view of the visual quality of the filtered images (see

discussion in the next subsection).

5.2 Discussion

Although the evolved filters represent the best solutions

in comparison with some widely used median-based filters,

the proposed approach does not guarantee that an optimal

solution will be obtained. However, as mentioned in Sec-

tion 3.2, the suboptimal solutions are usually satisfactory

considering the visual quality of the filtered images.

If the 3× 3 filter window is considered, the best evolved

filters were not able to remove the impulse bursts suffi-

ciently (see Figure 5c). In particular, these filters are not

able to tackle several bursts occurring in consecutive rows

because of the small filter window. In such cases, most of

those bursts remain in the filtered image. It can be observed

that the evolution has designed solutions in which the cor-

rupted pixels of the impulse bursts possessing the value 255

(a white) are replaced by the value 128 (gray) which leads to

better value of PSNR. This feature can be observed in Table

2, where the filter utilizing the 3× 3 window exhibits better

PSNR in comparison with the filter that involves the 5 × 5
window, especially for higher values of the noise intensity.

However, this property does not lead to better visual qual-

ity of the filtered images because most of the bursts whose

pixels were substituted by the value 128 remain in the re-

sulting image (compare the filtered images in Figure 5c and

5d). Therefore, it is more suitable to consider MAE instead

of PSNR as the evaluation criterion.

As expected, the filters that utilize the 5 × 5 window are

better in general in comparison with the 3×3 window filters

if the visual quality of the filtered images is considered.

As Figure 6 shows, the evolution typically designs the se-

lector that considers only such pixels from the filter window

that possess the sufficient amount of information needed for

the filter to remove the impulse bursts (the middle column

of the filter window). As evident, the bursts do not pro-

vide any information in the horizontal direction for calcu-

lating the correct values of the filtered pixels. Therefore,

such pixels from the filter window have not been consid-

ered by the filter. Note that the evolved filter shown in Fig-

ure 6 was optimized by removing the meaningless functions

(e.g. by omitting the identity functions and removing all the

blocks whose outputs are not involved in the calculation of

the value of the filtered pixel).

(a) original image (b) corrupted image

(c) evolved filter 3 × 3 (d) evolved filter 5 × 5

(e) adaptive median filter 5 × 5 (f) adaptive median filter 7 × 7

(g) median filter 5 × 5 (h) center weighted median filter

5 × 5

Figure 5. Image (goldhill) corrupted by 40%

impulse burst noise filtered by various ap-

proaches

9

4

2

4

10

4

8

4

8

11

11

4

2

4
out

Figure 6. Optimized structure of the best evolved 5 × 5 filter

6 Conclusions

In this paper, a new method for design of impulse bursts

noise filters was proposed. The solution is based on ex-

tended version of CGP that can effectively deal with large

filtering windows that have to be utilized in this task. Exper-

imental evaluation of the method has shown that evolved fil-

ters exhibit better results than conventional solutions based

on various median filters. In our future work we plan to im-

plement some of the evolved filters in the FPGA since the

implementation requirements seem to be reasonable for the

hardware implementation.

Acknowledgment

This work was partially supported by the Grant Agency

of the Czech Republic under contract No. GA102/07/0850

Design and hardware implementation of a patent-invention

machine, No. GD102/09/H042 and the Research Plan No.

MSM0021630528

References

[1] M. O. Ahmad and D. Sundararajan. A fast algorithm for two-

dimensional median filtering. IEEE Transactions on Circuits

and Systems, 34:1364–1374, 1987.
[2] D. R. K. Brownrigg. The weighted median filter. Commun.

ACM, 27(8):807–818, 1984.
[3] E. R. Dougherty and J. T. Astola, editors. Nonlinear Filters

for Image Processing. SPIE/IEEE Series on Imaging Science

& Engineering. SPIE/IEEE, 1999.
[4] J. Dumoulin, J. Foster, J. Frenzel, and S. McGrew. Special

Purpose Image Convolution with Evolvable Hardware. In

Proc. of the EvoIASP’00, volume 1803 of LNCS, pages 1–

11. Springer Verlag, 2000.
[5] K. Glette, J. Torresen, M. Yasunaga, and Y. Yamaguchi. On-

Chip Evolution Using a Soft Processor Core Applied to Im-

age Recognition. In Proceedings 1st NASA /ESA Conference

on Adaptive Hardware and Systems (AHS), pages 373–380.

IEEE CS Press, 2006.
[6] H. Hwang and R. Haddad. Adaptive median filters: new al-

gorithms and results. IP, 4(4):499–502, April 1995.

[7] H. Hwang and R. A. Haddad. New algorithms for adap-

tive median filters. In Proc. SPIE Vol. 1606, pages 400–407,

1991.
[8] P. Koivisto, J. Astola, V. Lukin, V. Melnik, and O. Tsymbal.

Removing Impulse Bursts from Images by Training-Based

Filtering. EURASIP Journal on Applied Signal Processing,

2003(3):223–237, 2003.
[9] P. Koivisto, H. Huttunen, and P. Kuosmanen. Training-based

optimization of soft morphological filters. Journal of Elec-

tronic Imaging, 5(3):300–322, 1996.
[10] S. Marshall. New direct design method for weighted order

statistic filters. VISP, 151(1):1–8, February 2004.
[11] S. Marshall, N. Harvey, and D. Greenhalgh. Design of

morphological filters using genetic algorithms. In Tenth

European Signal Processing Conference, pages 389–392.

EURASIP, 2000.
[12] J. F. Miller and D. Job. Principles in the evolutionary de-

sign of digital circuits – part I. Genetic Programming and

Evolvable Machines, 1(1):8–35, April 2000.
[13] M. Nikolova. A variational approach to remove outliers and

impulse noise. J. Math. Imaging Vis., 20(1-2):99–120, 2004.
[14] L. Sekanina. Image filter design with evolvable hardware.

In Applications of Evolutionary Computing, volume 2002,

pages 255–266. Springer Verlag, 2002.
[15] L. Sekanina. Evolvable components: From Theory to Hard-

ware Implementations. Natural Computing. Springer-Verlag

Berlin, 2004.
[16] Z. Vasicek and L. Sekanina. An area-efficient alternative to

adaptive median filtering in fpgas. In Proc. of the 17th Conf.

on Field Programmable Logic and Applications, pages 1–6.

IEEE Computer Society, to appear, 2007.
[17] Z. Vasicek and L. Sekanina. An evolvable hardware system

in xilinx virtex ii pro fpga. International Journal of Innova-

tive Computing and Applications, 1(1):63–73, 2007.
[18] Z. Vasicek and L. Sekanina. Reducing the area on a chip

using a bank of evolved filters. In Evolvable Systems: From

Biology to Hardware, volume 4684 of LNCS, pages 222–232.

Springer Verlag, 2007.
[19] Z. Vasicek and L. Sekanina. Novel hardware implementa-

tion of adaptive median filters. In Proc. of 2008 IEEE Design

and Diagnostics of Electronic Circuits and Systems Work-

shop, pages 110–115. IEEE Computer Society, 2008.
[20] W. Zhou and Z. David. Progressive switching median fil-

ter for the removal of impulse noise from highly corrupted

images. IEEE Trans On Circuits and Systems: Analog and

Digital Signal Processing, 46(1):78–80, 1999.

