
Architecture model for approximate palindrome
detection

Tomáš Martı́nek and Jan Voženı́lek
Faculty of Information Technology

Brno University of Technology
Božetěchova 2, Brno, 612 66, Czech Republic

Email: martinto@fit.vutbr.cz, xvozen00@stud.fit.vutbr.cz

Matej Lexa
Faculty of Informatics

Masaryk University
Botanická 68a, Brno, 602 00, Czech Republic

Email: lexa@fi.muni.cz

Abstract—Understanding the structure and function of DNA
sequences represents an important area of research in modern
biology. One of the interesting structures occurring in DNA is a
palindrome. Biologists believe that palindromes play an impor-
tant role in regulation of gene activity and other cell processes
because they are often observed near promoters, introns and
specific untranslated regions. Unfortunately, the time complexity
of algorithms for palindrome detection increases when mutations
in the form of character insertions, deletions or substitutions are
taken into consideration. In recent years, several works have
been aimed at acceleration of such algorithms using dedicated
circuits capable of potentially large-scale searching. However,
widespread use of such circuits is often complicated by varying
user task details or the need to use a specific target platform. The
objective of this work is therefore to create a model of hardware
architecture for approximate palindrome detection and develop
a technique for automatic mapping of this model to the target
platform without intervention of an experienced designer. The
proposed model and the mapping technique are implemented
and evaluated on a family of chips with Virtex5 technology.

I. INTRODUCTION

A palindrome is a sequence of symbols ordered in such
a way, that the order is identical when read forward and
backward (e.g. abba, ababa). Generally, palindromes can be
written in the form p = w.wR or p = w.c.wR, where w
is a string, wR is its reversed version and c is a central
unpaired symbol. Depending on the presence of the symbol c,
the palindrome is called even or odd.

In molecular biology, analysis of DNA molecules is one
of the key subjects of research because it helps to un-
derstand functioning of living organisms at the molecular
level. DNA is often represented as a long sequence of four
letters A, C, G and T (corresponding to basic chemical
units – nucleotides). It is believed, that structures formed by
palindromic subsequences play a role in regulation of gene
activity or other processes in cells. For example, hairpin and
triplex palindrome-based structures are known to be present
in close vicinity of genes (e.g. in promoters, introns and 3’-
untranslated regions) contributing to their normal functioning,
or to diseases, such as cancer. In short, the knowledge of the
exact positions of palindromes in DNA is an important bit of
information for molecular biologists trying to understand how
entire genomes are organized and what the functions of its
individual components are.

The process of searching for palindromes in biological data
is often complicated by the presence of mutations introduced
by evolutionary processes. These mutations occur in sequences
as character insertions, deletions or substitutions. The algo-
rithms, which search for palindromes in DNA sequences have
to tolerate these changes, in order to find not only exact
palindromes but also approximate palindromes. Unfortunately,
the time-complexity of such algorithms is higher, which com-
plicates their practical usage for large-scale or even interactive
searching important for molecular biologists.

One of the ways to obtain interactivity is to implement the
searching procedures in hardware. In our previous work [1]
a novel hardware architecture was developed, capable to
speed up the palindrome detection in orders of thousands
in comparison to the best known algorithm implemented in
software. However, these theoretical properties of computation
core can change significantly if it is connected into a real
system. The parameters of resulting circuit depend primarily
on target platform characteristics and task parameters. The
typical problems that users of the architecture have to address
are:

• Is I/O bandwidth sufficient to feed the hundreds or
thousands of processing elements (PEs) with new data
and to process the output data that they generate?

• How many PEs does it really make sense to implement
with respect to limited I/O bandwidth or amount of
available resources?

• Then, what is the real speed-up of the system?
• How do the architecture parameters change, if a new chip

with different technology is used?
The objective of this paper is to extend our previous work

and create a general model of architecture for approximate
palindrome detection, which would be capable to answer all
previously mentioned questions and develop a method for
mapping of the architecture into the target platform fully auto-
matically without any intervention of an experienced designer.

This paper is organized as follows: Section II describes the
method for approximate palindrome detection and its hardware
acceleration. Related work in the area of acceleration of ap-
proximate palindrome searching is summarized in section III.
Section IV contains detailed description of our hardware

a b

c d

a) b)

m ii s s i s s p p i
i

0
0

0
0

0
0

0
0

0
0

00
0

0
0

0
0

0
0

0
0

0
0

m
i
s
s
i
s
s
i

p
p

0
0

0
0

0

0
0

1
1

1
1 1
1

1 1
1
1

1 1
1 1

1
1

1
11

1
1
11

11
1

1
1

12 2

2

2
2

2
2
2

2
2

3

3
32

3

2
3

c + 1
b + 1
a+1 mismatch

a match

insertion
deletion

d = min

match

Fig. 1. Dynamic programming algorithm demonstrated on the string
mississippi: a) the DP matrix with calculated score values b) the scheme
of DP rule calculating new score d based on neighboring values a, b and c.

architecture model and the technique for its automatic mapping
to the target platform. Evaluation of the proposed model on
FPGA chips with Virtex5 technology is given in section V.
Conclusions are summarized in section VI.

II. HARDWARE ACCELERATION OF APPROXIMATE
PALINDROME DETECTION

Algorithms for palindrome searching have been studied
intensively in the past. One of the first algorithms for finding
all palindromes [2] use dynamic programming (DP) technique
to calculate a two dimensional matrix of all possible palin-
drome alignments. Unfortunately, the algorithm time complex-
ity converges to O(n2). Another (more practical) approach
does not calculate the whole DP matrix, but only searches for
palindromes with at most k errors. The best algorithms of this
kind are based on suffix trees or suffix arrays [3], [4], which
allow them to reduce time complexity to O(kn).

Although, the suffix array-based method seems to be very
promising, we do not usually search for palindromes with
exactly (or up to) k errors when analyzing real sequences.
Rather, we tend to tolerate more errors in longer palindromes
and less errors in shorter ones. Therefore, it is more natural to
define an acceptable average frequency of errors, rather than
a fixed value k. This frequency can be expressed as e = l/k,
where l is the length of the palindrome in question. If the suffix
array-based method is modified accordingly, the computation
has to go through k = n/e cycles of diagonal extensions. The
time complexity in such case will increase to O(n2/e).

Although, the suffix array-based method is very effective
and calculates only the necessary number of DP matrix items,
its hardware acceleration is complicated by several factors:
i) entire suffix array would apparently have to reside inside
the chip and thus consume significant amount of resources,
and ii) during the computation the suffix array would have
to be concurrently accessed from a number of chip locations
corresponding to the level of parallelization. This would result
in a complex interconnection system. For these reasons, we
decided to accelerate the basic dynamic programing approach.
Following subsections describe the DP method and its hard-
ware acceleration in more detail.

PE PE PE PE

SR PE PE

0
0

0
0

0

0
0

0
0

S

a b
c d

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0 0

0
0

0

0
0

0
0 0

0
0

0

0
0

0

SR

S

1

2

3

4

b)a)

FIFO

Input Data Memory

Output Data Memory

Fig. 2. Hardware architecture (a) Allocation of PEs for DP matrix compu-
tation (b) Computation of the first k-antidiagonals split into stripes

A. Dynamic programing technique
A convenient way to search for approximate palindromes

is by the way of a dynamic programming algorithm. Original
algorithm can be traced back to [2]. A DP matrix is constructed
so that one side represents the original sequence, while the
other contains the same sequence reversed (according to the
nucleotide-pairing rules for DNA sequences). With such setup,
the main antidiagonal of the DP matrix represents all the n
possible starting positions for odd palindromes. The neighbor-
ing antidiagonal contains the other n−1 possible starting sites
of all the even palindromes that can exist in the sequence.
Consequently, diagonals starting at any of these positions
represent potential palindromes. If we fill the cells representing
the starting positions with zeros, we can start filling the DP
matrix along the diagonals. The numbers entered will represent
the number of errors found so far in the evaluated palindromes.
At each position [i, j] of the DP matrix, we compare the
symbols at positions i and j in the original and reversed
sequences. If they are the same, no penalty is introduced. If
the symbols differ, the number of errors identified so far in
the particular palindrome score is incremented by one.

The necessity for a dynamic programming algorithm comes
from the possibility to insert gaps into the palindromes, where
symbols in some positions have no symbols to pair up with
in the palindrome. In terms of the described algorithms, this
means moving from one diagonal to a neighboring one when
calculating the number of errors. At any position, three pos-
sibilities are evaluated: (1) Extending the existing palindrome
along the diagonal - match or mismatch, (2) Inserting a gap
at position i of the original sequence - insertion, (3) Inserting
a gap at position j of the reversed sequence - deletion. The
solution that leads to the lowest number of errors is kept, the
score is recorded in the DP matrix, while the other possibilities
are discarded.

B. Hardware architecture
Our architecture for the palindrome detection is similar to

the one used in acceleration of approximate string matching
(ASM) [5]. Nevertheless, there are some important differences
between the two architectures. While the whole area of the
DP matrix is computed in ASM, only the lower triangular

Fig. 3. Hardware architecture for palindrome searching with k-mismatches

part is significant in palindrome searching (see Fig. 2a). As
the probability of palindrome occurrence decreases with its
length, it makes sense to calculate only a limited number of
cells (the first k antidiagonals).

Similarly to ASM, the architecture of the circuit is based on
a systolic array of processing elements, where each element
calculates a single column of the DP matrix. Note that the first
ASM element begins computation in the upper left corner of
the matrix and the next elements start their computation con-
sequently in an ordered fashion because of data dependencies.
On the other hand, palindrome detection begins on the central
antidiagonal and all elements can proceed on the diagonals
in parallel. Data dependency does not require the elements to
wait for each other.

If the number of processing elements is lower than the
length of the input string, computation is divided into bands,
so that results generated by the last element are temporarily
stored in a buffer (FIFO). Upon transfer of computation to the
next band, the first processing element accesses the data in
the buffer (see Fig. 2b). Similarly to ASM, the PE element
calculates a typical DP rule and resulting score shifts to its
neighbour on the right. Besides the score calculation, the PE
controls the actual number of errors and palindrome length.
As soon as this ratio decreases under the specified threshold (e
parameter), palindrome is exported and PE stores information
about palindrome position and length into the output memory.

III. RELATED WORKS

Palindrome search acceleration in hardware has been stud-
ied by Conti et al. [6]. Their architecture is made of an
array of processing elements connected into a loop. The
input string progresses through the array from left to right,
changes direction at the end of the array and continues in
the opposite direction. The processing elements contain only
comparators which signal palindrome-forming matches on
individual positions (see Fig. 3). This architecture is able to
detect approximate palindromes of all relevant lengths at every
step. Only mismatches can be evaluated. Time-complexity of
this approach is O(n) as compared to O(kn) for the best
algorithms implemented in software. Using a longer array of
processing elements leads to detection of longer palindromes
without changes in time-complexity.

The authors also address the problem of detecting palin-
dromes containing insertions and deletions. To do that they
rely on a triplet of the above mentioned arrays. The first
array operates as described for detecting palindromes with

Aggregation
Tree

PCI

Input Data Memory

Buffers

PE PE PE PE PE FIFO

SA Ctrl

PCI
Bridge

DMA
Ctrl.

DMA
Ctrl.

Fig. 4. System architecture including Input data memory, output aggregation
tree and blocks necessary for DMA transfers

mismatches. The second array compares one symbol ahead and
the third array compares one symbol behind the normal posi-
tion. Analyzing the results from these three arrays the authors
can detect possible insertions. Unfortunately, generalization of
this approach to k-errors leads to high number of comparator
arrays and an unnecessarily high use of resources on the chip.

In comparison to the approach described in section II, our
architecture is more scalable, because more processing ele-
ments in systolic array accelerate the computation. Moreover,
amount of consumed resources is independent of amount of
accepted insertions and deletions.

IV. ARCHITECTURE MODEL

The architecture described in section II shows an approach
to palindrome detection parallelization and represents a basic
template of circuits. However, for real use of this architecture,
it is necessary to take into account the environment of the
circuit and evaluate it with respect to the whole system. An
example of such system is shown in Fig. 4. The architecture
of the computation core is placed into the chip connected to
the system bus (e.g. PCIe). This hardware accelerator usually
works as a fast filter, which detects considerable fraction of
the palindromes present in the sequence very quickly and
remaining ones (extremely long palindromes) are left for the
software part of the application.

An input sequence is transfered from the host RAM memory
into the Input Data Memory through the system bus. On
the other side, the positions of exported palindromes are
aggregated from all PEs into a the single stream using a
tree structure of multiplexers and comparators. The resulting
stream is transfered back into the host RAM using DMA
controllers and auxiliary buffers. This system architecture can
be limited by the parameters of the target platform, such as
available I/O bandwidth or amount of available resources. In
some cases, it may not make sense to implement more than a
certain number of PEs due to limited I/O bandwidth. In other
cases, amount of resources may not allow to increase systolic
array length and circuit performance.

A. Computation Model
The task of the model is to show architecture characteristics

for selected parameters (number of PEs, number of computa-

Fig. 5. Histogram of palindromes occurred in DNA sequences including four
characteristics for different palindromes quality (e parameter)

tion steps) or different surrounding conditions (I/O bandwidth,
amount of resources etc.). At first, to build the model, we
need to find out how the system behaves with respect to input
and output. Relevant information is shown in a histogram of
exported palindromes shows.

This histogram primarily depends on the type of analyzed
sequence and usually it can only be obtained experimentally.
As a test set, we used DNA sequences 10k characters long
obtained from promoters in the first human chromosome (hg18
release of UCSC Human Genome). To eliminate the large
amount of short palindrome occurrences, the algorithm was
set up to search for palindromes longer than 4 characters. The
test was repeated 10 times for different sequences and different
requirements for palindrome quality (e parameter). Resulting
histograms are depicted in Fig. 5.

The diagrams shows that with increasing length the palin-
dromes occurrences decrease exponentially. This naturally
corresponds to the probability of the palindrome occurrence
in random sequences. Similarly, with increasing requirements
for palindrome quality, the number of exported palindromes
decreases.

Since the hardware accelerator works as a fast filter for
detection of almost all palindromes (extremely long ones are
left to the software), a natural question would be: How many
computation steps does the circuit have to perform to cover
e.g. 99% of all palindromes (number of computation steps
= number of antidiagonals = 2 × length)? This information
is shown by the cumulative histogram, where at each step
the number of palindromes exported so far is calculated.
The cumulative histogram can be derived from the previous
histogram using the following equation:

Hc(n) =

Smax
∑

i=1

H(i) (1)

where H(i) is the number of exported palindromes at step
i and Smax is the maximal number of steps (proportional to
the length of analyzed sequence). The number of necessary

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70 80 90 100

Hc
 [%

]

Steps

e=3
e=4
e=5
e=6

95%
99%

Fig. 6. Cumulative histogram representing influence of exported palindromes
(in percentage) with respect to the number of computation steps

steps Sopt to cover 99% of palindromes can be taken from
the cumulative histogram represented as a percentage (with
respect to overall number of exported palindromes) or it can
be calculated from the following inequality:

Hc(Sopt)

Hc(Smax)
≥ 0.99 (2)

As the cumulative histogram is monotonic, the Sopt value
can be obtained for example using the bisection method. For
the real architecture, it does not make sense to calculate more
than Sopt computation steps.

Next, the number of computation steps influences the re-
quirement for the system input bandwidth. All PEs of the
systolic array have to be fed with new data in a timely manner.
Let’s assume an array with NPE elements. Then for all these
PEs a new input sequence characters have to be prepared
during Sopt steps. Required input bandwidth corresponds to
the equation:

BIn(NPE) =
NPE · CDW

Sopt

· FS (3)

where CDW is character data width in bits and FS is
the systolic array working frequency. Similarly, for output
bandwidth, all palindromes exported during Sopt steps have
to be transported back to the host RAM. The number of
such exported palindromes can be taken from the cumulative
histogram. Required output bandwidth corresponds to the
equation:

Bout(NPE) =
Hc(Sopt) · NPE · EDW

Sopt

· FS (4)

where EDW is exported item data width. As the histogram
shows, the number of exported palindromes decreases expo-
nentially with their length. For reliable transfer of all exported
palindromes to the host RAM, the aggregation tree has to
contain buffers of sufficient size. This buffer size is one of the
parameters, that impacts the amount of consumed resources
and thus the number of potential PEs placed in a chip.

The number of items that each PE generates on average can
be taken from the cumulative histogram. On the other side, the
number of items, which the system is able to take from each
PE up to the step s, can be expressed as:

Oc(s) =
BSout

FS · NPE

· s (5)

where BSout is the available output system bandwidth.
By subtraction of both these equations, we obtain the char-
acteristic of utilized buffer items. Then the maximal value
corresponds to the necessary buffer size.

BufSize = max
Sopt

i=1
[Hc(i) − Oc(i)] (6)

Amount of resources needed for realization of the whole
system can be calculated as a sum of all sub-components
resources. General equations are shown in the following list:

RArch = NPE · RPE + RMem + RFIFO + (7)
RTree + RCtrl

RMem = f(NPE , CDW)

RFifo = f(Sopt, SDW)

RTree = NPE · RBuf + (NPE − 1) · Rcmp

RBuf = f(NPE , EDW)

where RPE is the amount of resources needed for PEs,
RMem for input data memory, RFifo for memory for inter-
mediate results, RTree for aggregation tree, RCtrl for systolic
array control logic, RBuf for buffer for exported palindromes,
Rcmp for comparator and multiplexer of aggregation tree.

Amount of resources for memory blocks (RMem, RFifo,
RBuf) is expressed generally as a function of number of
items and data width. Different target technology implements
these blocks in different ways. For example, a FPGA allows
to implement memory using embedded blocks or using ba-
sic computation gates. Characteristics of these functions are
usually linear or stair function depending on used technology.
B. Automatic mapping

Based on the architecture model, it is possible to evaluate
not only a specific architecture, but also to find out architecture
parameters, that fits the input task and target platform the best.
Moreover, this mapping process can work fully automatically
without any intervention of an experienced designer.

The type of the solved task implies, that the architecture is
suitable for target platform only if requirements for I/O band-
width are satisfied and simultaneously the circuit is realizable
with limited the available amount of resources. The following
set of inequalities has to be satisfied:

D =

BOut(NPE) ≤ BSout

BIn(NPE) ≤ BSin

RArch(NPE) ≤ RFPGA

(8)

Note, that the left sides of inequalities contains general
relations of the architecture model, while the right side cor-
responds to the parameters of the specific target platform.

Architectures, that satisfy the inequalities generally represent
a set of acceptable architectures, sometime labeled as design
space.

The task of the mapping process is to explore the design
space and find out the best (or a group of the best) candidates
based on desired criteria (computation time, performance,
power consumption, etc.). In our case, the criterion is a
performance and therefore the objective is to find out an
architecture with as many PEs as possible.

max(NPE |D) (9)

Finding of such architecture is generally an optimization
problem from the area of nonlinear programming, that leads
to relatively complex mathematical methods in general. Please
note that in our case all the used functions are linear (BOut,
BIn) or monotonic (RFPGA). Therefore, the bisection method
can be used for finding the optimal number of PEs.

V. EVALUATION AND RESULTS

In this section, the proposed architecture model is evaluated
on the family of chips with Virtex5 LXT technology. These
chips contain huge amount of computation gates in range
from 7200 slices (xc5lx50t) up to 51840 slices (xc5lx50t).
Moreover, all these chips include embedded IP core for
connection to the PCI Express bus x8.

The proposed architecture was implemented in VHDL
language and the Xilinx ISE tool was used for synthesis.
The blocks for controlling of DMA transfers and access to
the PCI bus were used from the NetCOPE platform [7].
Amounts of resources consumed for individual parts of the
system including operation frequency and maximal available
I/O bandwidth are listed in the following table.

TABLE I
HARDWARE CHARACTERISTICS AFTER SYNTHESIS PROCESS

RDMA+PCI [Slices] 1900
RPE [Slices] 14
Rcmp [Slices] 6
Rctrl [Slices] 23
F [MHz] 251
BSIn [Gbps] 16
BSOut [Gbps] 16

With respect to the small number of utilized items, the
LUT gates were used for memory block implementation. The
amount of consumed gates corresponds to the equation:

R = (Items/32) · (DataWidth/2) (10)

where single LUT is capable to store up to 32 two-bits
items. Because the pipelined architecture is used, the working
frequency is approximately 251 MHz and does not change
with a longer systolic array. For the purposes of connection to
the PCIe bus, the whole system is synchronized at frequency
250MHz.

At first, the model was evaluated with respect to limited
system I/O bandwidth (see table II). Based on the differ-
ent required quality of exported palindromes (e parameter),
the number of computation steps Sopt for covering 99% of
palindromes was calculated using equation 2. As the I/O
bandwidth is constantly 16Gbps for all chips of Vitex5 family,
the maximal number of PEs that can be fed with the new data
(NPEBIN

) as well as the number of PEs that the system is
able to handle at the output (NPEBOUT

) can be derived from
equation 3 and 4.

Please note, that with increasing requirement for palindrome
quality, the number of PEs supplied with the input bandwidth
decreases, because number of necessary computation steps
Sopt decreases. On the other side, the output bandwidth is able
to handle more PEs, because a smaller number of palindromes
are exported (Hc). Then, the minimum of both of these
values represents the maximal number of PEs, that can be
implemented in the chip due to the limited I/O bandwidth
(NPEB

). As the table shows, this value is approximately 800
for all e parameters. More PEs will be possible only for
new chips with higher I/O bandwidth or different type of
connection.

TABLE II
INFLUENCE OF LIMITED I/O BANDWIDTH

E 3 4 5 6
Sopt 56 32 26 24
Hc(Sopt) 0.28 0.15 0.06 0.03
NPEBIN

1792 1024 832 768
NPEBOUT

800 853 1867 3345
NPEB

800 853 832 768

Amount of resources for the whole system is calculated
using equation 8. As the function characteristic is not linear,
the number of PEs can not be derived directly, but using the
bisection method. Following table III summarizes the maximal
number of PEs for individual chips of Virtex5 family. The
values are in range from 200 to 2000.

TABLE III
INFLUENCE OF LIMITED AMOUNT OF RESOURCES

FPGA Slices PEs
xc5vlx50t 7 200 215
xc5vlx110t 17 260 625
xc5vlx220t 34 560 1 332
xc5vlx330t 51 840 2 035

If we compare numbers of PEs limited by I/O bandwidth
and the amount of available resources, we will arrive at the
following conclusions: (1) For chips xc5vlx110t and smaller,
limiting factor is the amount of available resources. (2) On
the opposite side, for chips xc5vlx220t and larger, the amount
of resources is sufficient, but the extension of systolic array
is limited by input or output bandwidth with respect to the
required palindrome quality. (3) The highest speed up of ar-
chitecture is achieved with at most 800 PEs. Using equation 11

adopted from [1], we calculate maximal speed- up of hardware
in comparison to the best known method implemented in
software. The result shows that the architecture realized in
chips with Virtex5 family is capable to achieve speed- up up
to 3566 depending on the selected chip.

α =
k

l
·
p2.nPE

p1

= 0.535 ·
200B · 800

0.03B
= 3566 (11)

VI. CONCLUSIONS

In this work, a general model of architecture for approxi-
mate palindrome detection was developed. This model takes
into account the real aspects of architecture use such as
available I/O bandwidth, amount of resources and input task
parameters (required palindrome quality, character data width,
etc.). Besides the model, a technique for its mapping to a
specific target platform was designed. This method allows to
find a suitable parameters of the system fully automatically,
without intervention of an experienced designer and thus adapt
the usage of the general architecture for specific tasks with
different parameters or for a new generation of chips.

The proposed model was applied on the system in the form
of an accelerator connected to the PCIe bus using chips with
Virtex5 technology. Evaluation of the model shows, how the
I/O bandwidth and amount of available resources affects the
architecture properties. For the selected chips, it is possible to
implement up to 800 PEs and the resulting speed-up of the
hardware is 3566 in comparison to the best known method
implemented in software that uses a suffix array data structure.

ACKNOWLEDGMENT

This research has been partially supported by the Research
Plan No. GACR, 204081560 – In vitro and in silico iden-
tification of non-canonical DNA structures in genomic se-
quences and Research Plan No. MSM, 0021630528 – Security-
Oriented Research in Information Technology.

REFERENCES

[1] T. Martnek and M. Lexa, “Hardware acceleration of approximate
palindromes searching,” in The International Conference on Field-
Programmable Technology. IEEE Computer Society, 2008, pp. 65–72.

[2] G. M. Landau and U. Vishkin, “Efficient parallel and serial
approximate string matching,” Tech. Rep. Computer Science
Department Technical Report #221, February 1986. [Online]. Available:
citeseer.ist.psu.edu/landau86efficient.html

[3] R. de Castro Miranda and M. Ayala-Rincón, “A modification of the
landau-vishkin algorithm computing longest common extensions via
suffix arrays,” in BSB, 2005, pp. 210–213.

[4] L. Allison, “Finding approximate palindromes in strings quickly
and simply,” CoRR, vol. abs/cs/0412004, 2004, informal publication.
[Online]. Available: http://dblp.uni-trier.de/db/journals/corr/corr0412.html

[5] C. W. Yu, K. H. Kwong, K.-H. Lee, and P. H. W. Leong, “A smith-
waterman systolic cell.” in Field Programmable Logic and Application
(FPL 2003), Lisbon, Portugal, September 2003, pp. 375–384.

[6] A. A. Conti, T. V. Court, and M. C. Herbordt, “Processing repetitive
sequence structures with mismatches at streaming rate,” in Field Pro-
grammable Logic and Application (FPL 2004), ser. Lecture Notes in
Computer Science. Springer, 2004, pp. 1080–1083.

[7] T. Martnek and M. Koek, “Netcope: Platform for rapid development of
network applications,” in Proc. of 2008 IEEE Design and Diagnostics
of Electronic Circuits and Systems Workshop. IEEE Computer Society,
2008, pp. 219–224.

