
i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 1 — #1 i
i

i
i

i
i

Zbyněk Křivka

Rewriting Systems with
Restricted Configurations

Dissertation thesis

Faculty of Information Technology
Brno University of Technology
Brno, Czech Republic

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page II — #2 i
i

i
i

i
i

Editorial board of Faculty of Information Technology:

Doc. Ing. Jaroslav Zendulka, CSc.
Department of Information Systems
chair

Prof. Ing. Tomáš Hruška, CSc.
Department of Information Systems

Ing. Adam Herout, Ph.D.
Department of Computer Graphics and Multimedia

Ing. Radek Koč́ı, Ph.D.
Department of Intelligent Systems

Prof. RNDr. Alexander Meduna, CSc.
Department of Information Systems

Doc. Ing. Lukáš Sekanina, Ph.D.
Department of Computer Systems

Mgr. Barbora Selingerová
Library

c© 2008 Faculty of Information Technology, Brno University of Technology
Dissertation thesis

Cover design 2007 by Dagmar Hejduková

Published by Faculty of Information Technology,
Brno University of Technology, Brno, Czech Republic

Printed by MJ servis, spol. s r.o.

ISBN 978-80-214-3722-7

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page III — #3 i
i

i
i

i
i

Preface

This theoretically oriented dissertation discusses rewriting systems, including
various automata and grammars. It concentrates its attention upon their com-
bination. More specifically, the central role of the present dissertation plays
the general notion of a configuration as an instantaneous description of a re-
writing system. Based upon various restrictions placed upon configurations
and rewriting modes, the systems are classified and studied. Apart from this
major topic, the dissertation also discusses dynamic complexity, which is based
upon metrics placed upon the process of yielding strings.

As its fundamental topic, the dissertation discusses #-rewriting system,
reducing deep pushdown automaton, and pushdown automata with restricted
pushdowns. In addition, it studies some variants of #-rewriting systems, in-
cluding n-right linear and generalized #-rewriting system. In general, the
dissertation demonstrates how the generative power of the systems under
discussion depends upon the restrictions placed upon them. In terms of dy-
namic complexity, it discusses a close relationship between various rewriting
systems, including newly introduced systems. As its main result, the disserta-
tion demonstrates several infinite hierarchies of language families defined by
rewriting systems in dependency on their restrictions.

The conclusion demonstrates the application-important properties of the
systems discussed in the dissertation. It sketches two new types of determinism
and canonical rewriting; then, it demonstrates their potential practical usage.

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page IV — #4 i
i

i
i

i
i

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page V — #5 i
i

i
i

i
i

Acknowledgment

This work was supported by GRAFO 2008 grant, the Czech Ministry of Edu-
cation under the Research Plan No. MSM 0021630528 (Security-Oriented Re-
search in Information Technology), and the Czech Ministry of Education grant
No. 2C06008 (Virtual Laboratory of Microprocessor Technology Application).

I thank to Alexander Meduna, my teacher and friend. He supported me
and inspired me during the whole time when I wrote this book. I am looking
forward to our next collaboration. My thanks also go to Pavel Bělohlávek and
Petr Sośık for their criticism of this book.

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page VI — #6 i
i

i
i

i
i

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page VII — #7 i
i

i
i

i
i

Contents

Contents . VII

Part I Present State

1 Introduction . 3
1.1 Chapters Survey . 6
1.2 Conventions . 8

2 Preliminaries . 9
2.1 Fundamental Mathematical Definitions . 9
2.2 Formal Languages . 12
2.3 Formal Model Concept . 15

2.3.1 Rewriting Systems . 16
2.4 Definitions of Basic Rewriting Systems . 20

2.4.1 Grammars . 20
2.4.2 Automata . 22
2.4.3 The Chomsky Hierarchy of Formal Language Families . . 24

2.5 Regulated Rewriting Systems . 24
2.5.1 The Ways of Regulation . 24
2.5.2 Regulated Grammars . 25

3 Configuration Restrictions . 33
3.1 Ways of Rewriting Systems Restriction . 33
3.2 Ways of Restrictions of Applied Rules Sequences 34

3.2.1 n-limitation . 34
3.3 Kinds of Configuration Restrictions . 36

3.3.1 Finite Index . 37
3.3.2 Workspace . 38

3.4 Complexity of Formal Models . 39

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page VIII — #8 i
i

i
i

i
i

VIII CONTENTS

3.4.1 Classification of Formal Model Complexity 40

Part II New Formal Models and Their Restrictions

4 Definitions . 45
4.1 #-Rewriting Systems . 45

4.1.1 Motivation . 46
4.1.2 Definition . 47
4.1.3 Based on Right-Linear Rules . 49
4.1.4 Based on Generalized Rules . 51
4.1.5 Other Variants of #-Rewriting Systems 53

4.2 Deep Pushdown Automata . 54
4.2.1 Deterministic Deep Pushdown Automata 57
4.2.2 Reducing Deep Pushdown Automata 57

4.3 Restricted Pushdown Automata . 60
4.4 Summary . 63

5 Results . 65
5.1 Power of Rewriting Systems . 65

5.1.1 Context-Free #-Rewriting Systems 65
5.1.2 n-Right-Linear #-Rewriting Systems 71
5.1.3 Generalized #-Rewriting Systems 76
5.1.4 Restricted Pushdown Automata . 81
5.1.5 Reducing Deep Pushdown Automata 83

5.2 Infinite Hierarchies of Language Families 88
5.2.1 Based on Finite Index . 88
5.2.2 Based on n-limitation . 89

Part III Relationship with Practice

6 Application of Configuration Restrictions 93
6.1 Application Areas . 93
6.2 Suitable Modifications of Formal Models 94

6.2.1 Deterministic #-Rewriting Systems 95
6.2.2 Canonical #-Rewriting Systems . 100
6.2.3 Comment on Deterministic Deep Pushdown Automata . 102

6.3 Syntactical Analysis . 102
6.3.1 Programming Languages . 103

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page IX — #9 i
i

i
i

i
i

CONTENTS IX

Part IV Conclusion

7 Conclusion . 107
7.1 Summary . 107
7.2 Contribution . 109
7.3 Future Investigation . 109

7.3.1 Hypotheses and Open Problems . 109

Index . 111

References . 115

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page X — #10 i
i

i
i

i
i

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 1 — #11 i
i

i
i

i
i

Part I

Present State

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 2 — #12 i
i

i
i

i
i

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 3 — #13 i
i

i
i

i
i

1

Introduction

The theory of formal languages is a mathematically oriented area of computer
science. The importance of this part follows from the fact that every prob-
lem or task that can be mathematically described is possible to specify by a
language. The fundamental principle of the description utilizes the fact that
every solution to a problem can be described by a sentence of a language.
Because of this, there is the way of unifying the question about the solution
to each given problem: Does the sentence that represents the sought solution
belong to the language that describes all possible solutions to the problem?
From this point of view, we can look at searching the solutions in two ways:

a) we verify the sentence that represents the problem and we try to say if the
sentence belongs to the language describing all possible solutions to the
problem (procedural approach);

b) we describe/search all valid solutions to the given problem i.e. we search
the solution language description (declarative approach).

The theory of formal languages explores the way of solving the problem
that is described by formally specified language. Therefore, it makes sense of
defining problems like these in terms of formal languages because we can use
the properties and the automatic processing that is available for the particular
language family to which the language describing this problem belongs. There
is a proportion between the problem complexity and solution complexity. The
same proportion holds for the corresponding language representation of the
problem and the complexity of the language processing. For example, the na-
tural language description of the problem with its complexity and ambiguity is
more complicated to process by machine than, for instance, by simple regular
expression describing variable identifiers.

A language, which carries information and/or possible solutions, is based
on the fundamental mathematical notion of a set. Since a non-trivial language
is often an infinite set, for its finite description we need formal models.

Formal models serve for the exact mathematical description of languages.
We can classify them into four basic categories:

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 4 — #14 i
i

i
i

i
i

4 1 Introduction

• set enumeration that rigorously defines all items of the set; it is useful only
for finite sets;

• set construct that is built from the list of mathematical or natural language
requirements and conditions that make some demands on the set items i.e.
sentences of the defined language; for instance, {w| w has length divisible
by 3, where w is a sentence over given alphabet of symbols};

• usage of algebraic operations over already defined languages for the lan-
guage specification; for instance, L = L1∪L2, where L1, L2 are languages;

• rewriting systems that define algorithmic mechanism specifying how to
process language sentences. This approach is very important in practice,
so the theory of formal languages deals with rewriting systems a lot.

A rewriting system changes its inner state by rewriting. The rewriting is
an operation of the replacement of a substring of the system inner state by
another string of symbols.

The rewriting system is defined by two basic components—total alphabet
and finite set of rules. The total alphabet contains all symbols that can appear
in the input, output, or inner state of the rewriting system. The finite set of
rules dictates possible rewritings (changes) of the system inner state.

The most common rewriting systems are grammars and automata.
For instance, let us have some well-known type of grammars, context-

free grammars. A context-free grammar consists of a total alphabet, terminal
alphabet that is a subset of the total alphabet, starting symbol (axiom), and
finite set of rewriting rules. The grammar starts from its starting symbol in
its inner state (called sentential form) and rewrites nonterminals (symbols of
the total alphabet that are not terminals) according to its rewriting rules.
By this rewriting mechanism, the grammar generates a string of terminal
symbols. The set of terminal strings generated in this way defines the language
generated by this context-free grammar.

An automaton works in a different and more practical way. That is, the au-
tomaton verifies the language sentence by a step-by-step reading and process-
ing according to its transitions in its state control. We say that the grammar
generates the language and that the automaton accepts the language.

To illustrate the notion of an automaton as a rewriting system, consider
a finite automaton that consists of: a finite set of states, Q, one of which is
defined as a starting state and some states are specified as final states; an al-
phabet of input symbols, T , where union of Q and T creates the total alphabet
of the system; and a set of rewriting rules allowing to make transitions.

During a move (or transition), the automaton changes its current state
and reads an input symbol from the input tape. The input tape contains the
input string that represents the processed sentence. If with an input string,
the automaton makes the sequence of moves according to its rules, so it starts
from the starting state, reads the entire input string from the input tape,
and reaches a final state, then the automaton accepts the input string. The

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 5 — #15 i
i

i
i

i
i

1 Introduction 5

set of all strings accepted in this way represents the language that the finite
automaton defines.

Considering the finite automaton as an instance of a rewriting system, the
inner state is composed of the input string and the current state. This pair is
called a configuration. In a suitable configuration representation, every move
does the rewriting of the configuration substring that consists of the current
state and the current input symbol to a string that contains only target state
of the used rewriting rule. An input symbol is read by such an action.

As demonstrated above, the combination of grammars and automata that
are both rewriting systems leads again to a rewriting system, and this work
focuses on this combination of rewriting systems. The formal language theory
has paid little attention to this area. The combinations and modifications of
grammars and automata were mostly studied separately and independently.

While studying the combination of automata and grammars, we find useful
to define all notions and properties in the context of rewriting systems. The
basic idea is to work with notions related to various types of rewriting sys-
tems in the uniform way. We are heading to the unification of both essential
approaches. For example, the notion of configuration is used in the general
way to denote the description of the inner state of a rewriting system, so even
the notion of sentential form will be, from the grammar approach, generally
called a configuration.

The combination of automata and grammars, including the unification
of notations, is demonstrated through the whole book. It is particularly em-
phasized in the definitions of two new rewriting systems (see Chapter 4):
#-rewriting systems and reducing deep pushdown automata.

More specifically, the majority of languages and language families can be
described or characterized by more than one formal model (or more specifi-
cally, rewriting system). In the appropriate formal model selection, it is very
important to consider the property of the complexity of the model.

The complexity theory is very important part of the theory of formal lan-
guages. We distinguish two branches in the complexity theory: the descrip-
tional complexity (i.e. static) and dynamic time and space complexity:

• The descriptional complexity deals with the space complexity of the de-
scription of the language itself, such as the necessary number of rules or
nonterminals for the description of a given language or a language family;

• The space and time complexity is focused on the efficiency of the language
sentence processing, thus this type of complexity is more important in
practice than the previous one.

The disadvantage of the space and time complexity is that it deals with
the formal model characterization in a rather rough way. It only finds out the
complexity class (e.g. asymptotic) of the given model. For instance, in the
worst case, a sentence of a context-free language can be processed in cubic
time complexity depending on the length of the sentence. Moreover, there is

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 6 — #16 i
i

i
i

i
i

6 1 Introduction

a trend to improve studied metrics of investigated formal models or their way
of processing in the descriptional and space and time complexity. In addition,
there is a requirement not influence the generative or acceptance power of
these models.

This book uses fine-grained and slightly different approach to the com-
plexity problem, more specifically, space complexity. Some specific metrics
related to the space complexity are restricted. Then, the resulting language
families defined by these restricted rewriting systems are investigated. To
achieve this goal, Chapter 3 introduces the classification of rewriting systems
and the notion of dynamic complexity.

As already mentioned, we study the combinations of grammars and au-
tomata. These combinations are inspired by regulated grammars and au-
tomata. The first types of the regulated grammars were investigated in the
seventies of the twentieth century (for instance, matrix or programmed gram-
mars). The main motivation for the introduction of regulating mechanisms to
grammars is to increase their generative power by some small modification of
their computational mechanism. All these regulated grammars are based on a
quite simple context-free grammar, or more precisely context-free rule cores.
When we generalize the notion of the regulation, we get the mechanism of
general formal model restrictions, because the regulation really restricts the
formal model. For instance, the mechanism of the selection of rules that can be
applied in the next derivation step in a programmed grammar is a regulation
and restriction.

We distinguish the following restrictions of formal models:

• restriction of the rewriting systems (the topic of this book);
• restriction of the derivation domain (for example, instead of alphabet sym-

bols, the words of a finite language can be used to construct strings, or we
can define a language based on free groups instead of free monoids);

• others (for example, the requirements of the satisfaction of several alge-
braic properties, such as the closure with respect to the operation substi-
tution).

The fundamental part of the study is usually concerned about the first
item of the previous classification. It contains for instance (1) restriction of the
changes between configurations or directly (2) the restriction of configurations
themselves. The second case in the context of the existing rewriting systems
establishes the target research area for this monograph.

1.1 Chapters Survey

This book consists of seven chapters divided into four parts:

1. Present State (Chapters 1, 2, and 3)
2. New Formal Models and Their Restrictions (Chapters 4 and 5)

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 7 — #17 i
i

i
i

i
i

1.1 Chapters Survey 7

3. Relationship with Practice (Chapter 6)
4. Conclusion (Chapter 7)

The first chapter introduces the work as a whole, including the motivation.
The second chapter revises all notions and definitions for the further use in

the text (from fundamental to advanced). Besides the definitions, we genera-
lize some other notions from formal languages in the form of concepts, such as
formal model, instance, and configuration. Formally, we discuss the unification
definition of a formal model—rewriting system—and its variants: grammars
and automata. Let us emphasize that the following chapters primarily contain
the basic research of the author (if not mentioned otherwise).

The third chapter classifies formal models and rewriting systems, respec-
tively. It focuses on their restricting. The notion restriction is understood in
more general context and it is closely associated with the complexity notion.
From the complexity point of view, the formal model restricting is divided
into static, dynamic, and hybrid restrictions.

The text concentrates on the results concerning hybrid and dynamic re-
strictions of rewriting systems. More specifically, we deal with the restriction
of the sequence of applied rewriting rules and configuration restriction. At the
end of the chapter, the relation of the configuration restriction to the time
and space complexity and to practical usage of rewriting systems is stressed.
For more concrete approach to the space complexity, we introduce the notion
of dynamic complexity that studies the space complexity with emphasis on
the particular way of the configuration restriction, such as the limitation or
finite index.

Naturally, since the dynamic complexity depends on the static complexity,
the border between dynamic, static, and hybrid restricting is not always so
sharp.

Chapter 4 defines new types of regulated rewriting systems that are, from
the point of view of the dynamic complexity, investigated more deeply in
the following chapters. Firstly, we introduce #-rewriting systems that are the
regulated rewriting systems combining the properties of grammars and au-
tomata. Like grammars, #-rewriting systems are generative devices, and like
automata, they implement finite-state control. In addition, they contain the
static restriction to only one type of symbol that can be rewritten by the
rewriting rule that determines which symbol from the beginning of the con-
figuration (from the left) will be replaced. Apart from the basic #-rewriting
system based on the context-free form of rules, we introduce right-linear and
context-sensitive variants as well. Next studied formal model is based on the
reducing modification of deep pushdown automata. This is a classical exam-
ple of the dynamic restriction. The last explored formal model is a pushdown
automaton with a restricted pushdown content that is regulated by the lan-
guage that says which strings in the pushdown are allowed during the sentence
processing.

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 8 — #18 i
i

i
i

i
i

8 1 Introduction

The majority of formal language properties are related to entire language
families. The language family is usually specified by the formal model that is
able to describe exactly the languages that belong to this family. The power
of formal models (and the language families described by them) is a crucial
property for investigating other information and properties of the family or
a particular language of the family. That is the reason why it is important
to study generative power for new rewriting systems too. This topic is dis-
cussed in the fifth chapter that summarizes the results and properties of new
and existing investigated formal models with the emphasis on their restrict-
ing. The construction proofs are included. In some cases the restriction of
the dynamic complexity (for example n-limitation or finite index) leads to
the infinite hierarchies that are very important properties to study in formal
languages to investigate expressing abilities of the given formal model. The
proofs of the infinite hierarchies of the models are based on the demonstration
of the equivalence with another formal model that creates the same infinite
hierarchy, so we obtain a new property for our model as well.

Although the text is strongly theoretically oriented, the sixth chapter stud-
ies the fundamental properties of introduced rewriting systems in a practical
usage. We investigate the possibilities of a deterministic and canonical rewrit-
ing that are essential, for instance, for the context-free language processing.

The last, seventh, chapter drafts the future development of the research in
the studied area. Some expected results and hypothesis are presented. They
only wait to be proved. Apart from hypothesis, some essential and related
open problems are discussed there as well.

1.2 Conventions

To improve the readability, orientation, and uniformity of the text, we dis-
tinguish two types of definitions: Definitions and Concepts. The less formal
definitions are denoted as Concepts. In addition, the notes about the form of
the text are denoted as Conventions.

Convention 1.1. The form of some notations is inspired by books [Med00,
MŠ05] and [Sal69, Sal73, Sal85].

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 9 — #19 i
i

i
i

i
i

2

Preliminaries

In this chapter, we define notions from the theory of formal languages. The
basic notions are defined in a very brief way. For certain introduction to the
topic of formal languages and for fully understanding of defined terms see
[Lin90, Med00]. Some compiler issues are covered in [ALSU06, AU72, AU73,
AU77].

The advanced formal models, that are in most cases studied at PhD level,
are described in more detail (see [DP89, Med04, RS97]), including some exam-
ples.

2.1 Fundamental Mathematical Definitions

To unify all notions, let us revise some basic mathematical terms (see [Šla01])
that concern sets and relations. Apart from this, we define some denotations
to be used throughout.

We use a notion of set in an intuitive meaning, such as in naive approach.
Informally, a set Σ is a collection of elements taken from a pre-specified uni-
verse. If element a belongs to Σ, we write a ∈ Σ and refer to a as a member
of Σ. Otherwise, if a is not in Σ, we write a 6∈ Σ.

The cardinality of set Σ, card(Σ), is a number of members1 in Σ. The set
that has no member is called empty set, denoted by ∅. Note that card(∅) = 0.
If the number of members in Σ is finite, then Σ is a finite set. Otherwise, Σ
is an infinite set.

We can specify a finite set Σ by listing its members:

Σ = {a1, a2, . . . , an},
1 In the literature, there is an alternative denotation of the cardinality of a set,
|Σ|, that is used exclusively in this work for the denotation of the length of a
sequence.

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 10 — #20 i
i

i
i

i
i

10 2 Preliminaries

where a1 through an are all members ofΣ. An infinite setΩ is usually specified
by a property π, so Ω contains all elements from the universe that satisfy the
property π (a set constructor). The symbolic denotation respects the following
format:

Ω = {a| π(a)} .
Sets whose members are other sets are usually called families of sets rather
than sets of sets. Let Σ and Ω are two sets. Σ is subset of Ω, symbolically
written as Σ ⊆ Ω, if each member of Σ belongs to Ω too. Σ is proper subset
of Ω, written as Σ ⊂ Ω, if Σ ⊆ Ω and Ω contains the member that is not a
member of Σ. Σ equals to Ω, denoted by Σ = Ω, if Σ ⊆ Ω and Ω ⊆ Σ. The
power set of Σ, denoted as 2Σ , is the set of all subsets of Σ.

The union, intersection, and difference of Σ and Ω are denoted by Σ ∪Ω,
Σ ∩Ω, and Σ−Ω, respectively. These binary operations over sets are defined
as

Σ ∪Ω = {a| a ∈ Σ or a ∈ Ω} ,
Σ ∩Ω = {a| a ∈ Σ and a ∈ Ω} , and

Σ −Ω = {a| a ∈ Σ and a 6∈ Ω} .

Definition 2.1. Let N0 denotes a set of all non-negative integers, then define
a set of all positive integers N = N0 − {0}. Further, let K ⊆ N0 is a finite
set. We define max(K) as the smallest number k such that for every h ∈ K,
k ≥ h, and min(K) as the greatest number l such that every for h ∈ K, l ≤ h.

Now, we revise notions concerning relations, functions, and their proper-
ties.

Definition 2.2. Let a and b be two objects, then the pair (a, b) denotes the
ordered pair that consists of the object a and b just in this order. Let A and
B be two sets. We define Cartesian product of A and B, denoted as A×B, as

A×B = {(a, b)| a ∈ A, b ∈ B} .

A binary relation or, shortly, a relation, ρ from A to B is any subset of
Cartesian product A×B. Symbolically, that is

ρ ⊆ A×B.

The domain of relation ρ, denoted by Domain(ρ), and the range of ρ,
denoted by Range(ρ) are defined as

Domain(ρ) = {a| (a, b) ∈ ρ for some b ∈ B}

and
Range(ρ) = {b| (a, b) ∈ ρ for some a ∈ A} .

If A = B, ρ is said to be a relation on A.
We say that a relation ρ on A is (see [Šla01]):

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 11 — #21 i
i

i
i

i
i

2.1 Fundamental Mathematical Definitions 11

a) reflexive if and only if aρa for every a ∈ A;
b) ireflexive if and only if (a, a) /∈ ρ for every a ∈ A;
c) symmetric if and only if aρb implies bρa for every a, b ∈ A;
d) antisymmetric if and only if aρb and bρa implies a = b;
e) transitive if and only if aρb and bρc implies aρc.

A reflexive, antisymmetric, and transitive relation ρ on a set A is called a
partial order. The pair (A, ρ) is called the partially ordered set .

Let A be a set and ≤ be a partial order on A. If for all a, b ∈ A holds
that a ≤ b or b ≤ a, then ≤ is called a linear order and (A,≤) is the linearly
ordered set .

An ireflexive and transitive relation < on A is called a strict order , the
pair (A,<) is the strictly partially ordered set .

Definition 2.3. Let (X,≤) be a partially ordered set, A ⊆ X. We say that
x ∈ X is an upper bound (lower bound , respectively) of A if for all a ∈ A
holds a ≤ x (x ≤ a, respectively).

Next, x ∈ X is called a maximum (minimum, respectively) of (X,≤), if
for every y ∈ X holds y ≤ x (x ≤ y, respectively). If there is the least upper
bound of A, we denote it as sup(A) and call it a supremum of A. By duality
principle of the order theory, if there is the greatest lower bound of A, we
denote it inf(A) and call it an infimum of A.

Definition 2.4. A function (or mapping) from A to B is a relation φ from
A to B such that

for every a ∈ A, card({b| b ∈ B, (a, b) ∈ φ}) ≤ 1.

Let φ be a function fromA toB. If Domain(φ) = A, φ is a total function; other-
wise, φ is a partial function. If for every b ∈ B, card({a| a ∈ A, (a, b) ∈ φ}) ≤
1, φ is an injection. If for every b ∈ B, card({a| a ∈ A, (a, b) ∈ φ}) ≥ 1, φ is
a surjection. If φ is both injection and surjection, we say φ is a bijection.

Instead of (a, b) ∈ ρ, we often write b ∈ ρ(a) or aρb. In other words,
(a, b) ∈ ρ, b ∈ ρ(a), and aρb are used interchangeably. We prefer the latter.
Moreover, if φ is a function, we usually write ρ(a) = b.

Let ρ be a relation on a set A. For k ≥ 0, the k-fold product of ρ, ρk, is
recursively defined as

(1) aρ0b if and only if a = b,
(2) aρ1b if and only if aρb, and
(3) aρkb if and only if aρc and cρk−1b, for some c and k ≥ 2.

The transitive closure of ρ, ρ+, is defined as aρ+b if and only if aρkb for
some k ≥ 1. The reflexive-transitive closure of ρ, ρ∗, is defined as aρkb for
some k ≥ 0.

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 12 — #22 i
i

i
i

i
i

12 2 Preliminaries

2.2 Formal Languages

The notions concerning languages, families of languages, and language opera-
tions follow.

Definition 2.5. A sequence is an intuitive well-known notion describing a list
of items from some universe. A sequence is finite if it represents a finite list of
elements; otherwise, it is infinite. The length of a finite sequence x, denoted
by |x|, is the number of elements in x. The empty sequence, denoted by ε, is
the sequence consisting of no element. That is, |ε| = 0. A finite sequence is
usually specified by listing its elements. For instance, consider a finite sequence
x specified as x = 0, 1, 1, 0, 1. That is, |x| = 5.

An alphabet T is a finite, non-empty set, whose members are called sym-
bols. A finite sequence of symbols from T is a string (or word) over T . Spe-
cifically, ε is referred to as the empty string. By T ∗, we denote the set of all
strings over T . T+ = T ∗ − {ε}.

Any subset L ⊆ T ∗ is a language over T . If L is a finite set of strings, L is
a finite language; otherwise, L is an infinite language. For instance, T ∗, called
the universal language over T , is an infinite language while ∅ and {ε} are
finite languages. Specifically, ∅ 6= {ε} because card(∅) = 0 6= card({ε}) = 1.
For a finite language L, max(L) denotes the length of the longest word in L.
By analogy with the set theory, sets whose members are languages are called
families of languages.

Convention 2.1. We omit all separating commas in strings. That is, we write
a1a2 . . . an instead of a1, a2, . . . , an.

Definition 2.6. Let T be an alphabet, let x, y ∈ T ∗ be two strings over T ,
and let L,K ⊆ T ∗ be two languages over T . As languages are sets, all set
operations apply to them, too. Specifically, L ∪K, L ∩K, and L−K denote
the union, intersection, and difference of languages L and K, respectively.

The most important operation is the concatenation of x with y, denoted
by xy. xy is the string obtained by appending y to x. Notice that from an
algebraic point of view, T ∗ and T+ are free monoid and free semigroup, re-
spectively, generated under the operation of concatenation. Observe that for
every w ∈ T ∗, wε = εw = w. The concatenation of L and K, denoted by LK,
is defined as

LK = {xy| x ∈ L, y ∈ K} .

Apart from binary operations taken from the set theory, we also define
some unary and binary operations over strings and languages.

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 13 — #23 i
i

i
i

i
i

2.2 Formal Languages 13

Definition 2.7. Let T be an alphabet and let x ∈ T ∗ and L ⊆ T ∗. The
complement of L, denoted by L, is defined as L = T ∗ − L.

The reversal of x, denoted by rev(x), is x written in the reverse order. That
is, if x = a1a2 . . . an, where a1, a2, . . . , an ∈ T , then rev(x) = an . . . a2a1.

For all i ≥ 0, the ith power of x, denoted by xi, is recursively defined as:

(1) x0 = ε, and
(2) xi = xxi−1 for i ≥ 1.

To demonstrate the recursive aspect, consider, for instance the ith power of
x, xi, with i = 3. By the second part of the definition, x3 = xx2. By repeated
applying of the second part to x2 and x1, respectively, we obtain x2 = xx1

and x1 = xx0, respectively. By the first part of this definition, x0 = ε. Thus,
x1 = xx0 = xε = x. Hence, x2 = xx1 = xx. Finally, x3 = xx2 = xxx.

By this convenient recursive method, we frequently introduce new notions,
including the ith power of L, Li which is defined as

(1) L0 = {ε}, and
(2) Li = LLi−1, for i ≥ 1.

The closure of L, L∗, is defined as

L∗ =
⋃
i≥0

Li,

and positive closure of L, L+, is defined as

L+ =
⋃
i≥1

Li.

Notice that
L+ = LL∗ = L∗L

and
L∗ = L+ ∪ {ε}.

Sometimes, the literature uses notions of reflexive-transitive and transitive
closure of a language instead of closure and positive closure, respectively.

If there is z ∈ T ∗ such that xz = y, x is a prefix of y; in addition, if x 6∈
{ε, y}, x is a proper prefix of y. By prefixes(y), we denote the set of all prefixes
of y.

Analogically, if there is z ∈ T ∗ such that zx = y, x is a suffix of y; in
addition, if x 6∈ {ε, y}, x is a proper suffix of y. By suffixes(y), we denote the
set of all suffixes of y.

For n ≥ 0 and x ∈ T ∗, prefix(x, n) and suffix(x, n), respectively, denote
the prefix and suffix of x of length n, respectively. If |x| < n, prefix(x, n) =
suffix(x, n) = x.

Let w ∈ T ∗ and K be a string and a set such that {ε} ⊆ K ⊆ T .
maxprefix(w,K) and maxsuffix(w,K), respectively, denote the longest prefix

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 14 — #24 i
i

i
i

i
i

14 2 Preliminaries

and suffix of w such that every symbol of maxprefix(w,K) and maxsuffix(w,K)
is a member of K, respectively.

If there are u, v ∈ T ∗ such that uxv = y, x is a substring of y; in addition,
if x 6∈ {ε, y}, x is a proper substring of y. The set of all substrings of y is
denoted by sub(y).

Observe that for every string w,

prefixes(w) ⊆ sub(w),

suffixes(w) ⊆ sub(w),

and
{ε, w} ⊆ prefixes(w) ∩ suffixes(w) ∩ sub(w).

Let w be a non-empty string; then, first(w) and last(w), respectively,
denote the leftmost symbol of w and rightmost symbol of w, respectively.
For 1 ≤ i ≤ |w|, sym(w, i) denotes the ith leftmost symbol of w. Given
a string w, alph(w) is a set of all symbols occurring in w. For instance,
alph(aAbAaBCc) = {a, b, c, A,B,C}. In terms of a language over T , L, we
extend the definition as

alph(L) =
⋃
y∈L

alph(y).

For two strings x and y, where |y| ≥ 1, occur(y, x) denotes the number of
occurrences of y in x. A generalized form, occur(W,x), where W is a finite
language and ε 6∈ W , denotes the number of all occurrences of substrings of
x that belong to W . For instance, occur({a,C}, aAbAaBCc) = 3.

Let T and U be two alphabets. A total function τ from T ∗ to 2U
∗

such
that τ(uv) = τ(u)τ(v) for every u, v ∈ T ∗ is a substitution from T ∗ to U∗.
By this definition, τ(ε) = ε and τ(a1a2 . . . an) = τ(a1)τ(a2) . . . τ(an), where
ai ∈ T , 1 ≤ i ≤ n, for any n ≥ 1. It means that τ is totally specified by
the definition of τ(a) for every symbol a ∈ T . A total function χ from T ∗ to
U∗ such that χ(uv) = χ(u)χ(v) for every u, v ∈ T ∗ is a homomorphism or,
synonymously and briefly, a morphism from T ∗ to U∗. As any homomorphism
is by the definition a special case of a substitution, we specify χ by analogy
to the specification of τ .

Convention 2.2. Except when explicitly stated otherwise, we use lower-case
and capital letters from the beginning of the Latin alphabet for denotation
of symbols (for instance, a, b, c, A,B,C). On the other hand, we use lower-
case letters from the end of the English alphabet or occasionally lower-case
letters from the beginning of the Greek alphabet to denote strings (for in-
stance, u, v, w, x, y, z, α, β, γ, δ). Numerical constants and variables are mostly
denoted by lower-case Latin letters, such as i, j, k,m, n.

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 15 — #25 i
i

i
i

i
i

2.3 Formal Model Concept 15

The last operation over strings is quite complicated, so we start with an
informal description of the multisubstring operation. We take a source string,
and we delete a finite number of its substrings. The result is called multisub-
string. Other advanced operations over strings are investigated, for example,
in [Kar91, MV04].

Definition 2.8. Let Σ is an alphabet and x, yi, zj ∈ Σ∗, where 1 ≤ i ≤ n,
0 ≤ j ≤ n, for some n ∈ {0, 1, . . . , |x|}, and x = z0y1z1 . . . ynzn. Then,
y1y2 . . . yn is a multisubstring of x. A function multisub(x) denotes the set of
all multisubstrings of x.

Before we close this section, let us define n-tuples and other related notions.

Definition 2.9. Let A1, A2, . . . , An be sets and a1, a2, . . . , an be some ob-
jects, where ai ∈ Ai for every 1 ≤ i ≤ n, n ≥ 1. A non-empty sequence,
(a1, a2, . . . , an), constructed from these objects is called an n-tuple and its
members, a1, a2, . . . , an, are called components.

Let S = (a1, a2, . . . , an) be an n-tuple. For 1 ≤ i ≤ n, ai denotes the
ith component of S. A function component(S, i) denotes the ith leftmost
component from S; that is, component(S, i) = ai.

2.3 Formal Model Concept

This section presents the set of new concepts and definitions to unify automata-
based and grammar-based approaches.

The literature is very often focused on particular part of the theory of
formal languages and the unification with other parts is not necessary. On the
other hand, this monograph concentrates on the possibilities of grammars and
automata combinations. That is the reason why we need to specify common
concepts and definitions for both automata and grammars approaches in the
theory of formal languages.

There were several similar attempts of a unification in the theory of formal
languages, such as [Fer97], [MŠ05], and [Woo76].

The informal specification of the concept for the notion of formal model
follows. The general characteristics of the formal model even outside the the-
ory of formal languages are (quoted from www.google.com):

Formal model is the mathematical representation of a concept of interest. The
formal models are the basis of any language design and of the rigorous
scientific investigation in general.

This book understands the notion of formal model as the mathematical
mechanism that rigorously describes the way of defining sentences and/or
languages (the sets of sentences). We can use a formal model as a mechanism
that defines the language by algebraic operations and properties (declarative

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 16 — #26 i
i

i
i

i
i

16 2 Preliminaries

approach), or procedural approach that is used by rewriting systems (e.g.
automata and grammars).

Concept 2.1. A formal model is the mechanism that defines a language
family by the model itself and its semantics.

For instance, context-free grammars, pushdown automata, Turing ma-
chines ([Med00]), and L-systems ([RS97]) are formal models.

Concept 2.2. An instance of formal model is the formal model concretization
that defines a particular language. This language is called a language defined
by a formal model instance.

For instance, a particular grammar or automaton that defines a specific
language (for example, the context-free grammar that generates language
{a2n |n ≥ 1} or the Turing machine that accepts language {b(aib)2n | i ≥ 1,
n ≥ 1}) are formal model instances.

2.3.1 Rewriting Systems

In the theory of formal languages, the most important type of formal models
is the rewriting system that is based on finitely many rules that represent the
algorithm processing a sentence of the defined language. The rewriting system
rewrites inner state by the rules, which are of the form that corresponds to
the particular formal model. The generality of rewriting systems makes them
ideal for the unification of the formalization by two fundamental approaches,
generative grammars and accepting automata ([Sal85]).

Definition 2.10. A rewriting system is a pair, H = (Σ,R), where Σ is an
alphabet and R is a finite relation on Σ∗. Σ is called the total alphabet of H.
The members of R are called rules of H; in other words, R denotes the set of
rules of H.

Convention 2.3. Rather than (x, y) ∈ R, we write x → y ∈ R. For brevity,
we denote x→ y by a label r; that is, r : x→ y, and instead of r : x→ y ∈ R,
we shortly write r ∈ R. Thus, the rule, r : x → y, and the rule label, r, are
fully interchangeable. For r : x → y ∈ R, x and y represent the left-hand
side and right-hand side of the rule r, respectively, and we denote them by
lhs(r) and rhs(r). R∗ denotes the set of all sequences of rules from R. By
ρ ∈ R∗, we briefly express that ρ is a sequence consisting of |ρ| rules from
R. By analogy with the definition of a string (see Definition 2.5), we omit
separating commas between individual rules (rule labels) from ρ. That is,
instead of ρ = r1, r2, . . . , rn, we write ρ = r1r2 . . . rn. To explicitly express
that Σ and R are components of H, we denote the components by ΣH and
RH , respectively.

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 17 — #27 i
i

i
i

i
i

2.3 Formal Model Concept 17

In several rewriting systems, we define some notions in an analogical way.
To keep this chapter as readable as possible, we present some implicit defini-
tions of common notions that are valid for most rewriting systems and their
variants.

Definition 2.11. Let H = (Σ,R) is a rewriting system. Rewriting relation
on Σ∗ is denoted by ⇒ and defined such that for every u, v ∈ Σ∗, u ⇒ v
in H, if and only if there is a rule, x → y ∈ R, and w, z ∈ Σ∗ such that
u = wxz and v = wyz. Let u, v ∈ Σ∗. If u ⇒ v in H, we say that H
directly rewrites (computes) u to v by a rewriting step (computational step).
As usual, for every n ≥ 0, n-fold product of relation ⇒ is denoted by ⇒n.
If u ⇒n v, H rewrites u to v in n steps, called n-step rewrite or n-step
computation. Further, the reflexive-transitive closure and transitive closure of
⇒ is standardly denoted by ⇒∗ and ⇒+, respectively. If u ⇒∗ v, we simply
say that H rewrites (computes) u to v, and if u⇒+ v, H rewrites u to v in a
non-trivial way.

Sometimes, we need to explicitly specify the rules applied during the
rewriting. Consider that H makes u ⇒ v such that u = wxz, v = wyz,
and H replaces x with the string y by application of the rule r : x → y ∈ R.
To express this rewriting step symbolically, we write u ⇒ v [r] or, in detail,
wxz ⇒ wyz [r] in H, and we say that H directly rewrites wxy to wyz by r.
More generally, let n be a non-negative integer, w0, w1, . . . , wn be sequences,
where wi ∈ Σ∗, 0 ≤ i ≤ n, and rj ∈ R for 1 ≤ j ≤ n. If wj−1 ⇒ wj [rj] in H
for 1 ≤ j ≤ n, H rewrites w0 to wn in n steps according to the sequence of
rules, r1r2 . . . rn, symbolically written as w0 ⇒n wn [r1r2 . . . rn] in H (n = 0
in case that w0 ⇒0 w0 [ε]). The denotation u ⇒∗ v [ρ], where ρ ∈ R∗, ex-
presses that H makes u ⇒∗ v by application of ρ; u ⇒+ v [ρ] has analogical
meaning (ρ 6= ε).

Convention 2.4. To specify which rewriting system was used to make an-
other step, we write the denotation of the system into lower-left index of ⇒.
For instance, x⇒H y denotes the rewriting step made by H, x⇒ y in H.

Convention 2.5. If no confusion may exist, we omit the definition of
reflexive-transitive and transitive closure, respectively.

We introduce the notion for the denotation and description of global inner
state of an instance of rewriting system during its processing of a language
sentence.

A finite sequence of the components that represents inner state of a formal
model is called configuration. The notion of configuration is used in the theory
of automata (see [Med00]), grammar systems (see [CVDKP94], [Kři04a], and
the second volume of [RS97]), and often in combined systems, such as [Hoo87]

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 18 — #28 i
i

i
i

i
i

18 2 Preliminaries

and [Kas70]. This monograph understands configuration as the notion that
denotes inner state of any rewriting system (including classical grammars).

Concept 2.3. A configuration of an instance of a rewriting system (shortly
rewriting system configuration or just configuration) is a well-enough specified
inner state of the rewriting system instance that consists of a sub-state of all
its computational parts, such as processed input (if there is some), usage
and state of intern memory (if the model provides it), and the record of
already written output of the system (if any). Mathematically speaking, the
configuration of a rewriting system instance is an n-tuple of components with
specified length2, where n ≥ 1.

Let c = (Γ1, Γ2, . . . , Γn) be a configuration. The length of the configuration
c is defined as

|c| = |Γ1|+ |Γ2|+ · · ·+ |Γn|.

Since the configuration, c, is a sequence, the items of c are called compo-
nents and ith component is denoted by a function component(c, i).

A configuration component of a rewriting system can be finite or infinite.
The finite component often represents finite-state control of the rewriting
system (for example, in finite automata or state grammars).

A special case is a configuration in classical grammars, where n = 1. Such
configuration is called sentential form and we do not use brackets around the
string that represents it.

If a configuration component represents a potentially infinite sentential
form or pushdown content, we call the component as sentential configuration
component or pushdown configuration component, respectively.

The part of a rewriting rule that rewrites only symbols in the sentential
configuration component or pushdown configuration component is said to be
rule core.

Definition 2.12. Let H be a rewriting system and u, v be two configura-
tions such that H rewrites u to v. Then, in the computation from u to v, u
and v are initial configuration and target configuration, respectively. The first
configuration of H in every computation is called starting configuration. The
form of the starting configuration is specified by the particular formal model
of H.

During the incremental fine down of the way of a family, language, or sentence
definition, we get the notions that are suitable for the unification of properties
common for the world of grammars and automata, which are mostly investi-
gated separately.

2 Some components can have infinitely many variants.

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 19 — #29 i
i

i
i

i
i

2.3 Formal Model Concept 19

Convention 2.6. Every rewriting system investigated in this monograph
is based on rules of the context-free form; that is, one symbol without any
context-dependency is rewritten by a string of symbols, unless we explicitly
state otherwise. Subsequently, these systems can be extended by a regulation
or by another means of restrictions (see Chapter 3).

In most investigated rewriting systems, there are symbols that are required
not to occur in the language sentences that are defined by these systems. In ge-
nerative systems, they are often called nonterminals. If accepting systems are
considered, we talk about non-input symbols (for instance, pushdown symbols
in pushdown automata). To unify these notions, in general rewriting systems,
we denote these symbols as variables (inspired from [Sud96]). The rest of the
symbols of total alphabet are called passive symbols.

Concept 2.4. A symbol of total alphabet is a:

a) variable if the symbol in the configuration of the rewriting system can be
replaced by a string of symbols. For instance, a nonterminal symbol or
non-input pushdown symbol is a variable.
1) active symbol if the variable can be rewritten in current configura-

tion of the system. In most cases, we are interested in a particular
occurrence of an active symbol.

2) potentially active symbol if the variable is not an active symbol, but
sometime in the future it can become the active symbol in a configu-
ration that will come after the current one.

b) passive symbol if it is not a variable. Mostly, language sentences processed
by a rewriting system consist only of passive symbols (for instance, ter-
minal symbols or input symbols).

Notice that variables of a formal model may not be variables in another
formal model (for example, pure grammar or L-system versus context-free
grammar). Generally speaking, some symbols can even change their role dur-
ing the processing of the configuration. For example, a nonterminal symbol
of n-limited grammar can be active in one configuration, whereas in another
configuration it can be only potentially active because we cannot rewrite it
by the definition of limited grammar.

Convention 2.7. Let H = (Σ,R) be a rewriting system and r ∈ R its rule.
To keep this monograph as readable as possible, we denote rules by a unique
label. Further, we bound the rule by brackets, b and c, if necessary. That is,
the full form of a rewriting rule is written as

br : lhs(r)→ rhs(r)c.

Sometimes, we reduce the denotation to r : lhs(r) → rhs(r) or just lhs(r) →
rhs(r), respectively. If we use labels for rules, we define a function lab(br :
lhs(r)→ rhs(r)c) = r to get the label of the given rule. A function Lab(P) =

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 20 — #30 i
i

i
i

i
i

20 2 Preliminaries

{lab(r) | r ∈ P} serves to obtain the set of labels from P , where P ⊆ R. In
case of unambiguity in the construction proofs, we can use the rule itself and
its label substitutionally.

The investigation of various rewriting systems and their combinations leads
to many new formal models that can specify the same language family or in
instances the same language, respectively. The instances of formal models that
define the same language are called equivalent instances of formal model(s).
More generally, the models defining the same language family are denoted as
equivalent models or models having the same power.

2.4 Definitions of Basic Rewriting Systems

In this section, we focus on generally known and important formal models.
First, we define basic versions of grammars and automata. At the end, we
recall the notion of Chomsky hierarchy of formal language families based on
different types of grammars or automata.

2.4.1 Grammars

This section revises basic types of grammars that are needed in the following
chapters of this book.

More specifically, we discuss context-free, context-sensitive, and unre-
stricted grammars and the relations between them. In addition, the relations
are summarized in the Chomsky hierarchy of formal language families. The
definitions of grammars are constructed from the most general one. Then, by
consecutive restrictions of rules, we define more specific grammars without
any fundamental change of the universal definition of an unrestricted gram-
mar or of a computation mechanism, such as a rewriting step called derivation
step.

Notice that in grammars we prefer the notion of sentential form instead
of the notion of configuration. We use the notion of nonterminal and terminal
symbol instead of an active and passive symbol (see Concept 2.4), respectively.

Definition 2.13. An unrestricted grammar or phrase-structure grammar is
a quadruple

G = (Σ,T, P, S),

where

Σ is the total alphabet ,
T is the set of terminals (T ⊂ Σ),
P ⊆ Σ∗(Σ − T)Σ∗ ×Σ∗ is a finite relation,
S ∈ Σ − T is the axiom or starting nonterminal or starting symbol of G.

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 21 — #31 i
i

i
i

i
i

2.4 Definitions of Basic Rewriting Systems 21

The symbols in Σ−T are referred to as nonterminals. Furthermore, every
(x, y) ∈ P is called a rule or a production and written as

x→ y ∈ P.

Accordingly, the set P is according to its content called the set of rules in
G. Let p : x → y ∈ P be a rule, then we set lhs(p) = x and rhs(p) = y.
The rewriting relation in G is called direct derivation. It is a binary relation
on Σ∗ denoted by ⇒G and defined in the following way. Let p : x → y ∈ P ,
u, v, z1, z2 ∈ Σ∗, and u = z1xz2, v = z1yz2; then,

u ⇒G v [p].

When there is no danger of confusion, we simplify u ⇒G v [p] to u ⇒G v.
We denote the k-fold product of ⇒G by ⇒k

G. By ⇒+
G and ⇒∗G, we denote the

transitive closure of ⇒G and the reflexive-transitive closure of ⇒G, respec-
tively. If S ⇒∗G x for some x ∈ Σ∗, x is called a sentential form.

If there exists a derivation S ⇒∗G w, where w ∈ T ∗, S ⇒∗G w is said to be
a successful derivation in G. The language of G, denoted by L(G), is defined
as

L(G) = {w ∈ T ∗| S ⇒∗G w} .
In the literature, the unrestricted grammars are also often defined by listing

its rules of the form
xAy → xuy,

where u, x, y ∈ Σ∗, A ∈ Σ−T (see [HU79]). Both definitions are interchange-
able, which means that the grammars defined in these two ways generate
the same language family—the family of recursively enumerable languages,
denoted by RE.

Definition 2.14. A context-sensitive grammar is an unrestricted grammar,

G = (Σ,T, P, S),

such that each rule in P is of the form

xAy → xuy,

where A ∈ Σ − T , u ∈ Σ+, x, y ∈ Σ∗. A context-sensitive language is a
language generated by a context-sensitive grammar. The family of context-
sensitive languages is denoted by CS.

Definition 2.15. A context-free grammar is an unrestricted grammar,

G = (Σ,T, P, S),

such that each rule x→ y ∈ P satisfies x ∈ Σ−T . Analogically, a context-free
language is the language generated by a context-free grammar. The family of
context-free languages is denoted by CF.

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 22 — #32 i
i

i
i

i
i

22 2 Preliminaries

Definition 2.16. A linear grammar is an unrestricted grammar,

G = (Σ,T, P, S),

such that each rule x → y ∈ P satisfies x ∈ Σ − T and occur(Σ − T, y) ≤ 1.
A linear grammar defined in this way generates a linear language. The family
of linear languages is denoted by LIN.

Definition 2.17. A regular grammar and a right-linear grammar is an un-
restricted grammar,

G = (Σ,T, P, S),

such that each rule x → y ∈ P satisfies x ∈ Σ − T , y ∈ T ∪ T (Σ − T) and
x ∈ Σ − T , y ∈ T ∗ ∪ T ∗(Σ − T), respectively. A regular and a right-linear
grammar defines regular and right-linear language, respectively. The family of
both of these types of languages is denoted as the family of regular languages
by REG.

Convention 2.8. To improve readability when we work with several formal
model instances, such as M = (K1,K2, . . . ,Kn), we change Ki in M to KiM ,
for every 1 ≤ i ≤ n, to identify appropriate owning instance of the component;
that is, M = (K1M ,K2M , . . . ,KnM).

2.4.2 Automata

By analogy with the grammatical approach, there is another approach in the
theory of formal languages called the theory of automata. An automaton is
a computational mechanism that accepts a sentence of the defined language.
As already mentioned, with respect to declarative grammars, the automata
represent a procedural approach.

Definition 2.18. A finite automaton is a quintuple MFA = (Q, T , R, s, F),
where Q is the finite set of states, T is the input alphabet , R ⊆ Q × (T ∪
{ε}) × Q is the finite set of rules of the form pa → q, where p, q ∈ Q and
a ∈ T ∪{ε}, s ∈ Q is the starting state, and F ⊆ Q is the set of final states. If
we consider a finite automaton as a rewriting system, Σ = Q ∪ T is its total
alphabet.

A configuration of M is a pair of the form (p, w), where p ∈ Q and w ∈ T ∗.
Since Q and T are disjunctive, in short we can write the configuration as a
string pw. Let u, v be two configurations of M . M makes a rewriting step
or transition from u = (p, aw) to v = (q, w), where p, q ∈ Q, a ∈ T ∪ {ε},
w ∈ T ∗, if R contains pa → q. This transition or accepting step between u
and v is denoted by u ⇒ v. Like other rewriting systems, we define u ⇒ v,
u ⇒n v with n ≥ 0, and u ⇒∗ v, where u, v ∈ QT ∗ (see Definition 2.11).
If sw ⇒∗ f in M , where w ∈ T ∗, s ∈ Q, f ∈ F , M accepts w. The set of

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 23 — #33 i
i

i
i

i
i

2.4 Definitions of Basic Rewriting Systems 23

all strings accepted by M specifies the language accepted by M , denoted by
L(M).

The family of languages accepted by finite automata is denoted by L (FA).

The expressing power of this formal model is stated in the following theo-
rem (see, for example, [Med00]).

Theorem 2.1. L (FA)= REG.

Apart from the inspiration during the study of combined rewriting sys-
tems, we use this type of automaton to restrict the content of configurations
in Section 5.1.4.

Definition 2.19. A pushdown automaton is a septuple MPDA = (Q, T , Γ ,
R, s, S, F), where Q is the finite set of states, T ⊆ Γ is the input alphabet, Γ
is the pushdown alphabet , R ⊆ Γ ∗ ×Q× (T ∪ {ε})× Γ ∗ ×Q is the finite set
of rules, s ∈ Q is the starting state, S ∈ Γ is the starting pushdown symbol,
and F ⊆ Q is the set of final states. Q,T, Γ are pairwise disjoint. The rules
are written in the form zpa→ yq that corresponds to (z, p, a, y, q) ∈ R, where
z ∈ Γ ∗, p, q ∈ Q, a ∈ T ∪ {ε}, and y ∈ Γ ∗.

In the literature, MPDA according to Definition 2.19 is sometimes called
an extended pushdown automaton. Further, in its classical definition, we do
not include a total alphabet, Σ, into the list of its components, because Σ is
divided into more than two subsets, such as Q, T , and Γ like in state grammars
(see Definition 2.23).

Definition 2.20. A configuration of the pushdown automaton is a triple
(α, p, x) ∈ Γ ∗×Q×T ∗, where α is the content of the pushdown or pushdown-
string or pushdown configuration component , p denotes the current state, and
x is a non-processed part of the input string. The transition or accepting step
is a binary relation ⇒ on Γ ∗ × Q × T ∗ such that (zγ, p, aw) ⇒ (yγ, q, w)
if and only if exists zpa → yq in R, where z, y, γ ∈ Γ ∗, p, q ∈ Q, a ∈ T ∪
{ε}, and w ∈ T ∗.

A rule of MPDA is applied to the current configuration, (zγ, p, aw), in the
following way. If p is the current state, a is the input symbol, z is a substring
from the pushdown top, and zpa → yq ∈ R; then, MPDA reads a from the
input, changes the pushdown top from z to y, and changes the current state
from p to q. Notice that if a = ε in the rule zpa → yq, then MPDA reads
no input symbol. Note that if MPDA uses reversed pushdown-string, which
means that the pushdown top is on the right end of the pushdown-string, the
power of such automaton stays unchanged and the conversion is trivial.

We extend⇒ in the standard way to⇒n for n ≥ 0. Based on⇒n, we define
transitive and reflexive-transitive closure of ⇒ as ⇒+ and ⇒∗, respectively.

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 24 — #34 i
i

i
i

i
i

24 2 Preliminaries

A language accepted by the pushdown automaton M , L(M), is defined
as L(M) = {w| w ∈ T ∗, (S, s, w) ⇒ (ε, f, ε), f ∈ F}. Further, the family of
languages accepted by the pushdown automata is denoted by L (PDA).

2.4.3 The Chomsky Hierarchy of Formal Language Families

The Chomsky hierarchy of formal language families (see Theorem 2.2) shows
the relation between several language families that are specified in the previous
definitions.

Theorem 2.2 (see [Med00]). REG ⊂ LIN ⊂ CF ⊂ CS ⊂ RE.

To see the relation between basic grammars and defined automata, let us
remind that

REG = L (FA) ⊂ CF = L (PDA).

2.5 Regulated Rewriting Systems

This section defines some modified rewriting systems. The attention is focused
on the regulated grammars, such as programmed and state grammars. Since
these formal models require a detailed description, we discuss them more
deeply than basic formal models.

2.5.1 The Ways of Regulation

In this book, regulated grammars are based on context-free or right-linear
grammars. The regulation dictates some restrictions on the application of
rules of classical grammars, such as context-free grammars:

• usage of a relation to describe the previous and subsequent rule applica-
tion, such as in programmed and matrix grammars;

• include some automata characteristics into grammars, such as a finite set
of states that restricts the application of rules to cases when appropriate
state is the current state of the configuration, such as in state grammars;

• scattered context checking in the sentential form; that is, unlike context-
sensitive grammars we check an entire sentential form, not only immediate
neighbor of the rewritten symbol, such as in random-context and scattered
context grammars;

• parallel version of the rewriting step in the configuration; thus, we can
rewrite all active symbols, or, for instance, all the same active symbols at
once, such as in L-systems, pure grammars, and Indian grammars;

• in some cases, even restriction of formal models can be understood as the
regulation, which is discussed in Chapter 3.

By using of these restrictions, we often reach a greater power of such
rewriting systems.

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 25 — #35 i
i

i
i

i
i

2.5 Regulated Rewriting Systems 25

2.5.2 Regulated Grammars

When we describe some non-context-free languages, the rewriting systems
with less generative power than context-sensitive grammars are often pre-
ferred. In other words, there exist many regulated grammars less powerful
than the context-sensitive grammars that are sufficient to process impor-
tant non-context-free languages. That was the reason of introducing many
new modifications of context-free grammars in the seventies of the twenti-
eth century. The main purpose of these modifications was to increase the
power of basic formal model while the context-free form of rule cores remains
unchanged. We study several types of modified grammars, generally named
regulated grammars, in this book.

Unless stated otherwise, we consider regulated grammars based on rules
of the context-free form (see Definition 2.15); that is, the core of such a rule
contains a nonterminal on the left-hand side and an arbitrary string on the
right-hand side. The special case of formal model such that the right-hand
side of any rule is non-empty is called formal model without erasing rules.

Convention 2.9. Apart from the basic language families, such as those of the
Chomsky hierarchy, we denote other language families defined by regulated
and/or restricted rewriting systems as follows:

LX(Y, Z),

where X is a way of restricting, Y denotes a basic formal model, and Z
specifies an additional restriction. For example, X can denote a finite index
and sometimes can be written on the left side of L , Y can be CF for a
context-free grammar, and Z can denote the type of restricting language or
mark of appearance checking.

Let Y be a basic formal model, Y − ε denotes the same formal model but
without erasing rules.

Programmed Grammars

The notion of a programmed grammar, introduced in 1969 by [Ros69], has
additional conditions put on the successful derivation step. It dictates the set
of rules that can be used after an application of a rule. If there is no applicable
rule in the set, we use a rule from the special recovery set.

Definition 2.21. A programmed grammar (see page 28 in [DP89]) is a
quadruple, G = (Σ,T, P, S), where all components have the same meaning
as in the context-free grammar. Every rule is of the form

br : A → x,R, F c,

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 26 — #36 i
i

i
i

i
i

26 2 Preliminaries

where A ∈ Σ − T , x ∈ Σ∗, R,F ⊆ Lab(P), A→ x is a context-free rule core,
r is a unique rule label, R is a set of subsequent rules called success field, and
F is a set of rules called failure field of r.

If at least one rule is in the failure field of any rule, we say that the
programmed grammar is with an appearance checking ; otherwise, we can per-
manently omit empty failure field in the rule notation.

The derivation step during the application of a rule br : A → x,R, F c in
G is analogical to the derivation step in a classical context-free grammar (see
Definition 2.15). Moreover, it is necessary to check the success and failure
fields, R and F .

R denotes the set of rule labels (or rules; see Convention 2.3) from which
we can choose the next rule to be applied in G.

When no rule can be applied from R, the sentential form remains un-
changed and G continues with the application of a rule from F .

In the standard way, we define ⇒m
G , where m ≥ 0, ⇒+

G, and ⇒∗G. The
language generated by a programmed grammar G, L(G) is defined as L(G) =
{w ∈ T ∗| S ⇒∗G w}.

Example 2.1. Consider the following programmed grammar without appear-
ance checking that generates a context-sensitive language. By this grammar,
we demonstrate that this formal model is stronger than a context-free gram-
mar.

Let G = (Σ,T, P, S) be a programmed grammar, where the total alphabet
contains every useful symbol from the rules, Σ = {S,A,B,C, a, b, c}; accord-
ing to the convention, terminal symbols are in lower case, T = {a, b, c}; start-
ing nonterminal, S; the set of rules, P , contains the rules of the prescribed
form:

1: S → ABC, {2, 5}
2: A→ aA, {3}
3: B → bB, {4}
4: C → cC, {2, 5}
5: A→ a, {6}
6: B → b, {7}
7: C → c, {7}

Along with each rule, there is a set of the rules that can be applied in the
next step. For instance, if the first rule is applied, the next step is performed
by the second or fifth rule.

For example, aabbcc is generated by the following derivation S ⇒ ABC [1]
⇒ aABC [2] ⇒ aAbBC [3] ⇒ aAbBcC [4] ⇒ aabBcC [5] ⇒ aabbcC [6] ⇒
aabbcc [7]. When thinking about the relations between rules, we see that rules
2, 3, 4 and 5, 6, 7 are applied one by one. Only after the application of rule 1
or 4, the decision is made about which subsequence of rules (2, 3, 4 or 5, 6,
7) is executed next. The language generated by G, L(G) = {anbncn| n ≥ 1}.

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 27 — #37 i
i

i
i

i
i

2.5 Regulated Rewriting Systems 27

Example 2.2. Let us give a more complex programmed grammar that con-
tains less rules but uses an appearance checking; that is, some of its rules have
non-empty failure fields.

Let G = ({S,A, a}, {a}, P, S) be a programmed grammar with appearance
checking, where the set of the rules contains:

1 : S → AA, {1}, {2, 3}
2: A→ S, {2}, {1}
3: A→ a, {3}, ∅
By the following analysis of the programmed grammar, we demonstrate

that G generates the context-sensitive language L(G) =
{
a2n | n ≥ 1

}
. The

derivation begins by rewriting the starting nonterminal. Immediately after
the application of the first rule, the next application of the first rule again
is not possible. Now, we examine the failure field because we reach the end
of the derivation only by using the success field. The sentential form remains
unchanged, and we select a new rule from the failure field of the first rule. We
choose between rules 2 and 3. This decision determines whether we continue
to generate more As or we finish the entire computation process by rewriting
all nonterminals to terminals. For instance:

S ⇒ AA [1] ⇒2 SS [22] ⇒2 AAAA [11] ⇒ AaAA [3]⇒3 aaaa [333]

A repeated application of the second rule only renames all nonterminals A
to S. Considering the definition of programmed grammars, the second rule
cannot avoid this task and use its failure field until all As are renamed to S.
The last rule simply creates the string of terminals from the generated string
of nonterminals. Thus, its failure field is the empty set.

L (P), L(P, CF−ε), L(P, CF, ac), and L(P, CF−ε, ac) denote the fami-
lies of the languages generated by programmed grammars, programmed gram-
mars without erasing rules, programmed grammars with appearance checking,
and programmed grammars with appearance checking and without erasing
rules, respectively.

Random-Context Grammars

As follows from its definition, the context-sensitive grammar checks the im-
mediate neighbor of the rewritten symbol. As its name indicates, a random-
context grammar with respect to a context-sensitive grammar does not require
the immediateness. The checked context symbols may appear anywhere in the
sentential form.

In addition, the opposite condition holds in the case of the forbidding
context. It says that the marked symbols may not appear anywhere in the
sentential form to apply the corresponding rule.

Furthermore, there are generalized variants that work with the finite sets
of strings instead of individual symbols (see [MŠ05]).

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 28 — #38 i
i

i
i

i
i

28 2 Preliminaries

Definition 2.22. A random-context grammar (see [Wal70] or page 30 in
[DP89]) is a quadruple, G = (Σ,T, P, S), where all components have the
same meaning as in the context-free grammar. Every rule is of the form

bq : A → x, P, F c,

where A ∈ Σ − T , x ∈ Σ∗, P, F ⊆ (Σ − T), q : A → x is a context-free
rule (core), P and F are sets of nonterminals called permitting set of q and
forbidding set of q, respectively. An application of such a rule requires that all
nonterminals from P and no from F appear in the rewritten sentential form.
Then, G makes a derivation step, denoted by ⇒, by analogy with a context-
free grammar. If at least one rule has a non-empty forbidding set, we say that
the random-context grammar is with an appearance checking ; otherwise, we
can permanently omit empty forbidding sets in the rule notation and call the
grammar as random-context.

Example 2.3. Consider the following random-context grammar, G = (Σ,
T , P , S), that defines language L(G) = {anbncn| n ≥ 1}. P contains the
following rules:
b1: S → ABC, ∅, ∅c,
b2: A→ aA′, {B}, ∅c, b3: B → bB′, {C}, ∅c, b4: C → cC ′, {A′}, ∅c,
b5: A′ → A, {B′}, ∅c, b6: B′ → B, {C ′}, ∅c, b7: C ′ → C, {A}, ∅c,
b8: A→ a, {B}, ∅c, b9: B → b, {C}, ∅c, b10: C → c, ∅, ∅c.

L (RC), L(RC, CF, ac), and L(RC, CF−ε, ac) denote the families of the
languages generated by random-context grammars, random-context grammars
with appearance checking, and random-context grammars with appearance
checking and without erasing rules, respectively.

State Grammars

The state grammar belongs to the oldest effort to combine grammars and au-
tomata. In fact, it is a context-free grammar enriched by a finite-state control
taken from finite automata (see Definition 2.18).

Definition 2.23. A state grammar (see [Kas70]) is a quintuple G = (V , W ,
T , P , S), where V is an alphabet of terminal and nonterminal symbols, T and
S has the same meaning as in the context-free grammar (see Definition 2.15),
W is a finite set of states, and P is a finite subset of a relation (W × (V −
T))× (W × V +).

Instead of (q, A, p, v) ∈ P , we write the rules in the form (q, A)→ (p, v) ∈
P . For every string z ∈ V ∗, we define a set Gstates(z) = {q | (q,B)→ (p, v) ∈
P , where B ∈ (V − T) ∩ alph(z), v ∈ V +, q, p ∈W}. Let (q, xAy), (p, xvy) ∈
W × V + be two configurations of G. If r : (q,A) → (p, v) ∈ P , x, y ∈ V ∗,
Gstates(x) = ∅, then G can make a derivation step from (q, xAy) to (p, xvy),

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 29 — #39 i
i

i
i

i
i

2.5 Regulated Rewriting Systems 29

symbolically written as (q, xAy) ⇒ (p, xvy) [r] in G. If there is a positive
integer n such that occur(V −T, xA) ≤ n, we say that (q, xAy)⇒ (p, xvy) [r]
is an n-limited derivation and we write (q, xAy) n⇒ (p, xvy) [r].

The language generated by G, denoted by L(G), is defined as L(G) = {w ∈
T ∗ | (q, S) ⇒∗ (p, w), q, p ∈ W}. L (ST) denotes the family of languages
generated by state grammars.

Next, for every n ≥ 1, we define n-limited language generated by G,
L(G,n) = {w ∈ T ∗ | (q, S) n⇒∗ (p, w), q, p ∈ W}. The family of n-
limited languages defined by state grammars is denoted by nL (ST) =
{L | L = L(G, k), 1 ≤ k ≤ n, G is a state grammar}, where n ≥ 1. Next,

∞L (ST) =
∞⋃
n≥1

nL (ST).

Notice that erasing rules are not allowed in the definition of state gram-
mars. A total alphabet, Σ, is omitted from the list of the components of G.
It consists of the disjoint subsets of symbols and states; that is, Σ = V ∪W ,
V ∩W = ∅.

Informally speaking, a state grammar uses one controlling and one restrict-
ing mechanism:

1. controlling by finite-state control: Analogically to finite automata, every
rule is enriched by an initial and a target state. The initial state of the
rule dictates in which current state is the rule applicable. The target state
of the rule determines the state in which the grammar enters by using
this rule. That is the reason for extending the configuration of this formal
model from a simple sentential form to the pair that contains the cur-
rent state and the current sentential form (called sentential configuration
component).

2. restricting by the leftmost possible rewriting: First, the definition of a state
grammar (see Definition 2.23) ensures that the leftmost possible rewriting
of a nonterminal in a sentential configuration component has to be done
in the current state. The rewritten nonterminal may not necessarily be
the leftmost but it is sufficient if no other nonterminal on the left from
the rewritten one can be rewritten by a rule in the current state. This
is necessitated by mathematical condition Gstates(x) = ∅ in the current
configuration (q, xAy). This condition holds for every rewriting step.

Thus, every configuration contains two active symbols. The first sym-
bol is the current state, whereas the second symbol is the leftmost possibly
rewritable nonterminal. The number of passive and potentially active symbols
is unlimited.

Example 2.4. First, let us present a classical non-context-free language
{anbncn| n ≥ 1} generated by a state grammar, G = (V,W, T, P, S), where
the components V,W, T can be easily inferred from the set of the rules, P :

1 : (s, S)→ (s,AC)

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 30 — #40 i
i

i
i

i
i

30 2 Preliminaries

2: (s,A)→ (p, aAb)
3 : (p, C)→ (s, cC)
4 : (s,A)→ (q, ab)
5 : (q, C)→ (q, c)

Next, we illustrate the 2-limited derivation in G, which means that G never
works with more than the second nonterminal from the left in the sentential
configuration component.

(s, S) ⇒ (s,AC) [1]
⇒ (p, aAbC) [2]
⇒ (s, aAbcC) [3]
⇒ (q, aabbcC) [4]
⇒ (q, aabbcc) [5]

Example 2.5. The next example of a state grammar that generates {ww |w ∈
T ∗}, T ∈ {a, b}, that is non-context-free as well. Again, we list only its rules:

1 : (s, S)→ (s,AB)
2 : (s,A)→ (p, aA)
3 : (p,B)→ (s, aB)
4 : (s,A)→ (q, bA)
5 : (q,B)→ (s, bB)
6 : (s,A)→ (f, a)
7 : (f,B)→ (s, a)
8 : (s,A)→ (g, b)
9 : (g,B)→ (s, b)

A computation of G illustrates a generation of string abbabb: (s, S) ⇒
(s,AB) [1] ⇒ (p, aAB) [2] ⇒ (s, aAaB) [3] ⇒ (q, abAaB) [4] ⇒
(s, abAabB) [5] ⇒ (g, abbabB) [8] ⇒ (s, abbabb) [9]. The principle is similar
to the previous example (see Example 2.4). Again, we ensure to make a se-
quence of rewriting steps by states. Each step is performed in a different place
in the sentential configuration component. Moreover, the states serve to re-
member the information about the symbol that has already been generated in
the first substring w. Such information encoded in the state ensures the same
substring generation in the second substring w. This mechanism guarantees
the equivalence of these two substrings w and w in ww.

For better understanding of some results of this book, we recall that Kasai
(see [Kas70]) proved essential theorems concerning state grammars. We give
them without proofs.

Theorem 2.3. L (ST) = CS.

Corollary 2.4. ∞L (ST) ⊂ L (ST).

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 31 — #41 i
i

i
i

i
i

2.5 Regulated Rewriting Systems 31

Notice that for every n ≥ 1, nL (ST) ⊆ n+1L (ST) as follows from the
definition of the state grammar.

Theorem 2.5. For every n ≥ 1, nL (ST) ⊂ n+1L (ST).

m-Parallel n-Right-Linear Simple Matrix Grammars

Since 1970’s, the theory of formal languages has studied the nature and pro-
perties of parallelism. In 1975, a new rewriting system was introduced. It
combines parallelism with regulated rewriting: (1) parallelism like it is known
from n-parallel right-linear grammars ([RW73], [RW75]) or from L-systems
([RD71]), and (2) simple matrix grammars ([Iba70]).

This new system rewrites m · n nonterminals in one step so it applies m
n-right-linear simple matrix rules, where a matrix is a sequence of the rules
applied atomically in the rewriting step.

Definition 2.24. For every m,n ≥ 1, an m-parallel n-right-linear simple
matrix grammar (see [Woo75]), m-Pn-G for short, is an (mn+ 3)-tuple

G = (N11, . . . , N1n, . . . , Nm1, . . . , Nmn, T, S, P),

where

Nij , 1 ≤ i ≤ m, 1 ≤ j ≤ n are pairwise disjoint alphabets of nonterminals,
T is an alphabet of terminals,
S /∈ N ∪ T is a starting symbol (or axiom), where N = N11 ∪ · · · ∪Nmn,
and
P is a finite set of matrix rules.

A matrix rule can have one of the following three forms:

(i) [S → X11 . . . Xmn], Xij ∈ Nij , 1 ≤ i ≤ m, 1 ≤ j ≤ n,
(ii) [Xi1 → αi1, . . . , Xin → αin], Xij ∈ Nij , αij ∈ T ∗, 1 ≤ j ≤ n, for

some i, 1 ≤ i ≤ m, and
(iii) [Xi1 → αi1Yi1, . . . , Xin → αinYin], Xij , Yij ∈ Nij , αij ∈ T ∗,

1 ≤ j ≤ n, for some i, 1 ≤ i ≤ m.

A derivation step in m-Pn-G is defined as:
For x, y ∈ (N ∪ T ∪ {S})∗ and m-Pn-G G, x⇒ y, if and only if

(A) either x = S and [S → y] ∈ P ,
(B) or x = y11X11 . . . ymnXmn, y = y11x11 . . . ymnxmn, where yij ∈ T ∗, Xij ∈

Nij , 1 ≤ i ≤ m, 1 ≤ j ≤ n, and [Xi1 → xi1, . . . , Xin → xin] ∈ P ,
1 ≤ i ≤ m.

If x, y ∈ (N ∪ T ∪ {S})∗ and m ≥ 0, then x ⇒m y, if and only if there
exists a sequence x0 ⇒ x1 ⇒ . . . ⇒ xm, x0 = x, xm = y. Further, we write
x ⇒+ y, if and only if there exists m > 0 such that x ⇒m y. Next, we write
x⇒∗ y, if and only if either x = y, or x⇒+ y.

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 32 — #42 i
i

i
i

i
i

32 2 Preliminaries

In the standard way, we define transitive, ⇒+, and reflexive-transitive,
⇒∗, closure of the relation of the direct derivation, ⇒.

The language generated by m-Pn-G G is denoted by L(G) and defined as
L(G) = {x | S ⇒∗ x, x ∈ T ∗}. A language L ⊆ T ∗ is said to be an m-parallel
n-right-linear simple matrix language (m-Pn-L) if and only if there exists m-
Pn-G G such that L = L(G). The family of languages defined by m-Pn-G is
denoted by L (m-Pn-G).

By setting n = 1, we get an m-parallel right-linear grammar. Analogically,
by setting m = 1, we get an n-right-linear simple matrix grammar that is
studied in Chapter 5 in more detail.

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 33 — #43 i
i

i
i

i
i

3

Configuration Restrictions

First, this chapter summarizes different kinds of formal model restrictions.
The main aim is placed on the restriction of configurations of formal models.

The regulated grammars and automata represent an important trend in
restricting formal models. In 1970’s were introduced the first regulated gram-
mars (see [Kas70, Ros69, Wal70, Woo75]). The main idea of these grammars is
based on the context-free rules (rule cores) that are supplemented with some
additional mechanism that controls the way of applying the rules during ev-
ery computation. More precisely, we can exchange the notion of a regulation
with the notion of restriction because the particular controlling mechanism
restricts, in fact, the original behavior of the formal model.

The regulated automata were studied later than the regulated grammars.
The exploration of the regulated automata is more intensive on the present
(see [KS06a, KM00, Med06, MK02]). Therefore, we pay a special attention to
this topic as well.

3.1 Ways of Rewriting Systems Restriction

There is no generally accepted type of a classification of rewriting system
restrictions. The basic inspiration of the presented classification comes from
[DP89] and [MŠ05].

Consider the following basic classification of formal model restrictions with
emphasis on rewriting systems:

1. static (a restriction of a rewriting system component with a relationship
to the descriptional complexity)

2. dynamic (a restriction of a computation or a sentence processing with a
relationship to the time and space complexity)
a) configuration restrictions
b) restrictions of a sequence of applied rules

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 34 — #44 i
i

i
i

i
i

34 3 Configuration Restrictions

3. hybrid (handles an unclear boundary between the static and dynamic
restrictions)

As a conclusion, we can do a transformation between the static and dy-
namic restrictions because of the strong dependency of the model description
and its computation between each other. Since such transformations lead to
model descriptions that are difficult to understand, we ignore these transfor-
mations in the rest of the book. If it is unclear what type of restriction we
talk about, we say that the restriction is hybrid.

For instance, consider the erasing rules as a kind of the static restriction
because we restrict the set of rules. However, in terms of the dynamic restric-
tions, we can talk about the restriction of the length of every configuration
that is said to be monotonous during the computation.

To conclude, the classification depends on the ways of the definition of the
rewriting system restriction under investigation. In this book, we study only
well-known and well-defined restriction types.

Notice that every type of restriction can be transformed to a special type—
restricting language that controls the sequence of applied rules, forms of con-
figurations, or other parameters of a rewriting system (see Observation 3.1).

The unification of restricting is complex, so we introduce a more fine-
grained classification of configuration restrictions and restrictions of the se-
quence of rules in the following two sections.

3.2 Ways of Restrictions of Applied Rules Sequences

In this type of restriction, we require additional conditions (usually attached
to every single rule) on the applicability of particular rules. Because of a huge
number of existing regulated rewriting systems, we cannot state complete
classification. The most usual ways of restrictions are:

• a regulation by a regulating language, such as in regulated grammars (see
[Med04] and [KM00]);

• a dependency of previously applied rules and the next ones, such as in
matrix grammars or programmed grammars;

• finite-state control, such as in state grammars or #-rewriting systems;
• an appearance or forbidding of substring occurrences in rewriting configu-

rations, such as in random-context grammars or in (globally) conditional
grammars;

• a limitation of a part of current or arbitrary configuration where the rewrit-
ing is permitted or forbidden, such as in case of n-limitation (see Section
3.2.1);

• and so on.

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 35 — #45 i
i

i
i

i
i

3.2 Ways of Restrictions of Applied Rules Sequences 35

3.2.1 n-limitation

n-limitation is a type of the computation restriction that regulates rewriting
of configurations. It requires to work only with active symbols that occur in
the list of the first n variables in the string that represents the jth component
of formal model configuration ξ. We denote component(ξ, j) as xj , where j ∈
{1, 2, . . .m} and m is the total number of components in ξ.

Therefore, n-limitation restricts the way of choosing of the applied rule
such that the rule rewrites only one of the first n leftmost occurrences of ar-
bitrary symbols that are, in general, rewritable in the current configuration.
In most cases, such restriction is applied to a potentially infinite configura-
tion component, such as a sentential configuration component or pushdown
configuration component.

Definition 3.1. Let H = (Σ,R) be a rewriting system. Denote a finite set of
variables as N ⊆ Σ and component(ξ, j) ∈ Σ∗, where j is the constant that
expresses the order of the particular configuration component of H on which
the n-limitation is applied.

Let ξ1 and ξ2 be two configurations, where component(ξ1, j) = uAz ⇒
uvz = component(ξ2, j). The rewriting step between ξ1 and ξ2 is called n-
limited, if occur(N, u) ≤ n− 1 and A is an active symbol. Consecutively, the
sequence of rewriting steps or computation is n-limited if every rewriting step
is n-limited. n-limited language contains only sentences that can be processed
by n-limited computation.

Let X be a formal model. For every n ≥ 1, nL (X) is a family of n-limited
languages defined by X.

Observation 3.1. Let us illustrate how easily we can express the n-limitation
in notions of the restriction of a sequence of rules and configurations:

a) n-limitation means that we allow the rewriting of a limited number of
variable occurrences from the left in a configuration or in its part;

b) n-limitation means that we restrict the number of active symbol occur-
rences in the configuration by a constant and we add a condition that the
occurrence has to be the leftmost in the configuration (or its part) without
respect to the passive symbols. A potentially active symbol is not allowed
to occur on the left from the last active symbol.

One of the most practical usages of n-limitation in the area of grammars
concerning the equivalence between the family of context-free languages and
that of context-free languages generated by a context-free grammars that work
in the leftmost way (left, canonical). It means that every context-free grammar
can work only in the leftmost way, which is 1-limited way, during the sentence
derivation without any influence on the generative power.

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 36 — #46 i
i

i
i

i
i

36 3 Configuration Restrictions

Moreover, n-limitation can be thought of as the generalization of the left-
most derivation and it can be even applied to automata (see Definition 4.8).
In Chapter 6, we study the canonical rewriting of some systems in more detail.

Convention 3.1. Since in some notions, such as the ith symbol from the left
in a string, there is no dependency on whether we define such notions from
the left or from the right side of a string, we focus only on the left variant if
there is no difference between these two approaches. This convention considers
notions, such as n-limitation, left derivation, ith symbol in a string, etc.

3.3 Kinds of Configuration Restrictions

In the case of configuration restrictions, the use of a control language is more
natural than its use in restrictions of rule sequences.

• The control language can be:
– finite (When we apply the restriction to the whole configuration, not

only to a part of it, we decrease the power of the system rapidly to the
family of finite languages.);

– infinite (To preserve the elegance and effectiveness of the restriction,
the restricting language should be as simple as possible, such as right-
linear, linear, or most context-free languages.).

In this book, we classify configuration restrictions as follows:

• a restriction of the number of occurrences of particular symbols; for in-
stance:
– a set of passive symbols (not very useful variant)
– a set of variables (specifically, the union of a set of active symbols and

a set of potentially active symbols; this is the most important variant
that leads to the restriction called finite index; see Definition 3.2);

– a set of active symbols;
– a set of potentially active symbols;
– or a combination of previous sets (see Concept 2.4).

• another classification of the restriction according to the number of symbol
occurrences:
– finite (restricted by a constant);
– infinite (restricted by a function that mostly depends on the length

of the configuration, such as the restriction of workspace in Definition
3.3).

Since the configuration restrictions are dependent on each other and on
the set of rewriting rules of the system we can apply two kinds how to ensure a
particular configuration restriction (orthogonal to the previous classification):

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 37 — #47 i
i

i
i

i
i

3.3 Kinds of Configuration Restrictions 37

• implicit configuration restriction—the definition of such restricted formal
model or its set of rules implies that during a computation1 there is no con-
figuration that violates the restriction; for instance, #-rewriting systems
of index k with a suitable set of rules (see Definition 4.1);

• explicit configuration restriction—the rewriting system allows to violate
the restriction, so we have to do some checks during every computational
step. If there is a violation of the restriction, the computational step can-
not be permitted because the target configuration would be damaged; for
instance, context-free grammar of index k.

In two following sections, we define two fundamental configuration restric-
tions: finite index and limited workspace.

3.3.1 Finite Index

A finite index was a restriction mechanism introduced in 1970’s. As applied to
various formal models, such as context-free grammars and regulated rewriting
systems, the finite index was studied in more detail.

Informally speaking, the finite index restricts the number of occurrences
of variables in a configuration by a constant k. For instance, in the case of
a grammar it means that the sentential configuration component does not
contain more than k variables. Analogically, the finite index can be applied
to the pushdown configuration component of a pushdown automaton but this
approach was not extensively studied.

Definition 3.2. Let H = (Σ,R) be a rewriting system, N ⊆ Σ be an al-
phabet of variables, T ⊆ Σ be an alphabet of passive symbols, and σ be a
starting configuration of H. Let D denote a computation occurring between
two configurations, w1 and wr, such that D : σ = w1 ⇒ w2 ⇒ . . .⇒ wr = w,
r ≥ 1 in H, where jth component of w, component(w, j), that denotes the
sentence of the language defined by H contains only passive symbols. That
is, component(w, j) ∈ T ∗, where j is a constant that expresses the order of
the particular component of w on which the finite index restriction is applied.
Let us define Ind(D,H) = max({occur(N, component(wi, j)) | 1 ≤ i ≤ r}).
For component(w, j) ∈ T ∗, we define Ind(w,H) = min({Ind(D,H) | D is a
sequence that defines string w in H}). An index of rewriting system H is
denoted as Ind(H) = sup({Ind(w,H) | component(w, j) ∈ L(H)}). For lan-
guage L from family L (X) generated by rewriting system of type X, we define
IndX(L) = inf({Ind(H) | L(H) = L, H is of type X}). Let L (X) be a family
of languages, then Lk(X) = {L | L ∈ L (X), IndX(L) ≤ k } for any k ≥ 1,
and Lfin(X) =

⋃
n≥1

Lk(X).

1 We assume only the computation from the starting configuration such that the
computation consists of valid applications of rules.

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 38 — #48 i
i

i
i

i
i

38 3 Configuration Restrictions

Since the restriction limits only the most economical computation of a
sentence, Definition 3.2 is called weak. When we extend the restriction to get
a strict variant of finite index, the restriction is applied to every possible con-
figuration that is reachable by a computation from the starting configuration.

Convention 3.2. When a particular finite index, k, is considered, we omit
the word “finite”. For instance, rewriting system of index 3.

Two following equations, (3.1) and (3.2) (demonstrated in [DP89]), com-
pare the relationship between regulated grammars without and with finite in-
dex. (3.1) and (3.2) emphasize the fact that the finite index rapidly decreases
the generative power of a restricted rewriting system.

CF ⊂ L (RC) ⊆ L (P) ⊂ L(P, CF − ε, ac) ⊆ CS ⊂ L(P, CF, ac) = RE
(3.1)

Lfin(RC) = Lfin(P) = Lfin(P, CF − ε, ac) = Lfin(P, CF, ac) (3.2)

The essential theorems and properties of rewriting systems (focused on
grammars) with finite index are studied in the third chapter of [DP89] that
contains even an alternative definition of a finite index for grammars.

In addition, when we consider the Chomsky hierarchy, all families from
(3.2) are incomparable with the family of context-free languages without fi-
nite index restriction because it holds that {anbncn |n ≥ 1} ∈ Lfin(P) and
L (CF)−Lfin(P) 6= ∅.

Finally, we briefly compare these two basic types of restrictions—n-
limitation and finite index k.

Theorem 3.1. Let X be a rewriting system that defines the families of lan-
guages, L (X), Lk(X), and kL (X). Then, Lk(X) ⊆ kL (X).

Proof of Theorem 3.1. The theorem is implied by the definition of both
restrictions (index n and n-limitation) since the finite index is obviously more
restrictive than the n-limitation.

In the conclusion, observe that the restrictions can be applied to grammars
as well as to automata. First of all, in case of the restriction of pushdown
automata, some interesting results appear. We assume similar results as in
the area of grammars.

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 39 — #49 i
i

i
i

i
i

3.4 Complexity of Formal Models 39

3.3.2 Workspace

The definition of a workspace deals with the grammatical notion of a deriva-
tion that is replaced by more general notion of a computation (a sequence of
configurations) of rewriting system in this monograph. The following defini-
tion is inspired by page 15 from [DP89].

Definition 3.3. Let us have rewriting system H = (Σ,R) of arbitrary type
with a total alphabet, Σ, an alphabet of passive symbols, T ⊆ Σ, and a
starting configuration σ. Let ξ be a configuration ofH. Assume that workspace
restriction is applied to jth component of ξ, denoted by component(ξ, j) (if ξ
is m-tuple, then j ∈ {1, 2, . . . ,m}).

Further, let D : σ = w0 ⇒ w1 ⇒ . . . ⇒ wn, n ≥ 1 be a sequence of
configurations in H. We define WS (wn, D) = max({|component(wi, j)| | 0 ≤
i ≤ n}) and WS (x,H) = min({WS (x,D) | D is a computation that leads
from σ to ξ in H such that component(ξ, j) = x}). WS (x,H) denotes the
workspace that is needed to process x in H. If there is a constant, k ≥ 0, such
that for every sentence x ∈ L(H)−{ε} holds that WS (x,H) ≤ k · |x|, we say
that H has limited workspace.

In [DP89], you can find two essential theorems related to the restriction
of workspace.

Theorem 3.2. If a grammar, G, of type 0 has a limited workspace, L(G) is
a context-sensitive language.

Theorem 3.3. Every context-free grammar has a limited workspace implicitly
by its definition.

Proof of Theorem 3.3. It is well-known that context-free grammars are
equivalent to context-free grammars without erasing rules, so we can consider
only context-free grammars without erasing rules. Let G be a context-free
grammar without erasing rules and w be a sentence generated by G. Then,
there exists a minimal k ≥ max({|rhs(p)| | p ∈ P}) and every nonterminal
generates a substring of the length at least one (after an application of a finite
number of rules), so w can be divided at maximum into |w| substrings that
are generated by some nonterminal. Since the string cannot be shortened,
WS (w,G) ≤ k · |w|. The rigorous proof can be found in [DP89].

3.4 Complexity of Formal Models

The complexity deals with a quantification and classification of space (mem-
ory) and time, demands caused by processing languages and their sentences,

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 40 — #50 i
i

i
i

i
i

40 3 Configuration Restrictions

and by storing of finite descriptions of formal models that define languages.
A survey of the topic can be found in [Pap94] and [Bro89].

From the point of view of dynamic and static restrictions of rewriting
systems, we can classify the complexity in the theory of formal languages into
two branches:

1. space complexity and time complexity (dynamic character; more practical
approach)

2. descriptional complexity (static character; theoretically oriented approach)

Concept 3.1. A space complexity and time complexity study how effectively
an instance of a formal model is able to process a sentence of a language or a
whole language, respectively. A numerical measurement is usually based on a
unified general formal model, such as Turing machine (see [Med00]). The time
complexity states the particular number of computational steps for a sentence
processing. Mostly, it is dependent on the length of the sentence. On the other
hand, the maximal number of needed memory cells (for instance, in case of
Turing machine) is the key information for the space complexity.

For entire language families or formal models, we talk about the complexity
classes that are mostly expressed asymptotically2.

Besides the practical notions of the time and space complexity, which are
often applied to computationally complete models, such as Turing machines,
RAM3 models, or modern programming languages, take a look on the existing
notion of the descriptional complexity.

Concept 3.2. A descriptional complexity (or syntactic complexity) combines
different metrics that characterize an efficiency of the storing of the finite
description of a formal model. The most common metric is a cardinality of an
individual component of a rewriting system. Another metrics can measure an
important component subset that contains items with some special property;
for instance, the number of rules with context-sensitive condition when the
basic rules or rule cores are context-free.

In the theory of formal languages, the descriptional complexity is a very
popular topic (see [BB05, MM07, Med96, Med97a, Med97b, Med98]; [DP89]
and [MŠ05] contain the whole collection of related results). The descriptional
complexity measures an efficiency of the description by a formal model or
rewriting system, respectively. In most cases, the authors focus on the reduc-
tion of the descriptional complexity of only one component (one dimension).
More exceptional and valuable approach is to try to reduce more components
simultaneously, such as in [MF03].
2 Asymptotically means that the complexity is limited from above, from below, or

even from both sides, by some mathematical function that depends on the length
of a sentence.

3 Random Access Memory

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 41 — #51 i
i

i
i

i
i

3.4 Complexity of Formal Models 41

3.4.1 Classification of Formal Model Complexity

Now, we examine an alternative classification of complexity of formal models.
We introduce a dynamic (run-time) variant of the descriptional complexity
called dynamic complexity that is closely related to the practical space com-
plexity, which is more general. Measures, such as finite index and n-limitation,
can be studied from the point of view of the dynamic complexity that has
more concrete relationship to rewriting systems and to the theory of formal
languages than the universal time and space complexity.

Two approaches of classification that are important for this book follow:

1. practical – uses metrics, such as the number of processor instructions or
the number of memory cells needed for a successful computation of an al-
gorithm, dependent on the input or the length of the input, respectively.
This approach is dependent on the chosen formal model and on its imple-
mentation in the first place (used hardware platform, hardware/software
partitioning, etc.).

2. theoretical – is more robust and does not require the selection of an im-
plementation technique. We only have to choose a formal model and its
particular instances. For example, an instance of a context-free grammar
represents an instance of a formal model like this. We observe the proper-
ties related to the recording of an instance of the formal model itself and
its processing parameters, such as determinism, the maximum length of a
configuration, the number of nonterminals, the number of rules, etc. The
disadvantage of such approach is the problematic comparison of the com-
plexity of incompatible formal models and non-existence of some metrics
in some models.

Another, orthogonal, view of the complexity divides the approaches according
to the focus either on the efficiency of the description of a formal model
instance or the efficiency of the processing of a language sentence.

1. descriptional complexity – static character; for instance, the length of a
component in the formal model description and its complexity, such as
the number of rules, number of nonterminals, length of the longest rule,
size of LR table, or the complexity of the application of a rule that is the
most complex one in the model;

2. dynamic complexity – dynamic (run-time) character that observes the
properties during the processing of a particular formal model instance;
for instance, the finite index (see Definition 3.2) during the processing
of a particular sentence, minimal/maximal length of a workspace (see
Definition 3.3), complexity of the selection of a subsequent rule to be
applied, or the growth speed of the state space during the simulation of a
non-deterministic behavior of a formal model by a backtracking algorithm.

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 42 — #52 i
i

i
i

i
i

42 3 Configuration Restrictions

In this book, we study only the theoretical aspects of the complexity. Nev-
ertheless, the relationship between the practical and theoretical complexity is
often obvious.

The main part of this monograph focuses on the systematization of ap-
proaches to the formal model configuration restrictions according to the pre-
sented criteria and their combinations. Although the majority of the men-
tioned metrics of the dynamic complexity has already been studied to some
extend, we try to put them in a broader context.

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 43 — #53 i
i

i
i

i
i

Part II

New Formal Models and Their Restrictions

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 44 — #54 i
i

i
i

i
i

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 45 — #55 i
i

i
i

i
i

4

Definitions

New formal models discussed in this monograph have several common fea-
tures. In two cases, we deal with the rewriting systems that cannot be strictly
classified as grammars or automata—(1) #-rewriting systems (see Section 4.1)
and (2) reducing deep pushdown automata (see Section 4.2 and Section 4.2.2,
respectively). The third model, restricted pushdown automata, inspired by
the regulated grammars, applies their regulating mechanism to the pushdown
automata.

The results concerning these new systems are reported in Chapter 5 with
their rigorous proofs. In most cases, we discuss the power of these formal
models (see Chapter 5 and partly Chapter 6). From the mathematical point
of view, the most interesting corollaries are the resulting infinite hierarchies
that depend on the restriction of these rewriting systems, such as index k and
n-limitation.

4.1 #-Rewriting Systems

The following section discusses the key formal model of this book, including
some its modifications. The results concerning this rewriting system produce
the essential part of the text.

We introduce and study #-rewriting systems that represent generative
regulated rewriting systems. #-rewriting systems combine properties of au-
tomata and grammars. From grammars, they use the method of processing
of the language sentence—the generation of a sentence. The #-rewriting sys-
tems are inspired by finite-state control used in automata. Next, they omit
nonterminals from their definition.

The fundamental part of the study of these new systems concerns the
restriction of finite index. Further, few natural modifications, such as n-right-
linear #-rewriting systems are explored as well (see Section 4.1.3 and Section
4.1.4).

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 46 — #56 i
i

i
i

i
i

46 4 Definitions

The main concept of #-rewriting systems were introduced in [Kři05b] and
[Kři05c]. The fundamental results are established in [KS06b] and [KMS06a].

4.1.1 Motivation

In the formal language theory, the overwhelming majority of language-defining
formal models is based on rewriting systems that represent either grammars
or automata.

Recall that grammars generate the languages and automata accepts them,
which is the basic difference between these two language-defining approaches.
Consider a context-free grammar,G (see Definition 2.15).G contains an alpha-
bet of terminals and an alphabet of nonterminals, from which one is selected
as the starting nonterminal. From the starting nonterminal, a consecutive
rewriting of each nonterminal generates a sentential form (configuration) that
is a string over the total alphabet. The sequence of rewriting begins by the
starting nonterminal (axiom) and it finishes in a sentential form containing
only terminals. We say that G generates a sentence of a language. The set of
generated strings over the terminal alphabet determines the language genera-
ted by G.

To illustrate automata, consider a finite-state automaton M (see Definition
2.18). M has a finite set of states, one of which is defined as the starting state.
In addition, some states are specified as final states. M works by making
moves. During a move, it changes its current state (finite inner memory of
the model) and reads an input symbol. If with an input string, M makes a
sequence of moves according to its rules so it starts from the starting state,
reads the input string, and reaches a final state, then M accepts the input
string. The set of all strings accepted in this way represents the language that
M defines.

Although it is obviously quite natural to design language-defining formal
models based on a combination of grammars and automata and, thereby,
make their scale much broader, only a tiny minority of these devices is de-
signed in this combined way (see [BF95], [Kas70], and [MHHO05]). To support
this combined design, the present chapter introduces new rewriting systems,
called #-rewriting systems (first of all, see [KMS06a]), having features of both
grammars and automata. Indeed, like grammars, they are generative formal
models. However, like automata, they use finitely many states without any
nonterminals.

The inspiration of introducing #-rewriting systems comes from these areas
of the formal language theory:

• string splitting operations known from biology (see [PL90] and [Sol]) that
can be simulated by a #-rewriting system; from the splitting point of view,
called bounder divides a string into two parts. Thus, bounders split a
sentential configuration component into finitely many parts consisting only
passive symbols;

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 47 — #57 i
i

i
i

i
i

4.1 #-Rewriting Systems 47

• pure grammars that do not use nonterminal symbols. As the difference
from the pure grammars, #-rewriting systems introduce only variable sym-
bol, called bounder, thus not each symbol in the configuration can be
rewritten. From the descriptional complexity point of view, #-rewriting
systems restrict the cardinality of the specific subset of the total alphabet
to one. More specifically, there is a symbol in the total alphabet that can
occur in no sentence of the defined language;

• finite automata for its finite-state control;
• context-free grammars with their simple form of rules. By the context-free

form of rule cores in #-rewriting systems, every bounder is rewritten by a
string over the total alphabet, including the empty string.

• n-limitation applied to each rule separately so only a few leftmost bound-
ers are rewritable. In case of #-rewriting systems, the previous condition
is integrated directly into the definition of the form of rules. Every rule de-
termines the order of the bounder in a sentential configuration component
to rewrite.

Before we define #-rewriting systems, notice that classical #-rewriting
systems contain rule cores of the context-free form. The rule cores are extended
by a finite-state control. By the form of the rules, the rewriting mechanism is
restricted by n-limitation that allow to rewrite only several leftmost bounders
in the sentential configuration component. It is not a classical n-limitation
applied to a whole configuration component as in Definition 3.1. In fact, this
n-limitation implicitly restricts each rule of the system as determines the
number specifying the order of the active bounder.

Except when explicitly stated otherwise, #-rewriting systems implicitly
denote context-free #-rewriting systems.

4.1.2 Definition

Definition 4.1. A context-free #-rewriting system is a quadruple H =
(Q,Σ, s,R), where Q is a finite set of states, Σ is an alphabet contain-
ing # called a bounder, Q ∩ Σ = ∅, s ∈ Q is a starting state and R ⊆
Q × N × {#} × Q × Σ∗ is a finite relation whose members are called rules.
A rule (p, n,#, q, x) ∈ R, where n ∈ N, q, p ∈ Q and x ∈ Σ∗, is usually written
as r : p n#→ q x hereafter, where r is its unique label.

A configuration of H is a pair from Q × Σ∗. Let χ denote the set of all
configurations of H. Let pu#v, quxv ∈ χ be two configurations, p, q ∈ Q,
u, v ∈ Σ∗, n ∈ N and occur(u,#) = n − 1. Then, H makes a derivation
step or a computational step from pu#v to quxv by using r : p n# → q x,
symbolically written pu#v ⇒ quxv [r] in H or simply pu#v ⇒ quxv.

In the standard manner, we extend ⇒ to ⇒m, for m ≥ 0; then, based on
⇒m, we define ⇒+ and ⇒∗ in the standard way.

The language generated by H, L(H), is defined as

L(H) = {w | s#⇒∗ qw, q ∈ Q,w ∈ (Σ − {#})∗}.

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 48 — #58 i
i

i
i

i
i

48 4 Definitions

Note 4.1. Observe that the form of the rule in CF#RS, r : p n# → q x,
contains unnecessary # on the left-hand side. The reason for this is the uni-
fication of the notation of rules in various versions of #-rewriting systems.
For instance, in generalized #-rewriting systems, the left-hand side contains
a string, not only a symbol.

Definition 4.2. The definition of #-rewriting system of finite index is based
on Definition 3.2 for the general rewriting system, where N = {#}, T = Σ −
{#} and the type of rewriting system X = CF#RS. To be precise, Σ ∪Q is
the total alphabet.

More specifically, let k be a positive integer. A #-rewriting system, H, is of
index k if for every configuration x ∈ χ, s#⇒∗ qy = x implies occur(#, y) ≤
k. Notice that H of index k cannot derive a string containing more than k
#s; in this sense, this notion differs from the corresponding notion in terms of
programmed grammars, which can without the finite index restriction derive
strings containing more than k nonterminals.

Let Lk(CF#RS) and Lk(P) denote the language families defined by
context-free #-rewriting systems of index k and by programmed grammars of
index k (according to Definition 3.2), respectively.

Definition 4.3. A rule of #-rewriting system is said to be erasing rule if its
right-hand side contains only target state and the empty string. For instance,
p 2#→ q ε.

Example 4.1. Consider a context-free #-rewriting system, H1 = ({s, p, q, f},
{a, b, c,#}, s, R1), where R1 contains:

1: s 1#→ p ##
2: p 1#→ q a#b
3: q 2#→ p #c
4: p 1#→ f ab
5: f 1#→ f c

L(H1) = {anbncn | n ≥ 1}, where Ind(H1) = 2; that is, H1 is of index 2. For
instance, H1 generates aaabbbccc as s#⇒ p## [1]⇒ qa#b# [2]⇒
pa#b#c [3] ⇒ qaa#bb#c [2] ⇒ paa#bb#cc [3] ⇒ faaabbb#cc [4] ⇒
faaabbbccc [5].

Example 4.2. Let G = ({S}, {a, b, a′, b′}, S, P) be a context-free grammar,
where P contains:

1. S → SS
2. S → ε
3. S → aSa′

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 49 — #59 i
i

i
i

i
i

4.1 #-Rewriting Systems 49

4. S → bSb′

L(G) = D2 is Dyck language with two types of brackets. It holds that L(G) ∈
CF−Lfin(CF#RS) (see [DP89]).

Notice that the language family generated by #-rewriting systems of fi-
nite index is incomparable with the family of context-free languages. More
specifically, a context-free Dyck language is not generated by any #-rewriting
systems of finite index and vice versa. Example 4.1 shows that the family of
languages generated by #-rewriting systems of finite index contains at least
one non-context-free language.

The most important results concerning #-rewriting systems (see Theorem
5.3 and Theorem 5.19) consider the restriction of finite index. To give an in-
sight into these systems, #-rewriting systems of finite index create the infinite
language family hierarchy, which is very crucial mathematical property. The
closer view of #-rewriting systems with respect to the dynamic complexity is
studied as well.

4.1.3 Based on Right-Linear Rules

Analogically to the Chomsky hierarchy, one of the most natural modifications
of every rewriting system is the change of the form of the rule cores.

As a special case of #-rewriting systems, we introduce and study n-right-
linear #-rewriting systems as the central topic of this section. As their name
indicates, these systems are underlain by rules that are similar to the right-
linear grammatical rules (see Definition 2.17).

The right-linear rules never increase the number of variables—in our case,
bounders—in a configuration. That is, for every rule r, occur(#, rhs(r)) ≤ 1.
Therefore, the only split of the string by bounder has to be done by the
definition of the starting configuration of the form s#n, where s is the starting
state of the system and n is a positive integer. During the computation, the
number of bounders may only decrease, which leads to the resulting language
sentence, by the application of the rules of the form p i# → q α, where α ∈
(Σ − {#})∗.

These systems characterize the infinite hierarchy of language families de-
fined by m-parallel n-right-linear simple matrix grammars (see Section 5.1.1);
however, under some trivial restrictions, they generate only the family of right-
linear languages (see Theorem 5.8).

Definition 4.4. Let H = (Q,Σ, s,R) be a context-free #-rewriting system,
n ∈ N, and, in addition, R satisfies

R ⊆ Q× N× {#} ×Q× ((Σ − {#})∗{#} ∪ (Σ − {#})∗),

then H is said to be an n-right-linear #-rewriting system, n-RLIN#RS for
short.

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 50 — #60 i
i

i
i

i
i

50 4 Definitions

A rule (p, i,#, q, x) ∈ R, where i ∈ N, i ≤ n, p, q ∈ Q, and x ∈ {α#} ∪ α,
α ∈ (Σ−{#})∗. The rule is usually written as r : p i#→ q x hereafter, where
r is its unique label, which can be omitted.

The notions of a configuration, computational step, m-step computation
(m ≥ 0), non-trivial computation, and computation are defined by analogy
with a context-free #-rewriting system (see Definition 4.1). The only exception
is the definition of an initial configuration that is defined as σ = s#n.

The language generated by the n-RLIN#RS H, L(H), is defined as

L(H) = {w | s#n ⇒∗ qw, q ∈ Q,w ∈ (Σ − {#})∗}.

Let n be a positive integer and σ be an starting configuration of an n-right-
linear #-rewriting system, H. H is of index n if for every configuration x = qy,
σ ⇒∗ qy implies occur(#, y) ≤ n. Notice that H of index n cannot derive a
string containing more than k #s. Furthermore, notice that a n-RLIN#RS H
is always of index n.

Let n ∈ N. L (n-RLIN#RS) denotes the family of languages generated
by n-right-linear #-rewriting systems.

Definition 4.5. A computational step is #-erasing if # is rewritten with a
string of passive symbols or the empty string during this step.

Let d be a k-step computation in H, for some k ≥ 0. For every 1 ≤ i ≤
k, by di and tdi, we denote the ith computational step in d and the ith
computational step rewriting the tth #, respectively. t is called the degree of
step di. The computation d is successful if d describes a computation from the
starting configuration to a final configuration (q, w) with w ∈ (Σ − {#})∗.

Example 4.3. 3-RLIN#RS H2 = ({s, p, q, r, t}, {a, b, c,#}, s, R2), where R2

contains

1: s 1#→ p a#
2: p 2#→ q b#
3: q 3#→ s c#
4: s 1#→ r a
5: r 1#→ t b
6: t 1#→ t c

For instance, H2 computes aabbcc by 6-step computation d : s### ⇒
pa### [1]⇒ qa#b## [2]⇒ sa#b#c# [3]⇒ raab#c# [4]⇒ taabbc# [5]⇒
taabbcc [6], where d = 1d1 2d2 3d3 1d4 1d5 1d6.

Obviously, H1 from Example 4.1 is of index 2. On the other hand, H2 from
the previous example is of index 3. Both systems define the same language,
L(H1) = L(H2) = {anbncn | n ≥ 1}.

The main results—Theorem 5.7 and Theorem 5.8—concerning n-right-
linear #-rewriting systems are proved in Section 5.1.1.

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 51 — #61 i
i

i
i

i
i

4.1 #-Rewriting Systems 51

4.1.4 Based on Generalized Rules

The previous two sections introduce #-rewriting systems based on rule cores
of the context-free and right-linear form. During a computational step, these
systems rewrite only one occurrence of a bounder. These systems can be natu-
rally extended so they rewrite a substring that contains at least one bounder.
Therefore, in Chapter 5, we will discuss the change of the power of such
systems.

This section discusses a generalized version of #-rewriting systems with
rule cores of the context-sensitive form. It demonstrates that this context-
based generalization does not affect the generative power of #-rewriting sys-
tems of finite index. A new characterization of the infinite hierarchy of lan-
guage families generated by programmed grammars of finite index is obtained.

The original version of #-rewriting system is based upon rules of the form
p i# → q γ, where p, q are states, i is a positive integer, and γ is a string
over the alphabet Σ. By using this rule, the system rewrites ith # with γ
and, simultaneously, changes the current state p to q. In the present section,
we discuss a generalized version of #-rewriting system that uses rules of the
form p iα#β → q αγβ, where α and β are strings and the other symbols have
the same meaning as above. This generalized rule is applicable to # if this ith
occurs in the α-β context; otherwise, the application is analogical to the
original version (see Definition 4.1).

Definition 4.6. A generalized #-rewriting system, abbreviated as G#RS, is
a quadruple H = (Q,Σ, s,R), where the meanings of Q, Σ, and s remain
the same as in the definition of the context-free #-rewriting system and R ⊆
Q×N×Σ∗{#}Σ∗×Q×Σ∗. A rule is usually written as r : p iα#β → q αγβ ∈ R
hereafter, where r is its unique label, i ∈ N, q, p ∈ Q, and α, β, γ ∈ Σ∗. α and
β are the left and right context of r, respectively.

A configuration of H is a pair from Q × Σ∗. Let puα#βv, quαγβv be
two configurations, p, q ∈ Q, u, v, α, β, γ ∈ Σ∗, i ∈ N, and occur(#, uα) =
i − 1. Then, H makes a computational step from puα#βv to quαγβv by
using r : p iα#β → q αγβ, symbolically written puα#βv i⇒ quαγβv [r] in
H or puα#βv ⇒ quαγβv [r] in H when position is not relevant or simply
puα#βv ⇒ quαγβv when the applied rule is immaterial.

By analogy with context-free #-rewriting systems (see Definition 4.1), we
extend a computational step to an m-step computation (m ≥ 0), non-trivial
computation, and computation, respectively.

The language generated by G#RS H, L(H), is defined in the same way as
for CF#RS.

As special case of G#RS, if every r : p iα#β → q αγβ ∈ R satisfies that
α = β = ε, then H is called a context-free #-rewriting system (CF#RS).

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 52 — #62 i
i

i
i

i
i

52 4 Definitions

Let k be a positive integer. Analogically to Definition 3.2, H is of index k
if for every configuration x = qy in H, s#⇒∗ qy implies occur(#, y) ≤ k.

Definition 4.7. For G#RS H, maxL(H) and maxR(H) denote the maximum
length of left-hand and right-hand side of rules, respectively. Precisely, let
H = (Q,Σ, s,R) be a G#RS, maxL(H) = max({|α| | p iα → q β ∈ R}) and
maxR(H) = max({|β| | p iα→ q β ∈ R}).

Let k be a positive integer. Lk(G#RS) and L (G#RS) denote the fami-
lies of languages generated by generalized #-rewriting systems of index k and
generalized #-rewriting systems without the finite index restriction, respec-
tively.

Example 4.4. G#RS H3 = ({s, p, q}, {a, b, c,#}, s, R3), where R3 contains

1: s 1#→ s a##
2: s 2a##→ p a#b#c
3: p 1a#→ q aa#
4: q 2b#c→ p bb#cc
5: p 1a#→ p a
6: p 1b#c→ p bc

For instance, H3 computes aabbcc as s# ⇒ sa## [1] ⇒ pa#b#c [2] ⇒
qaa#b#c [3]⇒ paa#bb#cc [4]⇒ paabb#cc [5]⇒ paabbcc [6].

Let us investigate the application of the second rule in more detail. In case
of s 2a## → p a#b#c, there are two different ways of choosing the left and
right context of the rewritten bounder. The left-hand side of the rule contains
two bounders. The selection of the bounder to rewrite depends on the starting
configuration since the rule dictates rewriting of the second bounder in the
sentential configuration component from the left. In this example, the left
context α equals to a# and the right context β equals to ε.

If we consider a different computational step in another generalized #-
rewriting system, the contexts can be different. For instance, sa#a## ⇒
pa#a#b#c# [s 2a##→ p a#b#c], where α = a and β = #.

Obviously, H1 from Example 4.1 and H3 from this example are of index 2.
Both systems describe the same language L(H1) = L(H3) = {anbncn | n ≥ 1}
which belongs into L (CF#RS)−CF.

As its main result, Section 5.1.3 demonstrates that the generalization un-
der discussion does not affect the generative power of #-rewriting systems of
finite index, so we obtain an alternative characterization of the infinite hierar-
chy of language families generated by programmed grammars of finite index
(see [KMS06a], and Theorems 3.1.2i and 3.1.7 in [DP89]).

This result is of some interest when compared, for instance, to a similar
generalization in terms of the classical Chomsky hierarchy (see Theorem 2.2),
in which grammars with the generalized rules (context-sensitive grammars)
are much stronger than ordinary context-free grammars.

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 53 — #63 i
i

i
i

i
i

4.1 #-Rewriting Systems 53

4.1.5 Other Variants of #-Rewriting Systems

In this monograph, we also studied other variants of #-rewriting systems. Fur-
thermore, there are some hypotheses and preliminary results that are mostly
discussed in Chapter 6 and Chapter 7.

Let H = (Q,Σ, s,R) be a context-free #-rewriting system. Some of its
variants are defined as follows:

1. H is a deterministic #-rewriting system if for every rule p ∈ Q and for
every positive integer i holds that p i# is the left-hand side of at most
one rule in H. The determinism of #-rewriting systems can be reasonably
defined even in several other ways that have different properties. For more
details, see Section 6.2.1.

2. Let α, β ∈ χ be two configurations of H. If α ⇒ β in H, then H makes
a direct reduction from β to α, symbolically, β ` α. H is said to be a
reducing #-rewriting system.

3. If H simultaneously rewrites all bounders in the current sentential config-
uration component in a computational step, H works parallelly .

Straightforwardly, we can modify the introduced variants to be based on
n-right-linear or general #-rewriting systems. Next, we discuss the above vari-
ants in more detail.

Reducing Variant

Instead of the previous top-down generating approach, we find inspiration in
syntactical parsers that can work in a bottom-up way. Thus, we change this
generative approach to a reducing approach.

Let H = (Q,Σ, s,R) be a #-rewriting system. H is a reducing #-rewriting
system if it reduces a given language by a sequence of reduction steps instead
of generating by computational steps. H makes a reducing step from quxv to
pu#v according to rule r : p n#→ q x, symbolically written as quxv ` pu#v [r]
in H. Let `∗ denote the reflexive-transitive closure of `.

The language defined by H, rL(H), is defined as

rL(H) = {w | qw `∗ s#, q ∈ Q,w ∈ (Σ − {#})∗}.

Consider H1 = ({s, p, q, f}, {a, b, c,#}, s, R1) from Example 4.1. Then,
the reducing variant of H1 makes the reduction of string aaabbbccc as follows:
faaabbbccc ` faaabbb#cc [5] ` paa#bb#cc[4] ` qaa#bb#c [3] ` pa#b#c [2] `
qa#b# [3] ` p## [2] ` s# [1].

Parallel Variant

A parallel #-rewriting system is a quintuple = (Q,Σ, s, P,R), where Q,Σ, and
s are defined the same way as in CF#RS, P ⊆ N×Σ∗ is a finite relation that

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 54 — #64 i
i

i
i

i
i

54 4 Definitions

contains items called parallel rule cores that are of the form n# s→x, n ∈ N,
x ∈ Σ∗; that is, the left-hand and the right-hand side of the rule are separated
by the right arrow with a lower left index “s”. R ⊆ Q × 2P × Q is a finite
relation with the condition that for every rule (p, F, q) ∈ R, p, q ∈ Q, F ∈ 2P

and for every two parallel rule cores c, d ∈ F , c : ic# s→xc, d : id# s→xd holds
ic 6= id.

A rule t = (pt, {r1, . . . , rm}, qt) ∈ R, m ≥ 1 is applicable in a configuration
px, p ∈ Q, x ∈ Σ∗ if and only if p = pt, occur(#, x) ≥ ij , for every 1 ≤ j ≤ m,
where rj : ij# s→ yj .

By a rule t = (p, {r1, . . . , rm}, q), if t is applicable to pu, all parallel rule
cores r1, . . . , rm are applicable to u and the current state p is changed to a new
state q, H makes a parallel computational step from pu to qv, symbolically
written as pu p⇒ qv [t] in H.

By analogy with CF#RS of index k, consider a parallel #-rewriting system
of index k. The condition of applicability of a rule has to be extended by a

subcondition that occur(#, x)−m+
m∑
l=1

occur(#, yl) ≤ k.

Let p⇒∗ denote the reflexive-transitive closure of p⇒. The language ge-
nerated by H, pL(H), is defined as

pL(H) = {w | s# p⇒∗qw, q ∈ Q,w ∈ (Σ − {#})∗}.

The parallel and the reducing #-rewriting systems are to be studied in the
future in more detail (see Chapter 7).

For an overview of the introduced versions of #-rewriting systems, see
Table 4.1.

Type of System Abbr. Rule Form

n-right-linear n-RL#RS Q× N× {#} ×Q× (Σ − {#})∗{#, ε}
Context-free (Basic) CF#RS Q× N× {#} ×Q×Σ∗

Context-sensitive (General) G#RS Q× N×Σ∗{#}Σ∗ ×Q×Σ∗

Table 4.1. #-Rewriting Systems – Overview

4.2 Deep Pushdown Automata

The study of the dual models to the regulated grammars, regulated automata,
has started recently (see [Kři04b, KM00, MK02]). For example, Meduna in
[Med06] introduced the generalization of classical pushdown automata.

In the following new rewriting system, we see the principle of the combi-
nation of automata and grammars. A classical pushdown automaton always
works only with the top of its pushdown (see Definition 2.19). On the other

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 55 — #65 i
i

i
i

i
i

4.2 Deep Pushdown Automata 55

hand, a grammar rewrites any symbol in the sentential form. Now, we are
inspired by grammars and we study the modified pushdown automata that
allow us to work with the symbols deeper in the pushdown content. Since
in practice the access1 to the top of a pushdown structure is optimized, we
restrict the manipulation with symbols on the pushdown such that we can
reach the symbol only in some maximum depth. Informally speaking, we can
rewrite only first few active symbols from the top toward the bottom and the
maximum depth of an active symbol is given by a constant. The rest is like
in ordinary pushdown automata.

Definition 4.8. A deep pushdown automaton, DTDP for short, is a 7-tuple,
M = (Q,T, Γ,R, s, S, F), where Q is the finite set of states, T is the input al-
phabet, Γ is the pushdown alphabet, N denotes the set of the positive integers
(see Definition 2.1), N, Q, and Γ are pairwise disjoint, T ⊆ Γ , # ∈ Γ − T ,
and the symbol # is said to be a pushdown bottom, R ⊆ (N×Q× (Γ − (T ∪
{#}))×Q× (Γ − {#})+) ∪ (N ×Q× {#} ×Q× (Γ − {#})∗{#}) is a finite
relation, s ∈ Q is the starting state, S ∈ Γ is the starting pushdown symbol,
F ⊆ Q is the set of final states.

Instead of (m, q,A, p, v) ∈ R, we write mqA→ pv ∈ R and call mqA→ pv
a rule; accordingly, R is referred to as the set of rules of M .

Definition 4.9. A configuration of M is a triple in Q×T ∗× (Γ −{#})∗{#}.
Let χ denote the set of all configurations of M . Let x, y ∈ χ be two configu-
rations. M pops its pushdown from x to y, symbolically written as x p⇒ y, if
x = (q, az, au), y = (q, z, u), where a ∈ T , z ∈ T ∗, u ∈ Γ ∗, q ∈ Q. M expands
its pushdown from x to y by rule r : mqA → pv ∈ R, symbolically written
as x e⇒ y, if x = (q, w, uAz), y = (p, w, uvz), where A ∈ Γ − T , u, z ∈ Γ ∗,
v ∈ Γ+, q, p ∈ Q, w ∈ T ∗, and occur(Γ − T, u) = m− 1.

To express that M makes x e⇒ y according to mqA→ pv, we write x e⇒
y [mqA→ pv]. We say that mqA→ pv is a rule of depth m; accordingly, x e⇒
y [mqA→ pv] is an expansion of depth m. M makes a move or computational
step from x to y, symbolically written as x⇒ y, if M either x e⇒ y or x p⇒ y.
If n ∈ N is the minimal positive integer such that each of rules in M is of
depth n or less, we say that M is of depth n, symbolically written as nM .

In the standard manner, extend p⇒, e⇒, and ⇒ to p⇒m, e⇒m, and ⇒m,
respectively, for m ≥ 0; then, based on p⇒m, e⇒m, and ⇒m, define p⇒+,
p⇒∗, e⇒+, e⇒∗, ⇒+, and ⇒∗.

Let M be of depth n, for some n ∈ N. We define the language accepted
by nM , L(nM), as L(nM) = {w ∈ T ∗|(s, w, S#) ⇒∗ (f, ε,#) in nM with
f ∈ F}.

For every k ≥ 1, set kL (DTDP) = {L(iM) | iM is a deep pushdown
automaton, 1 ≤ i ≤ k}.
1 The top of the pushdown is accessed by operations push and pop.

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 56 — #66 i
i

i
i

i
i

56 4 Definitions

Consider the relationship between the n-limitation in grammars and the
depth n in DTDP. When we write the pushdown configuration component
as a string from the left to the right where the leftmost symbol is the top
of the pushdown and the rightmost symbol is its bottom, we can compare
the rewriting in this component with the rewriting in sentential configuration
component in grammars. By the n-limitation in grammars, we restrict from
the left the number of nonterminals that can be rewritten without giving
the concrete order of the nonterminal. In case of DTDP, the restriction of
maximum depth n is similar to the n-limitation. In addition, we specify the
expansion of the concrete variable given by its order from the top of the
pushdown content. Again, the similarity between grammars and automata is
illustrated.

Example 4.5. Consider DTDP 2M = ({s, q, p, f}, {a, b, c}, {A, B, S, #, a,
b, c}, R, s, S, {f}) with

R = { 1sS → qAB,
1qA→ paAb,
1qA→ pab,
2pB → qBc,
2pB → fc }.

With aabbcc, 2M makes

(s, aabbcc, S#) e⇒ (q, aabbcc, AB#) [1sS → qAB]
e⇒ (p, aabbcc, aAbB#) [1qA→ paAb]
p⇒ (p, abbcc, AbB#)
e⇒ (q, abbcc, AbBc#) [2pB → qBc]
e⇒ (p, abbcc, abbBc#) [1qA→ pab]
p⇒ (p, bbcc, bbBc#)
p⇒ (p, bcc, bBc#)
p⇒ (p, cc,Bc#)
e⇒ (f, cc, cc#) [2pB → fc]
p⇒ (f, c, c#)
p⇒ (f, ε,#).

We write (s, aabbcc, S#) ⇒∗ (f, ε,#), and we say that the string aabbcc
is successfully accepted by DTDP 2M . Observe that L(2M) = {anbncn|n ≥
1} ∈ 2L (DTDP), and L(2M) ∈ CS−CF.

Observation 4.1. Similarly to #-rewriting systems, the deep pushdown au-
tomata define the restriction implicitly by the form of the rules and by the
requirement of finiteness of the set of the rules. That is, there is always some
k ≥ 1 for a DTDP M , such that k = max({m| mqA→ pv ∈ RM}).

Before we start, recall Theorem 4.1 from [Med06].

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 57 — #67 i
i

i
i

i
i

4.2 Deep Pushdown Automata 57

Theorem 4.1 ([Med06]). For every k ≥ 1, kL (DTDP) = kL (ST) and
kL (DTDP) ⊂ k+1L (DTDP).

Proof of Theorem 4.1. For the construction and rigorous proof, see
[Med06]. The proof uses the analogy between the restriction of DTDP to
depth n and the restriction of the state grammars to n-limitation. It demon-
strates the equivalence between these two rewriting systems. Since the families
generated by n-limited state grammars, n ≥ 1, establish the infinite hierarchy
of these families (proved by Kasai in [Kas70]), the deep pushdown automata
of depth n create the same infinite hierarchy as well.

A few modifications of deep pushdown automata are introduced in [KM06].
Next section discusses some open problems (see [Med06]) and hypothesis

concerning the determinism and erasing rules in deep pushdown automata.

4.2.1 Deterministic Deep Pushdown Automata

The natural and mathematically elegant modification of a deep pushdown
automaton is the definition of the determinism with respect to the depth of
its expansions. It means that when we choose to expand an active symbol in
the particular depth i, then there is at most one possibility which rule to select
in the current state. That is, in the definition of deep pushdown automata,
we rule out two rules of the forms r1 : 1pA→ qx and r2 : 2pC → oy.

Definition 4.10. M is a deterministic deep pushdown automaton with respect
to the depth of its expansions if for every q ∈ Q, q ∈ Q, card({m | mqA →
pv ∈ R, A ∈ Γ − T , v ∈ Γ+, p ∈ Q}) ≤ 1 because at this point from the
same state, all expansions that M can make are of the same depth. We say
that M is a strictly deterministic DTDP if for every mqA → pv ∈ R, card(
{mqA→ ow ∈ R| o ∈ Q, w ∈ Γ+} − {mqA→ pv}) = 0.

Notice that 2M from Example 4.5 is deterministic with respect to the
depth of its expansions but 2M is not strictly deterministic.

4.2.2 Reducing Deep Pushdown Automata

This section presents the variant of deep pushdown automata that fundamen-
tally modifies its behavior. Deep pushdown automata (described in Section
4.2 and in [KM06, Med06]) are based on the generalization of the top-down
parsers that have an access deeper into their pushdowns. The basic idea of
the following modification of these automata is to generalize a bottom-up
parser so it works similarly to the bottom-up analysis simulation of context-
free grammars in classical pushdown automata except it reads the input from
the right to the left. Moreover, instead of expanding operation as in original

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 58 — #68 i
i

i
i

i
i

58 4 Definitions

deep pushdown automata, reducing pushdown automata uses operation re-
duction that replaces a string onto the pushdown by a non-input symbol (see
[KMS06b, KS06a]). To see this new rewriting system in a wider context, we
discuss both directions of reading the input sentence—first, from the right to
the left and, then, from the left to the right.

The next chapter presents the equivalence of reducing deep pushdown
automata with n-limited state grammars and infinite hierarchy of language
families based on the depth of pushdown reductions.

Motivation and Principle

In the theory of formal languages, there exists several cases of a generalization
of pushdown automata (see [LM05, Med99, Med06]). Specifically, there is often
added an ability of touching into deeper parts of the pushdown. For instance,
[Med06] introduces a top-down parser in this way and he points out the raising
infinite hierarchy of languages accepted by this automata.

Regarding classical pushdown automata, the top-down and the bottom-up
approach are equivalent in general. While restricting these rewriting systems
to models based on the deterministic versions of context-free grammars, this
equivalence may not hold. For instance, neither LL(k) grammars for the top-
down approach nor LR(k) grammars for bottom-up approach are as powerful
as the context-free grammars. In the practice, the LR(k) are more suitable
than LL(k) since they allow us to describe a wider variety of language con-
structs.

Consider the frequently used method for the bottom-up parsing—the LR
parser (Left-to-right Rightmost parser) and the relation between the language
hierarchies of LR(k) and LL(k) for k ≥ 0 (see [AP02]).

The main motivation to study reducing deep pushdown automata is the
question of the relationship of both approaches (top-down and bottom-up)
with respect to the depth in which the reductions are allowed.

Consider the standard simulation of a context-free grammar by a classical
pushdown automaton acting as a general bottom-up parser (see [Med00]).
During every move, the parser either shifts or reduces its pushdown depending
on the top pushdown symbol, current input symbol, and state. Shift operation
takes one input symbol from the input tape and moves it to the top of the
pushdown.

If a string on the top of the pushdown equals to any right-hand side of
a context-free rule, this string is reduced to one non-input symbol. In this
rewriting system, the set of variables equals to the pushdown alphabet because
every symbol (even input symbol) can be contained in the rewritten substring
by reduction.

The automaton accepts an input string, x, if it makes a sequence of moves
so it completely reads x, empties its pushdown, and enters a final state; the
latter requirement of entering a final state is dropped in some books (see, for
instance, Theorem 5.1 in [RS97]).

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 59 — #69 i
i

i
i

i
i

4.2 Deep Pushdown Automata 59

Being inspired by the previous paragraphs, let us introduce generalized
versions of top-down (see Section 4.2) and bottom-up parsers.

Hereafter, the generalized bottom-up parser represented by a pushdown
automaton works exactly the same as the basic parser based on Definition
2.19 except that

a) it reads the input tape from the right to the left and
b) it makes reductions of depth m so it replaces the pushdown substring with

mth topmost non-input symbol in the pushdown, for some m ≥ 1.

Such an automaton is called right-to-left reducing deep pushdown automa-
ton (abbrev. rlRDPDA). Reading the input tape from the right to the left is
common in some natural languages and leads to the simulation of the right-
most reduction, which is analogical to the rightmost derivation. However, a
modification of RDPDA that reads from the left to the right is mentioned as
well.

Definition 4.11. A reducing deep pushdown automaton (RDPDA) is a sep-
tuple, M = (Q,T, Γ,R, s, S, F), where Q is a finite set of states, T is an input
alphabet, and Γ is a pushdown alphabet, N, Q, and Γ are pairwise disjoint
(see Definition 2.1 for N), T ⊆ Γ , Γ − T contains a special pushdown bottom
symbol denoted by #, R ⊆ (Q× Γ+ × N×Q× (Γ − T)) is a finite relation,
s ∈ Q is the starting state, S ∈ Γ is the starting pushdown symbol, F ⊆ Q is a
set of final states. Instead of (q, v,m, p,A) ∈ R, we write qv ` mpA ∈ R and
call qv ` mpA a rule; accordingly, R is referred to as the set of rules of M .

A configuration of M is a triple in Q×T ∗× (Γ −{#})∗{#}. The leftmost
symbol of the third configuration component is said to be the top of the
pushdown. Let χ denote the set of all configurations of M . Let x, y ∈ χ be
two configurations and p, q ∈ Q two states. M shifts its input to pushdown
from x to y; that is, M rewrites x to y in one of these two ways:

a) x s⇒ y, if x = (q, ua, z), y = (q, u, az), where a ∈ T , u ∈ T ∗, z ∈ Γ ∗.
Then, M is said to be right-to-left reducing (rlRDPDA).

b) x s⇒ y, if x = (q, au, z), y = (q, u, az), where a ∈ T , u ∈ T ∗, z ∈ Γ ∗.
Then, M is said to be left-to-right reducing (lrRDPDA).

M reduces its pushdown from x to y, symbolically written as x r⇒ y, if x =
(q, w, uvz), y = (p, w, uAz), and qv ` mpA ∈ R, where w ∈ T ∗, A ∈ (Γ − T −
{#}), u, z ∈ Γ ∗, v ∈ Γ+, and occur(Γ − T, u) = m− 1.

To express that M makes x r⇒ y according to qv ` mpA, we write x r⇒ y
[qv ` mpA]. We say that qv ` mpA is a rule of depth m; accordingly, x r⇒ y
[qv ` mpA] is a reduction of depth m. M makes a move from x to y, symbol-
ically written as x⇒ y, if M makes either x s⇒ y or x r⇒ y.

If n ∈ N is the minimal positive integer such that every rule of M is of
depth n or less, we say that M is of depth n, symbolically written as nM .

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 60 — #70 i
i

i
i

i
i

60 4 Definitions

In the standard manner, extend s⇒, r⇒, and ⇒ to s⇒m, r⇒m, and ⇒m

respectively, for m ≥ 0; then, based on s⇒m, r⇒m, and ⇒m, define s⇒+,
r⇒+, ⇒+, s⇒∗, r⇒∗, ⇒∗.

Let M be of depth n, for some n ∈ N. We define the language accepted by
nM , L(nM), as L(nM) = {w ∈ T ∗| (s, w,#) ⇒∗ (f, ε, S#) in nM with f ∈
F}.

For every k ≥ 1, kL (rlRDPDA) and kL (lrRDPDA) denotes the family
of languages defined by the right-to-left reducing and the left-to-right reducing
deep pushdown automata of depth i, respectively, where 1 ≤ i ≤ k.

The following example shows a reduction of a sentence by a rlRDPDA.

Example 4.6. Consider a rlRDPDA, 2M = ({s, p, q, t, f}, {a, b, c}, {a, b, c,
A, C, S}, R, s, S, {f}) with R containing rules

1. sab ` 1pA
2. pc ` 2qC
3. qaAb ` 1tA
4. tcC ` 2qC
5. qAC ` 1fS

With aabbcc read from the right to the left from the input tape, 2M makes
the following sequence of moves

(s, aabbcc,#) s⇒ (s, aabbc, c#) s⇒ (s, aabb, cc#) s⇒ (s, aab, bcc#) s⇒ (s,
aa, bbcc#) s⇒ (s, a, abbcc#) r⇒ (p, a,Abcc#) [1] r⇒ (q, a,AbcC#) [2]
s⇒ (q, ε, aAbcC#) r⇒ (t, ε, AcC#) [3] r⇒ (q, ε, AC#) [4] r⇒ (f, ε, S#)
[5].

Therefore, aabbcc ∈ L(2M). Observe that L(2M) = {anbncn| n ≤ 1}.
Notice that L(2M) ∈ CS−CF.

As demonstrated in Chapter 5, considering the powers of deep pushdown
automata and their modifications, they fulfill the space between automata
models for context-free and context-sensitive languages in the formal language
theory. The power of these new formal models of depth n is proved by the
equivalence to the family of n-limited languages generated by state grammars.

4.3 Restricted Pushdown Automata

This section defines a new formal model—restricted pushdown automaton—
based on a modification of classical pushdown automaton (see Definition 2.19).
The content of the pushdown is restricted by a restricting language. This ge-
neralized way of configuration restriction relates to the first component of the
configuration—pushdown-string (see Definition 2.20). During the application
of a rule in this rewriting system, the pushdown-string is checked whether its
content creates a sentence of the restricting language; otherwise, the rule is in-
applicable. The resulting power of a restricted pushdown automaton depends

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 61 — #71 i
i

i
i

i
i

4.3 Restricted Pushdown Automata 61

on the classification of the restricting language in the Chomsky hierarchy of
language families (see Theorem 2.2).

The results show (see Theorem 5.13) that regular restricting language does
not increase the accepting power of restricted pushdown automata in com-
parison with classical pushdown automata; that is, the family of context-free
languages. Further, Example 4.7 demonstrates that linear restricting language
increases the power of restricted pushdown automata significantly.

Definition 4.12. A restricted pushdown automaton, RPDA for short, is a
pair H = (M,Ξ), where M = (Q,T, Γ,R, s, S, F) is a classical pushdown
automaton with reversed pushdown-string (see Definition 2.19) and Ξ ⊆ Γ ∗

is a restricting language.

The definition of a configuration of RPDA H is the same as that of a
classical pushdown automaton with reversed pushdown-string. Let us define a
computational step and the language accepted by this new rewriting system.

Definition 4.13. First, let us define the set of all possible pushdown-strings
of H = (M,Ξ), M = (Q,T, Γ,R, s, S, F), during the acceptance of w as
K(M,w) = {γ | w ∈ T ∗, w ∈ L(M), (S, s, w) ⇒∗M (γ, q, u) ⇒∗M (γF , qF , ε),
u ∈ suffixes(w), q ∈ Q, qF ∈ F , and γ, γF ∈ Γ ∗}.

K(M,w) contains all strings that can occur in the pushdown during a
computation that accepts w by M .

Definition 4.14. The language accepted by a restricted pushdown automa-
ton, H = (M,Ξ),

L(H) = {w | w ∈ L(M), K(M,w) ⊆ Ξ}.

The family of languages accepted by RPDA, where the restricting language
belongs to the family of languages L (X), is denoted by L(RPDA, X).

Note 4.2. By analogy with the definition of finite index of #-rewriting
systems, RPDA allows a weaker restriction in an alternative definition as
well. The alternative definition does not restrict every computation of a sen-
tence, but it requires the existence of at least one computation that satisfies
the restriction of the pushdown-string of the automaton by restricting lan-
guage Ξ. The weaker definition of the language accepted by RPDA H =
(M = (Q,T, Γ,R, s, S, F), Ξ), L(H) = {w| there exists a computation
(S, s, w) = (γ0, q0, u0) ⇒M (γ1, q1, u1) ⇒M . . . ⇒M (γn, qn, un) = (ε, qF , ε)
such that n ≥ 1, γi ∈ Ξ, qi ∈ Q, qF ∈ F , ui ∈ suffixes(w) for all 1 ≤ i ≤ n}.

Example 4.7. Let M = (Q,T, T ∪ {#, ∆}, R,#, s, {f}) be a pushdown au-
tomaton with reversed pushdown-string, where Q = {s, p, f}, T = {a, b, c},
and R contains:

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 62 — #72 i
i

i
i

i
i

62 4 Definitions

r1 : #sε→ #cs,
r2 : csε→ ccs,
r3 : csa→ cas,
r4 : asa→ aas,
r5 : asε→ a∆s,
r6 : ∆sε→ εq,
r7 : aqb→ εq,
r8 : cqc→ εq,
r9 : #qε→ εf .

The linear restricting language, L(G), is defined by linear grammar G =
(Σ,T, P, S), Σ = N ∪ T , where N = {S,X, Y }, T = {a, c,#, ∆} = ΓM , and
P contains:

p1 : S → #cX,
p2 : S → #,
p3 : S → ε,
p4 : S → #cY a∆,
p5 : X → cXa,
p6 : X → cX,
p7 : X → ε,
p8 : Y → cY a,
p9 : Y → ε.

Obviously, since every rule of P contains at most one nonterminal symbol
on its right-hand side, G is a linear grammar; that is, L(G) ∈ LIN and L(G) =
{ε} ∪ {#cnam| m,n ≥ 0, m ≤ n} ∪ {#cnan∆| n ≥ 1}.

Let us define a restricted pushdown automaton, H = (M,L(G)), and
observe that L(H) = {anbncn| n ≥ 1}.

• Indeed, rules r1 and r2 from R non-deterministically generate necessary
number of cs.

• Rules r3 and r4 read and move as from the input onto the pushdown.
• Rule r5 non-deterministically decides that all as are already read and in-

serts ∆ onto the pushdown. Now, the regulation restricts following steps
by the subset of L(G), {#cnan∆| n ≥ 1}. Notice that every string of the
subset ends with ∆ that ensures the same number of as and cs in this
phase of the computation.

• Further, rule r6 pops ∆.
• Finally, rules r7 and r8 read bs and cs from the input and accordingly

remove the corresponding as and cs on the pushdown. If the input and
pushdown are empty, the last rule r9 changes the current state to the final
state f and pops the bottom of the pushdown.

For instance, H computes aabbcc as follows:
(#, s, aabbcc)

⇒H (#c, s, aabbcc) [r1]

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 63 — #73 i
i

i
i

i
i

4.4 Summary 63

⇒H (#cc, s, aabbcc) [r2]
⇒H (#cca, s, abbcc) [r3]
⇒H (#ccaa, s, bbcc) [r4]
⇒H (#ccaa∆, s, bbcc) [r5]
⇒H (#ccaa, q, bbcc) [r6]
⇒H (#cca, q, bcc) [r7]
⇒H (#cc, q, cc) [r7]
⇒H (#c, q, c) [r8]
⇒H (#, q, ε) [r8]
⇒H (ε, f, ε) [r9].

Moreover, observe that {#, #c, #cc, #cca, #ccaa, #ccaa∆, ε} ⊆ L(G).
For instance, S ⇒G #cY a∆ [p4] ⇒G #ccY aa∆ [p8] ⇒G #ccaa∆ [p9].

From the practical point of view, the automaton is restricted by restricting
language only in the computational step by the fifth rule when the condition
of the same number of as and cs has to be satisfied. In other steps of M ,
the restriction has no effect on the computation. To inspire the reader, in
the practice, only a few steps can be restricted by the additional mechanism
during the computation.

4.4 Summary

Let us recall the most fundamental presented rewriting systems (see Table
4.2).

Name Abbreviation Language Family

Right-Linear Grammars RLIN REG
Context-Free Grammars CF CF
Context-Sensitive Grammars CS CS
#-Rewriting Systems CF#RS L (CF#RS)
Generalized #-Rewriting Systems G#RS L(G#RS)
n-Right-Linear #-Rewriting Systems n-RLIN#RS L (n-RLIN#RS)
Restricted Pushdown Automata RPDA L(RPDA, X)
Deep Pushdown Automata DTDP L (DTDP)
Reducing Deep Pushdown Automata RDPDA L (RDPDA)
State Grammars ST L (ST)
Programmed Grammars PG L (P)
Random-context Grammars RC L (RC)
m-Parallel n-Right-Linear

Simple Matrix Grammars m-Pn-G L (m-Pn-G)

Table 4.2. Survey of the most important rewriting systems used in this book

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 64 — #74 i
i

i
i

i
i

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 65 — #75 i
i

i
i

i
i

5

Results

This monograph describes and, more importantly, demonstrates all valuable
results concerning various restrictions of rewriting systems with the focus on
the new of them. Most of the results can be classified into two sections: (1)
the power of rewriting systems and (2) infinite hierarchies of language families
based on restrictions of rewriting systems.

Convention 5.1. All results (lemmas and theorems) in this book are estab-
lished by construction proofs that should be ideally completed by rigorous
induction proofs to confirm their correctness. Nevertheless, these induction
proofs are often omitted and left to the reader as an exercise.

5.1 Power of Rewriting Systems

In this section, we introduce the generative power of #-rewriting systems
with several forms of rules and with the finite index restriction. That is, for
arbitrary k ≥ 1, the configuration contains k or fewer bounders.

5.1.1 Context-Free #-Rewriting Systems

This section establishes an infinite hierarchy of language families resulting
from the context-free #-rewriting systems defined in the previous chapter.
More concretely, this well-known infinite hierarchy of language families results
from programmed grammars of finite index (see Theorem 3.1.2i and Theorem
3.1.7 in [DP89]).

From a broader perspective, this result thus demonstrates that rewriting
systems based on a combination of grammars and automata are naturally
related to some classical topics and results concerning formal languages, on
which they can shed light in an alternative way.

Similarly to the most of the equivalence proofs of two formal models, we
demonstrate both directions of inclusions of these resulting language families.

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 66 — #76 i
i

i
i

i
i

66 5 Results

From the computer science point of view, the construction of the transfor-
mation between these two formal models with preserving the same defined
language is natural.

The basic idea of the construction proof comes from the alternative version
of the proof of the equivalence Lfin(RC) = Lfin(P) (see [KM05b]).

Lemma 5.1. For every k ≥ 1, Lk(P) ⊆ Lk(CF#RS).

Proof of Lemma 5.1. Let k ≥ 1 be a positive integer. Let G = (Σ,T, P, S)
be a programmed grammar of index k, where N = Σ − T . We construct the
#-rewriting system of index k, H = (Q,T ∪{#}, s, R), where # /∈ T , s = 〈σ〉,
σ is a new symbol, and R and Q are constructed by performing the following
steps:

1. For each bp : S → α, g(p)c ∈ P , α ∈ Σ∗, add 〈σ〉1# → 〈[p]〉# to R, where
〈[p]〉 is a new state in Q and g(p) denotes the success field of p.

2. If A1A2 . . . Aj . . . Ah ∈ N∗, h ∈ {1, 2, . . . , k}, bp : Aj→x0B1x1B2x2 . . .
xn−1Bnxn, g(p)c ∈ P , j ∈ {1, 2, . . . , h} for n ≥ 0, x0, xt ∈ T ∗, Bt ∈ N ,
1 ≤ t ≤ n and n+ h− 1 ≤ k, then
(a) if g(p) = ∅, then 〈A1A2 . . . Aj−1[p]Aj+1 . . . Ah〉, 〈A1A2 . . . B1 . . . Bn . . .

Ah〉 are new states inQ and the rule 〈A1A2 . . . Aj−1[p]Aj+1 . . . Ah〉j#→
〈A1 A2 . . . B1 . . . Bn . . . Ah〉 x0#x1 . . . xn−1#xn is added to R;

(b) for every q ∈ g(p), q : Dd→α, α ∈ Σ∗ add new states 〈A1A2 . . . Aj−1[p]
Aj+1 . . . Ah〉 and 〈D1D2 . . . Dd−1[q]Dd+1 . . . Dn+h−1〉 to Q and add the
following rule to R:
〈A1A2 . . . Aj−1[p]Aj+1 . . . Ah〉j# → 〈D1D2 . . . Dd−1[q]Dd+1 . . .
Dn+h−1〉 x0#x1 . . . xn, where, with an exception of Dd = [q], A1 . . .
Aj−1B1 . . . BnAj+1 . . . Ah = D1 . . . Dh+n−1, B1 . . . Bn = Dj . . .
Dj+n−1 for some d ∈ {1, 2, . . . , n+ h− 1}.

Basic Idea of the Proof of Lemma 5.1. H simulates derivations in G.
The information necessary for this simulation is recorded inside of states in
new rules of H. Each state in Q carries a string of nonterminals from N∗,
where one symbol of this string is replaced with the label of a rule in P .

Let x0A1x1 . . . xh−1Ahxh be a sentential form derived by G, where xi ∈ T ∗
for 0 ≤ i ≤ h and Al ∈ Σ−T for 1 ≤ l ≤ h, and let bp : Aj → α, g(p)c be a rule
in P applicable in the next step to Aj , 1 ≤ j ≤ h. Then, the new configuration
of H is of the form 〈A1A2 . . . Aj−1[p]Aj+1 . . . Ah〉x0#x1 . . . xh−1#xh, which
encodes the nonterminals in the sentential form of G and the next applicable
rule label. To simulate p, the introduced simulation rule rewrites jth bounder
to α and changes the current state so it reflects the new list of nonterminals in
a new corresponding configuration of G. The change of the current state also
non-deterministically chooses a rule from g(p) to be applied in the subsequent
simulation.

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 67 — #77 i
i

i
i

i
i

5.1 Power of Rewriting Systems 67

Rigorous Proof:

Claim 5.1.1. If S ⇒m x0A1x1A2x2 . . . xh−1Ahxh in G, then 〈σ〉# ⇒r

〈A1A2 . . . Ah〉 x0#x1 . . . xh [q1q2 . . . qr] in H, for m ≥ 0. If g(qr) 6= ∅, then
exists a rule bqr+1 : Aj → y0B1y1 . . . yh−1Bnyn, g(qr+1)c, where n+h−1 ≤ k,
qr+1 ∈ g(qr), and Aj = [qr+1], q1, . . . , qr, qr+1 ∈ Lab(R).

Proof of Claim 5.1.1. This claim is proved by induction on m ≥ 0.
Induction Basis: Let m = 0. For S ⇒0 S in G exists 〈σ〉# ⇒1 〈[p]〉# in H,
where bp : S → α, g(p)c ∈ P and 〈σ〉1#→ 〈[p]〉# ∈ R.
Induction Hypothesis: Supposing that Claim 5.1.1 holds for all computations
of length m or less for some m ≥ 0.
Induction Step: We consider S ⇒m y [p1p2 . . . pm], where y = x0A1x1 . . . xh−1

Ahxh and p1, . . . , pm, pm+1 ∈ Lab(P) such that y ⇒ x [pm+1]. If m = 0,
then pm+1 ∈ {p | lhs(p) = S, p ∈ Lab(P)}; otherwise, pm+1 ∈ g(pm).
For bpm+1 : Aj → y0B1y1 . . . yn−1Bnyn, g(pm+1)c, x is of the form x =
x0A1x1 . . . Aj−1xj−1y0B1y1 . . . yn−1BnynxjAj+1 . . . xh−1Ahxh, where x0, . . .,
xh ∈ T ∗ and y0, . . ., yn ∈ T ∗. By the induction hypothesis, there exists
〈σ〉#⇒r 〈A1A2 . . . Aj−1[pm+1]Aj+1 . . . Ah〉x0#x1 . . . xh−1#xh [q1q2 . . . qr]⇒
〈A1A2 . . . Aj−1B1 . . . BnAj+1 . . . Ah〉 x0# . . . #xj−1y0# . . . #ynxj# . . .
#xh [qr+1], r ≥ 1, qi ∈ Lab(R), 1 ≤ i ≤ r + 1. If g(pm+1) 6= ∅, then
there exists a rule pm+2 ∈ g(pm+1) and a sequence D1 . . . Dn+h−1 so that
A1A2 . . . Aj−1B1 . . . BnAj+1 . . . Ah = D1D2 . . . Dn+h−1, where for at most one
d ∈ {1, 2, . . . , n+ h− 1} is Dd = [qr+2], qr+2 ∈ g(qr+1).

Claim 5.1.2. If S ⇒z x in G, then 〈σ〉#⇒∗ 〈〉x in H, where z ≥ 0, x ∈ T ∗.

Proof of Claim 5.1.2. Consider Claim 5.1.1 for h = 0. At this point, if
S ⇒z x0, then 〈σ〉#⇒∗ 〈〉x0, so x0 = x.

Thus, Claim 5.1.1 and Claim 5.1.2 formally prove Lemma 5.1.

Lemma 5.2. For every k ≥ 1, Lk(CF#RS) ⊆ Lk(P).

Proof of Lemma 5.2. Let k ≥ 1 be a positive integer. Let H = (Q,T ∪
{#}, s, R) be a #-rewriting system of index k, where Σ = T ∪ {#} and
T ∩ {#} = ∅. We construct an equivalent programmed grammar of index k,
G = (Σ,T, P, S), where the set of nonterminals N = Σ − T and the set of
rules P are constructed as follows:

1. S = 〈s, 1, 1〉;

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 68 — #78 i
i

i
i

i
i

68 5 Results

2. N = {〈p, i, h〉 | p ∈ Q, 1 ≤ i ≤ h, i ≤ h ≤ k} ∪ {〈q′, i, h〉 | q ∈ Q, 1 ≤ i ≤ h,
i ≤ h ≤ k} ∪ {〈q′′, i, h〉 | q ∈ Q, 1 ≤ i ≤ h, i ≤ h ≤ k} ∪ {〈q′′, 1, 0〉 | q ∈ Q};

3. For every rule r : p i# → qy ∈ R, where y = y0#y1 . . . ym−1#ym, m ≥ 0,
y0, y1, . . . , ym ∈ T ∗, add the following set to P :
(i) {〈p, j, h〉 → 〈q′, j, h+m− 1〉,

{r′ | if j + 1 = i, then r′ : 〈p, i, h〉 → 〈q′′, i, h+m− 1〉
else r′ : 〈p, j + 1, h〉 → 〈q′, j + 1, h+m− 1〉 }

| 1 ≤ j < i, i ≤ h ≤ hmax}
∪

(ii) {〈p, i, h〉 → 〈q′′, i, h+m− 1〉,
{r′ | if i = h, then r′ : 〈q′′, i, h+m− 1〉 → y0〈q′, i, h+m− 1〉y1〈q′,

i+ 1, h+m− 1〉y2 . . . ym−1〈q′, i+m− 1, h+m− 1〉ym
else r′ : 〈p, i+ 1, h〉 → 〈q′, i+ 1 +m− 1, h+m− 1〉}

| i ≤ h ≤ hmax}
∪

(iii) {〈p, j, h〉 → 〈q′, j +m− 1, h+m− 1〉,
{r′ | if j = h, then r′ : 〈q′′, i, h+m− 1〉 → y0〈q′, i, h+m− 1〉y1〈q′,

i+ 1, h+m− 1〉y2 . . . ym−1〈q′, i+m− 1, h+m− 1〉ym
else r′ : 〈p, j + 1, h〉 → 〈q′, j + 1 +m− 1, h+m− 1〉}

| i < j ≤ h, i ≤ h ≤ hmax}
∪

(iv) {〈q′′, i, h+m−1〉 → y0〈q′, i, h+m−1〉y1〈q′, i+1, h+m−1〉y2 . . . ym−1

〈q′, i+m− 1, h+m− 1〉ym,
{r′ | r′ : 〈q′, 1, h+m− 1〉 → 〈q, 1, h+m− 1〉}

| i ≤ h ≤ hmax}
∪

(v) {〈q′, j, h+m− 1〉 → 〈q, j, h+m− 1〉,
{r′ | if j < h+m−1, then r′ : 〈q′, j+1, h+m−1〉 → 〈q, j+1, h+m−1〉

else r′ : 〈p̃, 1, h+m− 1〉 → 〈q̃′, 1, h+m− 1 + m̃− 1〉, where
p̃ ĩ#→ q̃ỹ0#ỹ1 . . . ỹm̃−1#ỹm̃ ∈ R, ỹ0, ỹ1, . . . , ỹm̃ ∈ T ∗,
if ĩ = 1, then q̃′ := q̃′′}

| 1 ≤ j ≤ h+m− 1, i ≤ h ≤ hmax},

where hmax = k if m = 0; otherwise hmax = k −m+ 1.

Basic Idea of the Proof of Lemma 5.2. By several derivation steps, G
simulates a single step in H. Inside of every nonterminal of the form 〈p, i, h〉
occurring in a sentential form of G, we record

(1) p—the current state of H;
(2) i—the position of the occurrence of # in the current configuration of H;
(3) h—the total number of all #s in the current configuration.

From these three pieces of information and the set g(p) associated with
p, we find out whether p is applicable in the next step and if so, we simulate

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 69 — #79 i
i

i
i

i
i

5.1 Power of Rewriting Systems 69

the step by rules introduced in the third step of the above construction as
follows:

(a) inside of all nonterminals in the sentential form, change h to h+m− 1,
where m is the number of nonterminals occurring on the right-hand side
of p, so h+m−1 is the total number of nonterminals after the application
of p (see (i) through (iii));

(b) in the nonterminals that follow the rewritten nonterminal, change their
position so it corresponds to the position after the application of p (see
(iii));

(c) apply p and select a rule label q from g(p) to be applied in the next step
(see (iv));

(d) complete the simulated derivation step in H by rules introduced in (v).

Rigorous Proof:

Claim 5.2.1. If 〈σ〉#⇒c 〈ϑ〉y0#y1 . . . yn−1#yn in H, then S ⇒∗ y0A1y1 . . .
yn−1Anyn in G for some c ≥ 0.

Proof of Claim 5.2.1. The claim is proved by induction on c.
Induction Basis: Let c = 0. For 〈σ〉# ⇒0 〈σ〉# in H there exists S ⇒0 S in
G.
Induction Hypothesis: Suppose that Claim 5.2.1 holds for all computations of
length c or less for some c ≥ 0.
Induction Step: Consider 〈σ〉# ⇒c 〈ϑ〉y0#y1 . . . yh [r1r2 . . . rc] in H, rt ∈
Lab(R), 1 ≤ t ≤ c and rc+1 : 〈ϑ〉i# → 〈ω〉x0#x1 . . . xm−1#xm ∈ R,
x0, . . . , xm ∈ T ∗ so that 〈ϑ〉y0# . . .#yh ⇒ 〈ω〉y0#y1# . . .#yi−1x0#x1# . . .
#xmyi#yi+1# . . .#yh [rc+1]. Based on Claim 5.2.1 there exists also a deriva-
tion D1∗ : y0A1 . . . Ahyh ⇒∗ y0A1y1 . . . yi−1x0B1x1 . . . BmxmyiAi+1 . . . Ahyh
in G. Based on the construction part of the proof, we show that such a deriva-
tion exists.
Let us have a form y0A1y1 . . . Ahyh. Rename nonterminals At to 〈ϑ, t, h〉 for
1 ≤ t ≤ h and get a base form y0〈ϑ, 1, h〉y1 . . . yh−1〈ϑ, h, h〉yh which starts
the simulation of the D1∗ derivation. This simulation must come out of the
continuous application of rules from the third construction step.

(3i) ∀j : 1 ≤ j < i apply rules of the form 〈p, j, h〉 → 〈q′, j, h+m− 1〉:
F1 = y0〈ϑ, 1, h〉y1 . . . yh−1〈ϑ, h, h〉yh ⇒ y0〈ω′, 1, h+m−1〉y1〈ϑ, 2, h〉y2 . . .
yh−1〈ϑ, h, h〉yh ⇒i−2 y0〈ω′, 1, h + m − 1〉y1 . . . yi−2〈ω′, i − 1, h + m −
1〉yi−1〈ϑ, i, h〉yi . . . yh−1〈ϑ, h, h〉yh = F2;

(3ii) apply 〈p, i, h〉 → 〈q′′, i, h+m− 1〉:
F2 ⇒ y0〈ω′, 1, h+m− 1〉y1 . . . yi−1〈ω′′, i, h+m− 1〉yi . . . yh−1〈ϑ, h, h〉 =
F3;
If i = h, then set F4 = F3 and continue with (3iv); otherwise, with (3iii);

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 70 — #80 i
i

i
i

i
i

70 5 Results

(3iii) ∀j : i < j ≤ h apply rules of the form 〈p, j, h〉 → 〈q′, j+m−1, h+m−1〉:
F3 ⇒ y0〈ω′, 1, h+m−1〉y1 . . . yi−2〈ω′, i−1, h+m−1〉yi−1〈ω′′, i, h+m−
1〉yi〈ω′, i+m,h+m− 1〉 yi+1〈ϑ, i+ 2, h〉yi+2 . . . yh−1〈ϑ, h, h〉yh ⇒h−i−1

y0〈ω′, 1, h + m − 1〉y1 . . . yi−1〈ω′′, i, h + m − 1〉yi+1 . . . yh−1〈ω′, h + m −
1, h+m− 1〉yh = F4;

(3iv) apply 〈q′′, i, h+m−1〉 → y0〈q′, i, h+m−1〉y1 . . . ym−1〈q′, i+m−1, h+
m− 1〉ym:
F4 ⇒ y0〈ω′, 1, h+m− 1〉y1 . . . yi−1x0〈ω′, i, h+m− 1〉x1 . . . xm−1〈ω′, i+
m− 1, h+m− 1〉xmyi . . . yh−1〈ω′, h+m− 1, h+m− 1〉yh = F5;

(3v) ∀j : 1 ≤ j ≤ h + m − 1 apply rules of the form 〈q′, j, h + m − 1〉 →
〈q, j, h+m− 1〉:
F5 ⇒h+m−1 y0〈ω, 1, h+m−1〉y1 . . . yi−1x0〈ω, i, h+m−1〉x1 . . . xm−1〈ω,
i+m− 1, h+m− 1〉xmyi . . . yh−1〈ω, h+m− 1, h+m− 1〉yh = F6 (final
form).

Rename all nonterminals of the form 〈ω, t, h + m − 1〉 in F6 to At for
1 ≤ t < i, 〈ω, t, h + m − 1〉 to Bt−i+1 for i ≤ t ≤ i + m − 1, and
〈ω, t, h + m − 1〉 to At−m+1 for i + m ≤ t ≤ h + m − 1. We have obtained
y0A1y1 . . . yi−1x0B1x1 . . . BmxmyiAi+1 . . . Ahyh.

Claim 5.2.2. If 〈σ〉#⇒z 〈〉x in H, then S ⇒∗ x for some z ≥ 0.

Proof of Claim 5.2.2. This claim follows from Claim 5.2.1 for n = 0.

By Claim 5.2.1 and Claim 5.2.2, we formally proved Lemma 5.2.

Theorem 5.3. For every k ≥ 1, Lk(CF#RS) = Lk(P).

Proof of Theorem 5.3. The theorem follows from two previous lemmas,
Lemma 5.1 and Lemma 5.2. �

Finally, we proved the equivalence of CF#RS and programmed grammars
with the restriction of the same index.

Corollary 5.4. For every k ≥ 1 and every language, L, defined by CF#RS of
index k, H, exists CF#RS of index k without erasing rules H ′ (see Definition
4.3) such that L = L(H) = L(H ′).

Proof of Corollary 5.4. The corollary follows from Theorem 3.1.2i in [DP89]
that claims Lk(P) = Lk(P, CF − ε) and from the equivalence in Theorem
5.3.

Alternatively, a construction proof can be derived from [Kři05a] discussing
the removal of erasing rules from programmed grammars with appearance
checking. However, the necessary information is recorded in the state of the
system instead of the label of a rule.

�

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 71 — #81 i
i

i
i

i
i

5.1 Power of Rewriting Systems 71

5.1.2 n-Right-Linear #-Rewriting Systems

It is impossible to prove that L (mn-RLIN#RS) = L (m-Pn-G), which, in
other words, means that every #-rewriting system with m · n components
working in right-linear way can be simulated by a m-parallel n-right-linear
simple matrix grammar (see Definition 2.24). Since m-parallel n-right-linear
simple matrix grammars combine the partially parallel application and the
regulated application of rules, the partial parallelism is not enough restric-
tive mechanism to ensure the proper simulation of the state control of a #-
rewriting system. On the other hand, the one-way inclusion L (m-Pn-G) ⊆
L (mn-RLIN#RS) holds (see Lemma 5.5). In addition, after the relaxation
of the parallel applications of simple matrix rules, we can study the power of
1-parallel n-right-linear simple matrix grammars (see Lemma 5.6).

L (1-Pn-G) = L (n-RLIN#RS).

In the proofs of two following lemmas, we only describe the construction
parts, leaving the rigorous verification of these constructions to the reader
(see Convention 5.1).

Lemma 5.5. For every m,n ≥ 1, L (m-Pn-G) ⊆ L (mn-RLIN#RS).

Proof of Lemma 5.5. Let G = (N11, . . . , Nmn, T, S, P) be an m-parallel
n-right-linear simple matrix grammar and let M1, . . . ,Mm be mutually dis-
joint matrix-rule sets, where for every 1 ≤ i ≤ m, Mi = {µ : [Xi1 →
αi1Yi1, . . . , Xin → αinYin] | µ ∈ P , Xij , Yij ∈ Nij , αij ∈ T ∗, 1 ≤ j ≤ n}
∪ {µ : [Xi1 → αi1, . . . , Xin → αin] | µ ∈ P , Xij ∈ Nij , αij ∈ T ∗, 1 ≤ j ≤ n}
such that P − {σ : [S → X11 . . . Xmn] | σ ∈ P , Xij ∈ Nij , 1 ≥ i ≥ m,
1 ≥ j ≥ n} =

⋃
1≤i≤m

Mi.

From G, we construct an equivalent mn-right-linear #-rewriting system, H =
(Q, Σ, s, R), Σ = T ∪{#}, T ∩{#} = ∅, by performing of the following steps:

1. Q = {s} ∪ {〈η, µ, l〉 | η ∈ suffixes(X11 . . . Xmn), Xij ∈ Nij for all 1 ≤ i ≤
m, 1 ≤ j ≤ n, µ ∈ Mk, 1 ≤ k ≤ m, 1 ≤ l ≤ n}, where s is a new symbol
for the starting state;

2. R =
(i) {s 1#→ 〈X11 . . . Xmn, µ1, 1〉 #

| µ1 ∈M1, X11 . . . Xmn = rhs(σ), σ : [S → X11 . . . Xmn] ∈ P}
∪

(ii) {〈Y11 . . . Yij−1Xij . . . Xmn, µi, j〉 (i−1)·n+j#→
〈Y11 . . . YijXij+1 . . . Xmn, µi, j + 1〉αij#
| µi : [Xi1 → αi1Yi1, . . . , Xin → αinYin] ∈Mi,
1 ≤ i ≤ m, 1 ≤ j < n}

∪

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 72 — #82 i
i

i
i

i
i

72 5 Results

(iii) {〈Y11 . . . Yin−1Xin . . . Xmn, µi, n〉 i·n#→
〈Y11 . . . YinX(i+1)1 . . . Xmn, µi+1, 1〉αin#
| 1 ≤ i < m, µi+1 ∈Mi+1, µi : [Xi1 → αi1Yi1, . . . , Xin →
αinYin] ∈Mi}

∪
(iv) {〈Y11 . . . Ymn−1Xmn, µm, n〉m·n#→ 〈Y11 . . . Ymn, µ1, 1〉 αmn#

| µ1 ∈M1, µm : [Xm1 → αm1Ym1, . . . , Xmn → αmnYmn] ∈Mm}
∪

(v) {〈Xij . . . Xmn, µi, j〉 1#→ 〈Xij+1 . . . Xmn, µi, j + 1〉 αij
| µi : [Xi1 → αi1, . . . , Xin → αin] ∈Mi, 1 ≤ i ≤ m, 1 ≤ j < n}

∪
(vi) {〈Xin . . . Xmn, µi, n〉 1#→ 〈X(i+1)1 . . . Xmn, µi+1, 1〉 αin

| 1 ≤ i < m, µi+1 ∈Mi+1,
µi : [Xi1 → αi1, . . . , Xin → αin] ∈Mi}

∪
(vii) {〈Xmn, µm, n〉 1#→ 〈ε, µm, n〉 αmn

| µm : [Xm1 → αm1, . . . , Xmn → αmn] ∈Mm}.

Basic Idea of the Proof of Lemma 5.5. H simulates each derivation step
in G using the states to hold necessary information about each step. Every
state is of the form 〈η, µi, l〉. Instead of parallelism, the rules from G are
divided into the sets of matrices, Mi. Each state from Q contains a string of
nonterminals η, a matrix label µi, and a rule-index indicating next rule to be
applied. The last rule in Mi changes the state of H so a matrix from Mi+1

can be used. Finally, the last rule of a matrix from Mm changes the state of
H so it can apply the first rule of a matrix from the very first M1.

Briefly, the finite-state control of H ensures the atomicity of the sequential
simulated parallel and matrix rewrites.

The rules from P of the form Xij → αijYij change nonterminals and the
rules of the form Xij → αij remove those nonterminals in the string stored in
the first component of the state, η. When there are no nonterminals left in η,
the system can make no more steps and the computation ends.

Lemma 5.6. For every n ≥ 1, L (n-RLIN#RS) ⊆ L (1-Pn-G).

Proof of Lemma 5.6. Let n ≥ 1 be a positive integer and H = (Q,Σ, s,R)
be an n-right-linear #-rewriting system. We construct an equivalent 1-parallel
n-right-linear simple matrix grammar G = (N11, . . . , Nmn, T, S, P) by per-
forming the following steps:

1. T = Σ − {#}.
2. N1i = {〈i, j, q〉 | q ∈ Q, 1 ≤ j ≤ i} ∪ {Xi} for every 1 ≤ i ≤ n, where Xi

is a new nonterminal.

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 73 — #83 i
i

i
i

i
i

5.1 Power of Rewriting Systems 73

3. Add S → 〈1, 1, s〉〈2, 2, s〉 . . . 〈n, n, s〉 to P .
4. For every rule r : p j# → q α# ∈ R, α ∈ T ∗, add [η1, . . . , ηi−1, 〈i, j, p〉 →
α〈i, j, q〉, ηi+1, . . . , ηn] to P , where for every k ∈ {1, . . . , n} − {i} and
1 ≤ k′ ≤ k, ηk is of the form 〈k, k′, p〉 → 〈k, k′, q〉 or Xk → Xk.

5. For every rule r : p j# → q α ∈ R, α ∈ T ∗, add [η1, . . . , ηi−1, 〈i, j, p〉 →
αXi, ηi+1, . . . , ηn] to P , where
for every 1 ≤ k < i and 1 ≤ k′ ≤ k, ηk is of form 〈k, k′, p〉 → 〈k, k′, q〉 or
Xk → Xk and
for every i < l ≤ n and 1 ≤ l′ ≤ n, ηl is of form 〈l, l′, p〉 → 〈l, l′ − 1, q〉 or
Xl → Xl.

6. Add [X1 → ε,X2 → ε, . . . ,Xn → ε] to P .

Basic Idea of the Proof of Lemma 5.6. G simulates each computational
step in H as follows. Every nonterminal has three components. To make the
nonterminal alphabets N1i, . . . , N1n mutually disjoint, the first component
contains the nonterminal-alphabet-index. The second component represents
the position of the corresponding bounder in the current configuration of H.
The third component consists of information about the state of H.

In addition, the auxiliary nonterminals X1, . . . , Xn that do not hold any
information about states or #s are introduced. They allow us to have all
matrices of the same size n as required by the definition of m-Pn-G (see
Definition 2.24).

The rules of R of the form p j# → q α# change the state-related infor-
mation inside of all nonterminals except for those of form Xi. The rules of R
of the form p j# → q α do the same job apart from rewriting a nonterminal
〈i, j, p〉 into Xi and reindexing nonterminals following the rewritten one. This
simulates removing of a #.

When all nonterminals are of the form Xi, the rule [X1 → ε, X2 → ε,
. . . , Xn → ε] simultaneously removes all nonterminals from the sentential
configuration component to get the string of terminals.

Theorem 5.7. For every m,n ≥ 1, L (m-Pn-G) ⊂ L (mn-RLIN#RS) =
L (1-Pmn-G), where m+ n > 2.

Proof of Theorem 5.7. Recall that L (mn-P1-G) ⊂ L (m-Pn-G) ⊂
L (1-Pmn-G), for every m + n > 2 (see Theorem 10 in [Woo75]). Thus,
Theorem 5.7 follows from L (m-Pn-G) ⊂ L (1-Pmn-G), Lemma 5.5 and
Lemma 5.6. �

Before we present Theorem 5.8, we give an insight into the implication it
contains to make it easier to understand.

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 74 — #84 i
i

i
i

i
i

74 5 Results

To illustrate the denotation of a computational step by udi (see Definition
4.5), we write udi⇒ .

The implication restricts every successful computation in a #-rewriting
system.

Let d : s#n = p0w0
u1d1⇒ p1w1

u2d2⇒ · · · ui
di⇒ piwi

ui+1di+1
⇒ · · ·

uj
dj

⇒

pjwj
uj+1dj+1
⇒ · · ·

u|d|d|d|⇒ p|d|w|d| be a successful computation, where 1 ≤ i ≤
j ≤ |d|, u = ui, v = uj , and w|d| ∈ (Σ − {#})∗.

If u = v in udi and vdj , then there are allowed only two cases:

(a) all computational steps between udi and vdj , denoted by zdk for all i ≤
k ≤ j, rewrite just zth bounder and nothing else, so z = u = v;

(b) there can be only one exception in (a), such that ldh, i < h < j, is
#-erasing computational step (see Definition 4.5).

Theorem 5.8. Let every successful computation d in an n-right-linear #-
rewriting system H, n ≥ 1, satisfy this implication: if 1 ≤ i ≤ j ≤ |d|, u = v
in udi, and vdj, then either z = u in all zdk for all i ≤ k ≤ j or dh is
#-erasing for some h ∈ {i+ 1, . . . , j − 1}. Then, L(H) ∈ REG.

Proof of Theorem 5.8. Let H = (Q,ΣH , s,R) be an n-right-linear #-
rewriting system satisfying the preceding implication, for some n ≥ 1. We
transform H to an equivalent right-linear grammar G = (ΣG, T, P, S) by
performing the following procedure:

For every 1 ≤ i ≤ n, p, q ∈ Q, construct auxiliary sets
p
qRi = {r | r ∈ alph(ρ), ρ ∈ R∗, pγ i⇒∗ qδ [ρ], occur(#, γ) = occur(#, δ)} and
p
qR̄i = {p i#→ q α ∈ R | α ∈ (ΣH − {#})∗}. Then, Z =

⋃
i≥1,p,q∈Q

{pqRi, pqR̄i}.

1. T = ΣH − {#},
2. ΣG = N ∪T ∪{S}, where S is a new symbol and N contains nonterminals

introduced by the following construction of P ,
3. P =

⋃
1≤l≤5

Pl, where sets P1 through P5 are constructed in the following

way:
(i) initialization: P1 = {S → 〈#n, i, s〉 | 1 ≤ i ≤ n};

(ii) preparation: P2 = {〈∇1η1∇η2 . . .∇iηi∇i+1ηi+1 . . .∇nηn, i, p〉 →
〈∇1η1∇η2 . . .∇iηi pqRi′∇i+1ηi+1 . . .∇nηn, j, q〉
| pqRi′ 6= ∅, 1 ≤ j ≤ n, ηt ∈ Z∗, ∇t ∈ {#, #̄} for 1 ≤ t ≤ n,
∇i 6= #̄, i′ = occur(#,∇1η1 . . .∇i)}

∪
{〈∇1η1 . . .∇i−1ηi−1∇iηi∇i+1 . . .∇nηn, i, p〉 →
〈∇1η1 . . .∇i−1ηi−1#̄ηi pqR̄i′∇i+1ηi+1 . . .∇nηn, j, q〉

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 75 — #85 i
i

i
i

i
i

5.1 Power of Rewriting Systems 75

| pqR̄i′ 6= ∅, 1 ≤ j ≤ n, ηt ∈ Z∗, ∇t ∈ {#, #̄} for 1 ≤ t ≤ n,
∇i 6= #̄, i′ = occur(#,∇1η1 . . .∇i)};

(iii) latch:
P3 = {〈γ, i, p〉 → 〈γ, q〉 | p, q ∈ Q, # 6∈ alph(γ), A→ 〈γ, i, p〉 ∈ P2};

(iv) simulation of a derivation step in G (ηt ∈ Z∗ for every 1 ≤ t ≤ n):
P4 = {〈#̄ p

qRi′ηi . . . #̄ηn, p
′〉 → α〈#̄ p

qRi′ηi . . . #̄ηn, q
′〉

| p′ i′#→ q′ α# ∈ p
qRi′ , α ∈ (ΣH − {#})∗, 1 ≤ i ≤ n, pqRi′ ∈ Z}

∪
{〈#̄ p

qRi′ηi . . . #̄ηn, p
′〉 → α〈#̄ηi . . . #̄ηn, q〉

| p′ i′#→ q α# ∈ p
qRi′ , α ∈ (ΣH − {#})∗, 1 ≤ i ≤ n, pqRi′ ∈ Z}

∪
{〈#̄ p

qR̄i′#̄ηi+1 . . . #̄ηn, p〉 → α〈#̄ηi+1#̄ηn, q′〉
| p i′#→ q α ∈ p

qR̄i′ , α ∈ (ΣH − {#})∗, 1 ≤ i ≤ n, pqR̄i′ ∈ Z};

(v) finalization:
P5 = {〈ε, p〉 → ε | p ∈ Q}.

The conversion of a right-linear grammar, G, to an n-right-linear #-
rewriting system, H, is simple and left to the reader.

Basic Idea of the Proof of Theorem 5.8. Every p
qRi represents a set of

rules which can make a computation of degree i leading from state p to q in
H. In every sentential form generated by G, there is only one occurrence of a
nonterminal that is composed of three components:

(1) γ—the finite prescription string for the driven simulation, γ ∈ (#Z∗)+;
(2) i—the position of the occurrence of active # in the current configuration

of H;
(3) p—the currently simulated state of H.

In the preparation phase, there are non-deterministically generated pre-
scription substrings behind every corresponding bounder in a configuration of
H. These substrings ηt are of the form Z∗.

In the third step, the second component of nonterminals is removed to
ensure that the rules of P2 cannot be used anymore.

By rules constructed in step (3iv), the generation of terminals is done with
correspondence to the γ-prescription string. Each completed p

qRi is removed
from γ until γ is the empty string. Then, the only nonterminal in the sentential
form of G is rewritten to the empty string by a rule from P5 and a string of
terminals is reached.

�

Theorem 5.9. REG ⊆ L (1-RLIN#RS).

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 76 — #86 i
i

i
i

i
i

76 5 Results

Basic Idea of the Proof of Theorem 5.9. The proof that every regular
grammar can be transformed into an equivalent 1-right-linear #-rewriting sys-
tem is quite simple. The only bounder simulates the corresponding nontermi-
nal used in the regular grammar. In more detail, the correspondence between
the particular nonterminal and a bounder is recorded inside the state in the
first component of the configuration of the 1-right-linear #-rewriting system
(by analogy with the proof of Lemma 5.1).

�

Corollary 5.10. L (1-RLIN#RS) = REG.

Proof of Corollary 5.10. Note that the right-hand side of every rule in
1-RLIN#RS ends with a bounder and no other bounder occurs on the right-
hand side of the rule. Since an 1-RLIN#RS contains at most one bounder
in each its configuration and Theorem 5.9 holds, Corollary 5.10 follows from
more general theorem, Theorem 5.8 for n = 1. �

To conclude this section, recall that, as compared to the other variants of
#-rewriting systems, it makes no sense to consider the finite index restriction
of n-right-linear #-rewriting systems because the rules never increase the
number of bounders set by the starting configuration. As a matter of fact, an
n-right-linear #-rewriting system is of finite index as an implicit restriction
(see the classification of restrictions in Chapter 3).

5.1.3 Generalized #-Rewriting Systems

Unlike grammars in the Chomsky hierarchy (context-free and context-sensitive
grammars), generalized #-rewriting systems of finite index with context-
sensitive rule cores do not provide the increase of power in a comparison
with context-free #-rewriting systems of finite index.

As proposed in Convention 5.1, we only describe the construction part of
the proof, leaving the complete version of this proof to the reader.

Theorem 5.11. For every k ≥ 1, Lk(CF#RS) = Lk(G#RS).

Since a context-free #-rewriting system is only special case of a generalized
#-rewriting system, we have to prove only that Lk(G#RS) ⊆ Lk(CF#RS).

Proof of Theorem 5.11. Let k ≥ 1 be a positive integer. Let H = (Q, T ∪
{#}, s, R) be a generalized #-rewriting system of index k, where Σ = T∪{#},
/∈ T . Let µ = max({maxL(H),maxR(H)}) and let $ be a new symbol,
$ /∈ Q ∪ Σ. We construct an equivalent context-free #-rewriting system of
index k, H ′ = (Q′, T ∪ {#}, s′, R′), where components Q′, s′, and R′ are
constructed as follows:

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 77 — #87 i
i

i
i

i
i

5.1 Power of Rewriting Systems 77

1. s′ = 〈s,#〉;

2. Q′ = {〈p, y0#y1# . . . yh−1#yh〉
| p ∈ Q, 1 ≤ h ≤ k,
yj = y′j∇jy′′j , y′j , y

′′
j ∈ T ∗, ∇j ∈ {ε, $},

|y′j | ≤ 2µ, |y′′j | ≤ 2µ, 0 ≤ j ≤ h};

3. R′ = {〈p, x0# . . .#x′j∇jx′′j# . . .#xh〉 1#→ 〈p, x0# . . .#y′j$y
′′
j # . . .#xh〉#

| 〈p, x0# . . .#x′j∇jx′′j# . . .#xh〉,
〈p, x0# . . .#y′j$y

′′
j # . . .#xh〉 ∈ Q′,

∇j ∈ {ε, $}, xj = x′j∇jx′′j , y′j ∈ prefixes(x′j), y
′′
j ∈ suffixes(x′′j),

x′j , x
′′
j ∈ T ∗, 1 ≤ h ≤ k, 0 ≤ j ≤ h,

where x′0 = y′0 = x′′h = y′′h = ε};

4. For every rule r : p iα#β → q αγβ ∈ R, add the following set to R′:
{〈p, η′α#βη′′〉 i#→ 〈q, η′αγβη′′〉 γ

| occur(#, η′α) = i− 1,
〈p, η′α#βη′′〉, 〈q, η′αγβη′′〉 ∈ Q′}.

Basic Idea of the Proof of Theorem 5.11. By several computational
steps, H ′ simulates a single step in H. Inside of every state of the form 〈p, η〉
occurring in a configuration of H ′, it is recorded:

(1) p—the current state of H;
(2) η—the context string of current configuration of H that represents a

context of each # of length at most µ on both sides of #.

The simulation is done in two steps by rules introduced in the third and
forth step of the above construction as follows:

(a) Each substring of terminals between two #s can be non-deterministically
shortened by the rules constructed in 3. The position of the shortening
is marked by $ to reflect this in the subsequent context checks. This
shortening is necessary only to make enough space in the context string
for the rule application in the next step.

(b) With respect to the surrounding—the left and the right context—of a
rewritten bounder, every generalized rule of H replaces only one #. In
this step, the rules of the context-free form constructed in 4 are applied
and, thereby, simulate behavior of H thanks to the context checks, which
are managed by the second component of states in H ′.

The simulation is completed when the string of terminals is obtained.

Draft of the rigorous proof:

Let π be a homomorphism from a configuration of a context-free #-
rewriting system to the corresponding configuration of a generalized #-
rewriting system defined as π(〈p, η〉z) = pz.

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 78 — #88 i
i

i
i

i
i

78 5 Results

Claim 5.11.1. If s#⇒m pz0#z1# . . .#zh in H, then 〈s,#〉#⇒r 〈p, x0#x1

. . .#xh〉 z0#z1 . . .#zh [r′1r
′
2 . . . r

′
r] in H ′, where xi = x′i∇ix′′i , ∇i ∈ {ε, $},

x′i ∈ prefixes(zi), x′′i ∈ suffixes(zi), |xi| ≤ 4µ+ 1, x′i, x
′′
i , zi ∈ T ∗, 0 ≤ i ≤ h,

1 ≤ h ≤ k, for m ≥ 0.

Proof of Claim 5.11.1. This claim is established by induction on m.

Induction Basis: Let m = 0. For s#⇒0 s# in H there exists s′#⇒0 s′# in
H ′, where s′ = 〈s,#〉.

Induction Hypothesis: Suppose that Claim 5.11.1 holds for all computations
of length m or less for some m ≥ 0.

Induction Step: Consider s#⇒m+1 qz′, where z′ ∈ Σ∗. Express s#⇒m+1 qz′

as s# ⇒m pz [r1r2 . . . rm], where z = z0#z1# . . . α#β . . .#zh, # between α
and β is the ith bounder and r1, . . . , rm, rm+1 ∈ Lab(R), and pz ⇒ qz′ [rm+1].
For rm+1 : p iα#β → q αγβ is z′ of the form: z′ = z0#z1# . . . αγβ . . .#zh,
for z0, . . . , zh ∈ T ∗.

Based on the induction hypothesis, there exists 〈s,#〉#⇒r 〈p, x0#x1# . . .
α#β . . .#xh〉 z0# . . . α#β . . . zh−1#zh [r′1r

′
2 . . . r

′
r]⇒∗ 〈p, y0#y1# . . . α#β . . .

#yh〉 z0# . . . α#β . . . zh−1#zh [ρ]⇒ 〈q, y0#y1# . . . αγβ . . .#yh〉 z0# . . . αγβ
. . . zh−1#zh [r′r+1], where ρ is a sequence of rules constructed in step 3, |ρ| ≥ 0,
r ≥ 1, r′j ∈ Lab(R′), 1 ≤ j ≤ r + 1, xj , yj ∈ T ∗{ε, $}T ∗, zj ∈ T ∗,
0 ≤ j ≤ h, occur(#, y0#y1# . . . α) = occur(#, z0#z1# . . . α) = i − 1,
α = x̄i−ᾱ#xi−ᾱ+1 . . . xi−2#xi−1, ᾱ = occur(#, α)+1, x̄i−ᾱ ∈ suffixes(xi−ᾱ),
β = xi#xi+1 . . . xi+β̄−1 #x̄i+β̄ , β̄ = occur(#, β), x̄i+β̄ ∈ prefixes(xi+β̄), and
r′r+1 : 〈p, y0#y1# . . . α#β . . . #yh〉 i# → 〈q, y0#y1# . . . αγβ . . .#xh〉 γ ∈ R′
is introduced by step 4.

Therefore, π(〈p, y0#y1# . . . α#β . . .#yh〉 z0# . . . α#β . . . zh−1#zh) = pz
and π(〈q, y0#y1# . . . αγβ . . .#yh〉 z0# . . . αγβ . . . zh−1#zh) = qz′, so the
claim holds.

Claim 5.11.2. If s#⇒z pw in H, then 〈s,#〉#⇒∗ 〈p, η〉w in H ′ for some
z ≥ 0, w ∈ T ∗.

Proof of Claim 5.11.2. Consider Claim 5.11.1 for h = 0. At this point, if
s#⇒z pz0 in H, then 〈s,#〉#⇒∗ 〈p, x0〉z0 in H ′ and so z0 = w.

Claim 5.11.1 and Claim 5.11.2 sketch the formal proof of Theorem 5.11
including its construction part. �

Corollary 5.12. For every k ≥ 1 and for every language L defined by
G#RS of index k, H, there exists G#RS of index k without erasing rules
(see Definition 4.3), H ′, such that L = L(H) = L(H ′).

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 79 — #89 i
i

i
i

i
i

5.1 Power of Rewriting Systems 79

Proof of Corollary 5.12. This corollary trivially follows from Theorem 5.11
and Corollary 5.4. �

Unrestricted #-Rewriting Systems

We have discussed the generalized language-defining device that represents a
combination of a finite-state control, a context-sensitive core rules, and a few
additional conditions how its rules can be applied. Now, let us investigate even
more general form of rules inspired by unrestricted grammars (see Definition
2.13), in which there is no difference between nonterminal and terminal sym-
bols as to rewriting. Consider a new form of rules where the left-hand side of
a rule is the same as in generalized #-rewriting systems but the right-hand
side of a rule rewrites whole left-hand side, not only # in the left and the right
context. In other words, we do not replace the bounder with particular left
and right context, but in a configuration, we rewrite the entire left-hand side
of the rule by the right-hand side, so more than one bounder can be replaced
at once.

Definition 5.1. An unrestricted #-rewriting system (U#RS), H = (Q, Σ,
s, R), is a generalized #-rewriting system with rules of the following form:

p iα→ q β,

where p, q ∈ Q, i ∈ N, α, β ∈ Σ∗, occur(#, α) ≥ 1 and a computational step
is defined as follows:

Let puα′#α′′v, quβv be two configurations, p, q ∈ Q, u, v ∈ Σ∗, i ∈ N
and occur(#, uα′) = i − 1. Then, an unrestricted #-rewriting system makes
a computational step from puα′#α′′v to quβv by using the unrestricted rule
r : p iα′#α′′ → q β.

Let us illustrate the run of an unrestricted #-rewriting system on the
following example.

Example 5.1. In [DP89], Theorem 3.1.7 proves that, for every k ≥ 2, Lk ∈
Lk(CF#RS) and Lk /∈ Lk−1(CF#RS), where Lk = {b(aib)2k | i ≥ 1}.

Consider U#RS H = ({s, s′, p, q, r, r′, f}, {a, b,#}, s, R), where R con-
tains:

1: s 1#→ s′ ##a##
2: s′ 2#→ s′ #a
3: s′ 1#→ p #
4: p 2#a→ q a#
5: q 3#→ p #a
6: p 2##→ r ##
7: r 1#→ r′ b

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 80 — #90 i
i

i
i

i
i

80 5 Results

8: r′ 3#→ p ##
9: p 1##→ f b
10: f 1##→ f b.

For instance, H computes baabaabaab = b(a2b)3 as follows:
s#⇒ s′##a## [1]⇒ s′##aa## [2]⇒ p##aa## [3]
⇒ q#a#a## [4]⇒ p#a#a#a# [5]
⇒ q#aa##a# [4]⇒ p#aa##aa# [5]
⇒ r#aa##aa# [6]⇒ r′baa##aa# [7]⇒ pbaa##aa## [8]
⇒ qbaa#a#a## [4]⇒ pbaa#a#a#a# [5]
⇒ qbaa#aa##a# [4]⇒ pbaa#aa##aa# [5]
⇒ rbaa#aa##aa# [6]⇒ r′baabaa##aa# [7]⇒ pbaabaa##aa## [8]
⇒ fbaabaabaa## [9]⇒ fbaabaabaab [10].
It is obvious that H is of index 4 and L(H) = {b(aib)j | i, j ≥ 1} ∈

L4(U#RS). Thus, this example shows that for every k ≥ 1, there is a lan-
guage L = Ln, n > k, such that L /∈ Lk(CF#RS) and L is generated by an
unrestricted #-rewriting system of index 4.

Observation 5.1. Observe that for unrestricted #-rewriting systems, there
exists no analogical theorem to Theorem 5.21. When we only limit the number
of bounders in configurations, the finite index restriction makes no difference
to the power of this system. On the other hand, the workspace restriction (see
Definition 3.3) is more interesting for these systems to achieve the decrease of
their power.

Hypothesis 5.1. L(U#RS) = RE.

The hypothesis seems to hold already for index 1, because unrestricted
rules allow the system to move a bounder through the sentential configuration
component; for instance, by rules of the form p 1#a → p a# and p 1a# →
p #a. As the result, we can simulate an unrestricted grammar (see Definition
2.13) and probably, in addition, even by the use of a limited number of states.
At the end, we need to solve how to check that the sentence contains no #.

As a result from Observation 5.1, we believe that there is no infinite hie-
rarchy based on finite index in case of unrestricted #-rewriting systems. More
specifically, every unrestricted #-rewriting system can be transformed into an
equivalent unrestricted #-rewriting system of index 1. However, we have not
proved this conjecture so far.

Open problem 5.2. Let us have a #-rewriting system (CF#RS, G#RS,
or n-RLIN#RS) without the finite index restriction of their configurations.
What families of languages do they define? What is the relationship between
them?

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 81 — #91 i
i

i
i

i
i

5.1 Power of Rewriting Systems 81

We established the generative power of several types of #-rewriting sys-
tems of finite index. To encourage the future research, the power of #-
rewriting systems without the finite index restriction is still the open question.

5.1.4 Restricted Pushdown Automata

First, we illustrate the difference between controlled grammars regulated by
a regular language and restricted pushdown automata. More specifically, we
discuss the power of restricted pushdown automata and its dependency on the
family of the restricting language (see Theorem 5.13). Second, we demonstrate
that a linear restricting language increases the accepting power of RPDAs so
they can process even non-context-free languages (see Theorem 5.14).

For every RPDA H = (M,L) with regulating language L ∈ REG (see
Definition 4.12) we can construct an equivalent pushdown automaton M (see
Definition 2.19 and Theorem 2.2).

Theorem 5.13. L(RPDA,REG) = CF.

Proof of Theorem 5.13. Let K = (QK , ΣK , RK , sK , FK) be a finite au-
tomaton such that LK = L(K), and let H = (M,LK) be a restricted push-
down automaton, where M = (QM , ΓM , ΣM , RM , sM , SM , FM) is a push-
down automaton. Now, we construct an equivalent classical pushdown au-
tomaton with reversed pushdown-string N = (Q,Γ,Σ,R, s, S, F) such that
L(H) = L(N):

1. Q = QM ∪ {s}, where s /∈ QM is a new state;
2. Γ = ΓM ∪QK ∪ {S}, where S /∈ ΓM ∪QK is a new pushdown symbol;
3. Σ = ΣM ;
4. F = FM ;
5. R = {Ss→ sKSMsM} ∪

{p1B1p2B2 . . . pmBmpm+1oMa→ q1A1q2A2 . . . qnAnqn+1rM |
p1, p2, . . . , pm ∈ QK , pm+1 ∈ FK , m ≥ 0,
B1, B2, . . . , Bm ∈ ΓM , A1, A2, . . . , Am ∈ ΓM ∩ΣK ,
q1A1 → q2, q2A2 → q3, . . . , qnAn → qn+1 ∈ RK , qn+1 ∈ FK ,
n ≥ 0, B1B2 . . . BmoMa→ A1A2 . . . AnrM ∈ RM ,
oM , rM ∈ QM , a ∈ ΣM}.

A rigorous proof that demonstrates the equivalence between languages de-
fined by these two systems is left to the reader. A proof will be based on
mathematical induction on the sequence of moves from the starting configu-
ration to the final configuration in both rewriting systems.

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 82 — #92 i
i

i
i

i
i

82 5 Results

Basic Idea of the Proof of Theorem 5.13. The transformation of
a classical pushdown automaton to an equivalent restricted pushdown au-
tomaton follows from the definition. Specifically, every pushdown automaton
M = (Q,Σ, Γ,R, s, S, F) is also a restricted pushdown automaton with re-
stricting language Ξ = Γ ∗ that is regular.

A proof of the inclusion in another direction is made by the previous
construction. The first statement stands for the initial phase. Other statements
produce rules that are interleaved by auxiliary symbols that represent states
from QK .

The pushdown-string of M is of the form (QKΓM)∗. By interleaving push-
down symbols from ΓM by symbols from QK , we record states, which K has
to visit during the processing of the pushdowns-string ofM . The interleaving is
executed by the transformed rules of the form p1B1p2B2 . . . pmBmpm+1oMa→
q1A1q2A2 . . . qnAnqn+1rM . This mechanism guarantees that multisubstrings
B1B2 . . . Bm and A1A2 . . . An form suffixes of the restricting language sentence
that corresponds to the current pushdown-string of M .

To check the validity of the pushdown automaton configuration restricted
by the restricting automaton K, we require that the top symbol of the push-
down of M is some qn+1 ∈ FK .

�

Theorem 5.14. L(RPDA,REG) ⊂ L(RPDA,LIN).

Proof of Theorem 5.14. Example 4.7 describes an instance of a restricted
pushdown automaton restricted by a linear restricting language. The automa-
ton accepts language L = {anbncn | n ≥ 0}. By the pumping lemma for
context-free languages (see page 512 in [Med00]), L /∈ CF. Since every regu-
lar restricting language is linear as well, the proper inclusion in Theorem 5.14
holds. �

Corollary 5.15. CF = L(RPDA,REG) ⊂ L(RPDA,LIN) ⊆ RE

Proof of Corollary 5.15. The corollary follows from Theorem 5.13 and
Theorem 5.14. �

As inspired by restricted pushdown automata, we suggest studying a sim-
ilar restriction of regulated grammars, which will probably lead to the alge-
braic restrictions based on the operation intersection and substitution over
languages.

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 83 — #93 i
i

i
i

i
i

5.1 Power of Rewriting Systems 83

5.1.5 Reducing Deep Pushdown Automata

Now, we demonstrate the power and the resulting infinite hierarchy of lan-
guage families defined by reducing deep pushdown automata of depth n that
process input string from the right to the left (see [KMS06b, KS06a]); that is,
for every n ≥ 1, nL (rlRDPDA) ⊂ n+1L (rlRDPDA) ⊂ CS. The infinite
hierarchy equals to the existing infinite hierarchy of state grammars restricted
by n-limitation (proved by Kasai in 1970; see [Kas70] or Theorem 2.5). Ac-
cordingly, we prove only the equivalence of nL (ST) and nL (rlRDPDA) for
every n ≥ 1.

Lemma 5.16. For every n ≥ 1, nL (ST) ⊆ nL (rlRDPDA).

Proof of Lemma 5.16. Let G = (V,W, T, P, S) be an n-limited state gram-
mar and n ≥ 1. Set N = V −T . Define the homomorphism f over ({#}∪V)∗

as f(A) = A for every A ∈ {#} ∪N , and f(a) = ε for every a ∈ T . Introduce
the rlRDPDA of depth n,

nM = (Q,T, {#} ∪ V,R, s, S, {$}),

where Q = {s, $} ∪ {〈p, u〉 | p ∈ W, u ∈ prefix(N∗{#}n, n), |u| ≤ n} and R
is constructed by performing the following steps:

1. for every (p,A)→ (q, x) ∈ P , p, q ∈W , A ∈ N , x ∈ T+,
add sx ` 1〈p,A#n−1〉A to R;

2. if (p,A)→ (q, x) ∈ P , 〈q,prefix(uf(x)v, n)〉 ∈ Q, p, q ∈W , A ∈ N ,
x ∈ V +, u ∈ N∗, v ∈ N∗{#}∗, |uAv| = n, p /∈ Gstates(u), then
add 〈q,prefix(uf(x)v, n)〉x ` |uA|〈p, uAv〉A to R;

3. for every (p, S)→ (q, x) ∈ P , p, q ∈W , x ∈ V +,
add rule 〈q,prefix(f(x)#n, n)〉x ` 1$S to R;

4. if A ∈ N , p ∈W , u ∈ N∗, v ∈ {#}∗, |uv| ≤ n− 1, p /∈ Gstates(u), then
add rule 〈p, uv〉A ` |uA|〈p, u#v〉A and 〈p, uv〉A ` |uA|〈uAv〉A to R.

Basic Idea of the Proof of Lemma 5.16. Every n-limited derivation step
in G is simulated by reversal reduction step in nM . So, if some nonterminal
(ith from the left) is rewritten by string in G, then exactly the same string
on nM ’s pushdown is replaced by the same non-input symbol in the depth of
i, 1 ≥ i ≥ n. States of nM are composed of two components:

a) original state of G and
b) string of length n which remembers first n nonterminals in the current

sentential form (completed by # symbols from behind if needed).

Unlike state grammars, RDPDAs specify final states, so the first step cre-
ates initialization rules. The second step keeps the second component of the
current state consistent with the content of the pushdown. Next, the rules from

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 84 — #94 i
i

i
i

i
i

84 5 Results

the third construction step simulate the first derivation step in G (from the
starting configuration (p, S)) by emptying pushdown of nM . The last, fourth,
step fills in the second state component of nM , so this component reflects
the content of the pushdown. More specifically, the second state component
contains n topmost symbols from N in the current pushdown-string.

When G successfully completes the generation of a string of terminals, nM
completes by entering the final state $ and with empty pushdown.

Rigorous Proof: The formal proof that L(G,n) = L(nM) follows next. For
every n ≥ 1 and every right-to-left reducing deep pushdown automata of
depth n, nM , there exists a state grammar, G, such that L(G,n) = L(nM).

Claim 5.16.1. Let (p, S)n⇒m(q, dy) in G, where d ∈ T ∗, y ∈ (NT ∗)∗, p, g ∈
W , m ≥ 0. Then (〈q,prefix(f(y#n), n)〉, d, y#) ⇒∗ (〈p, S#n−1〉, ε, S#) in
nM .

Proof of Claim 5.16.1 (by induction on m = 0, 1, . . .).
Induction Basis: Let m = 0, so (p, S)n⇒0(p, S) in G, d = ε and y = S. Par-
ticularly, (〈p, S#n−1〉, ε, S#)⇒∗ (〈p, S#n−1〉, ε, S#) in nM , so the induction
basis holds.

Induction Hypothesis: Assume that the Claim 5.16.1 holds for all 0 ≤ m ≤ k,
where k ∈ N0 is a non-negative integer.

Induction Step: Let (p, S)n⇒k+1(q, dy) in G, where d ∈ T ∗, y ∈ (NT ∗)∗, p, q ∈
W . Because k+1 ≥ 1, express (p, S)n⇒k+1(q, dy) as (p, S)n⇒k(h, buAo)n⇒(q,
buxo) [(h,A)→ (q, x)], where b ∈ T ∗, u ∈ (NT ∗)∗, A ∈ N , h, q ∈W , (h,A)→
(q, x) ∈ P , maxsuffix(buxo, (NT ∗)∗) = y and maxprefix(buxo, T ∗) = d. By the
induction hypothesis, (〈h,prefix(f(uAo#n), n)〉, w, uAo#)⇒∗ (〈p, S#n−1〉, ε,
S#) in nM , where w = maxprefix(buAo, T ∗). As (p,A)→ (q, x) ∈ P , step 2 of
the construction introduces rule 〈q,prefix(f(uxo#n), n)〉x ` |uA|〈h,prefix(f(
uAo#n), n)〉A. By using this rule, nM simulates (h, buAo)n⇒(q, buxo) by
making (〈q, prefix(f(uxo#n), n)〉, ε, uxo#) ⇒ (〈h, prefix(f(uAo#n), n)〉, ε,
uAo#) in nM . If uxo ∈ (NT ∗)∗, uxo = y and the induction step is com-
pleted. Assume that uxo 6= y, so uxo = ty and d = wt for some t ∈ T+.
Observe prefix(f(uxo#n), n) = prefix(f(y#n), n) at this point. Then, nM
adds t by making |t| shifting moves so that (〈q,prefix(f(y#n), n)〉, t, y#)⇒|t|
(〈q,prefix(f(uxo#n), n)〉, w, ty#) ⇒∗ (〈p, S#n−1〉, ε, S#), which completes
the induction step.

By the previous claim for y = ε, if (p, S)n⇒∗(q, d) in G, where d ∈ T ∗,
p, q ∈ W , then (〈q,#n〉, d,#) ⇒∗ (〈p, S#n−1〉, ε, S#) in nM . As R contains
rules introduced in 1 and 3, we also have (s, d,#)⇒∗ (〈p, S#n−1〉, ε, S#)⇒
($, ε, S#) in nM . Thus, d ∈ L(G) implies d ∈ L(nM), so L(G,n) ⊆ L(nM).

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 85 — #95 i
i

i
i

i
i

5.1 Power of Rewriting Systems 85

Claim 5.16.2. Let (〈q,prefix(f(y#n), n)〉, c, by#)⇒m (〈p, S#n−1〉, ε, S#) in
nM , where c, b ∈ T ∗, y ∈ (NT ∗)∗, p, q ∈ W , m ≥ 0. Then, (p, S)n⇒∗(q, cby)
in G.

Proof of Claim 5.16.2 (by induction on m = 0, 1, . . .).
Induction Basis: Let m = 0. Then, c = b = ε, y = S, and (〈q,prefix(f(S#n),
n)〉, ε, S#)⇒0 (〈p, S#n−1〉, ε, S#) in nM . As (p, S)n⇒0(p, S) in G, the basis
holds.

Induction Hypothesis: Assume that Claim 5.16.2 holds for all 0 ≤ m ≤ k,
where k ∈ N0 is a non-negative integer.

Induction Step: Let (〈q,prefix(f(y#n), n)〉, c, by#) ⇒k+1 (〈p, S#n−1〉, ε, S#)
in nM , where c, b ∈ T ∗, y ∈ (NT ∗)∗, p, q ∈ W in nM . Because k + 1 ≥ 1,
we can express (〈q,prefix(f(y#n), n)〉, c, by#) ⇒k+1 (〈p, S#n−1〉, ε, S#) as
(〈q,prefix(f(y#n), n)〉, c, by#) ⇒ α ⇒k (〈p, S#n−1〉, ε, S#) in nM , where α
is a configuration of nM whose form depends on the last move:

(A) Assume that (〈q,prefix(f(y#n), n)〉, c, by#)s⇒α in nM . In greater detail,
let α = (〈q,prefix(f(y#n), n)〉,prefix(c, |c| − 1), aby#) with a ∈ T such
that c = prefix(c, |c| − 1)a. Thus, (〈q, prefix(f(y#n), n)〉, c, by#)s⇒(〈q,
prefix(f(y#n), n)〉,prefix(c, |c| − 1), aby#) ⇒k (〈p, S#n−1〉, ε, S#). Since
(〈q,prefix(f(y#n), n)〉,prefix(c, |c|−1), aby#)⇒k (〈p, S#n−1〉, ε, S#), we
have (〈q,prefix(f(y#n), n)〉,prefix(c, |c|−1), by#)⇒k (〈p, S#n−1〉, ε, S#).
By the induction, (p, S)n⇒∗(q,prefix(c, |c| − 1)aby) in G. As c = prefix(c,
|c| − 1)a, (p, S)n⇒∗(q, cby) in G.

(B) On the other hand, assume that (〈q,prefix(f(y#n), n)〉, ε, by#)r⇒α in
nM . In greater detail, suppose that α = (〈o,prefix(f(uAv#n), n)〉, ε,
uAv#) and (〈q, prefix(f(uxv#n), n)〉, ε, uxv#)r⇒(〈o, prefix(f(uAv#n),
n)〉, ε, uAv#) by using rule r1: 〈q, prefix(f(uxv#n), n)〉x ` |f(uA)|〈o,
prefix(f(uAv#n), n)〉A ∈ R introduced in step 2 of the construction,
where A ∈ N , u ∈ (NT ∗)∗, v ∈ (N ∪ T)∗, o ∈ W , |f(uA)| ≤ n, and
by# = uxv#. By the introduction hypothesis, (〈o, prefix(f(uAv#n),
n)〉, c, uAv#) ⇒k (〈p, S#n−1〉, ε, S#) implies (p, S)n⇒∗(o, cuAv) in
G. As r1 ∈ R, (o,A) → (q, x) ∈ P and A /∈ Gstates(f(u)). Thus,
(p, S)n⇒∗(o, cuAv)n⇒(q, cuxv) in G. Thus, (p, S)n⇒∗(q, cby) in G be-
cause by# = uxv#.

Consider the previous claim, Claim 5.16.1, for b = y = ε to see that
(〈q,prefix(f(#n), n)〉, c,#) ⇒∗ (〈p, S#n−1〉, ε, S#) in nM implies (p, S)n⇒∗
(q, c) in G. Let c ∈ L(nM). Then, (s, c,#)⇒∗ ($, ε, S#) in nM . Examine the
construction of nM to see that (s, c,#) ⇒∗ ($, ε, S#) starts by using some
shifting moves and then a rule introduced in 1, so (s, c,#)s⇒∗(s, α, β#) ⇒
(〈p,A#n−1〉, α, uAv#). Furthermore, notice that this sequence of moves ends

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 86 — #96 i
i

i
i

i
i

86 5 Results

as (s, c,#) ⇒∗ ($, ε, S#) by using a rule introduced in step 3. Thus, we can
express (s, c,#) ⇒∗ ($, ε, S#) as (s, c, #)s⇒∗(s, α, β#) ⇒ (〈p, A#n−1〉,
α, uAv#) ⇒∗ (〈q,prefix(f(x)#n), n)〉, ε, x#) ⇒ ($, ε, S#) in nM . Thus,
c ∈ L(nM) implies c ∈ L(G,n), so L(nM) ⊆ L(G,n).

As L(nM) ⊆ L(G,n) and L(G,n) ⊆ L(nM), L(G,n) = L(nM). Thus,
Lemma 5.16 holds.

Lemma 5.17. For every n ≥ 1, nL (rlRDPDA) ⊆ nL (ST).

Proof of Lemma 5.17. Let n ≥ 1 and nM = (Q,T, V,R, s, S, F) be a right-
to-left reducing deep pushdown automaton (rlRDPDA) of depth n. Let Z and
$ be two new symbols that occur in no component of nM . Set N = V − T .
Introduce sets C = {〈q, i, .〉| q ∈ Q, 1 ≤ i ≤ n − 1}, D = {〈q, i, /〉| q ∈
Q, 0 ≤ i ≤ n − 1}, an alphabet W such that card(V) = card(W), and for
all 1 ≤ i ≤ n, an alphabet Ui such that card(Ui) = card(N). Without any
loss of generality, assume that V , Q, and all these newly introduced sets and
alphabets are pairwise disjoint. Set U =

⋃n
i=1 Ui. Introduce a bijection h from

V to W . For each 1 ≤ i ≤ n, introduce a bijection ig from N to Ui. Define an
equivalent state grammar

G = (V ∪W ∪ U ∪ {Z}, Q ∪ C ∪D ∪ {$, z}, T, P, Z),

where P is constructed by performing the following steps:

1. add (z, Z)→ (〈z, 1, .〉, h(S)) to P ;
2. for every q ∈ Q, A ∈ N , 1 ≤ i ≤ n− 1,

add (〈q, i, .〉, A) → (〈q, i + 1, .〉, ig(A)) and (〈q, i, /〉, ig(A)) → (〈q, i −
1, /〉, A) to P ;

3. if qxY ` ipA ∈ R, for some p, q ∈ Q, A ∈ N , x ∈ V ∗, Y ∈ V , i = 1, . . . , n,
then add (〈p, i, .〉, A)→ (〈q, i− 1, /〉, xY) and
(〈p, i, .〉, h(A))→ (〈q, i− 1, /〉, xh(Y)) to P ;

4. for every q ∈ Q, A ∈ N , add (〈q, 0, /〉, A)→ (〈q, 1, .〉, A) and
(〈q, 0, /〉, h(Y))→ (〈q, 1, .〉, h(Y)) to P ;

5. for every q ∈ F , a ∈ T , add (〈q, 0, /〉, h(a))→ ($, a) to P .

Basic Idea of the Proof of Lemma 5.17. G simulates reversal effect of
the application of the rule qx ` ipA ∈ R. G scans (left-to-right) the senten-
tial configuration component, counts the occurrences of nonterminals until it
reaches the ith occurrence of a nonterminal. If it is A, G replaces it with x
which corresponds to reducing x to A by nM . G completes the simulation of
the reduction of a string x by nM so it marks every last symbol by bijection
h and in the last step rewrites it to the terminal, to generate x. Bijection h
compensates non-existence of the final state in G.

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 87 — #97 i
i

i
i

i
i

5.1 Power of Rewriting Systems 87

The rigorous proof that L(G,n) = L(nM) based on the mathematical induc-
tion is left to the reader.

Theorem 5.18. For every k ≥ 1, kL (RDPDA) = kL (ST).

Proof of Theorem 5.18. Clearly, Theorem 5.18 is proved by Lemma 5.16,
Lemma 5.17, and Theorem 2.5 in [Kas70]. �

As a conclusion, we introduce open problem areas and variants of RDPDA.
Let nL (lrRDPDA) be a language family accepted by reducing deep push-

down automata of depth i, where 1 ≤ i ≤ n, that process input string from
the left to the right.

Recall the part of Definition 2.7 about the reversal operation over a string
and about the reversal language. The reversal of w, denoted by rev(w), is
w written in the reverse order, and the reversal of L, rev(L), is defined as
rev(L) = {rev(w)| w ∈ L}.

Open problem 5.3. Consider the question—Is family nL (rlRDPDA) for
n ≥ 1 closed under this reversal operation? The solution is important for the
next open problem—Is it important for generative power of RDPDA whether
the input tape is read from the right to the left or from the left to the right?

Modifications of RDPDA

Every following modification is presented by its difference from RDPDA just
by a gist, so the same or very analogous definitions of notions are omitted. The
short discussion about generative power is included (without proofs). Every
introduced version has its corresponding alternative in case of deep pushdown
automata in the previous chapter.

RDPDA with erasing rules. Let us note that throughout this section, we
have considered only true pushdown reductions in the sense that the pushdown
non-empty substring is replaced with a symbol; at this point, no pushdown
reduction can result in extending the pushdown string by a non-input symbol
from ε. In opposite case, the possibility of a reduction of the empty string
rapidly increases non-determinism in moves of RDPDA. Only the depth of
such reduction states the substring on the pushdown where the reduction
occurs. For instance, the reduction of ε in depth i inserts a non-input push-
down symbol somewhere between (i− 1)th and ith non-input symbol on the
pushdown. Nevertheless, the discussion of moves that allow RDPDAs to re-
duce ε to a non-input pushdown symbol and, thereby, extend its pushdown
represents a natural generalization of RDPDAs discussed in Section 4.2.2.
What is the power of RDPDAs generalized in this way?

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 88 — #98 i
i

i
i

i
i

88 5 Results

Symbol-dependent RDPDA. In this modification, there is required to count
concrete non-input symbols on the pushdown instead of arbitrary non-input
symbols.

The definition of symbol-dependent RDPDA is identical with classical
version of RDPDA (see Definition 4.11) up to the definition of reduction
between two configurations of RDPDA:

(q, w, uvz) r⇒ (p, w, uAz) [qv ` mpA], where occur(A, u) = m− 1
(instead of the original condition occur(Γ −Σ, u) = m− 1).

Example 5.2. Language {anbncn| n ≥ 1} can be described by symbol-
dependent RDPDA with rules:

sab ` 1pA, pc ` 1qC, qaAb ` 1tA, tcC ` 1qC, qAC ` 1fS.

For symbol-dependent RDPDAs, we can introduce a generalization of n-
limitation denoted as (n,M)-limitation that restricts the rewriting of first n
concrete symbol occurrences from set M , where M ⊆ Γ . Again, the power of
symbol-dependent RDPDA under such limitation is an open problem.

In addition, the results concerning the introduced modifications ofRDPDA
belong to the future investigation.

5.2 Infinite Hierarchies of Language Families

As obvious from the previous section, a few infinite hierarchies of language
families can be derived from the results. More generally, most of rewriting
systems with some restriction of their dynamic complexity create infinite hie-
rarchies of language families that depend on the parameter of the particular
restriction, such as finite index, depth, and limitation.

5.2.1 Based on Finite Index

The finite index is a very strong restriction of rewriting system configurations.
Most regulated rewriting systems restricted by the finite index establish the
same language family that properly contains REG and is contained in CS
(see Equation 3.1 on page 38).

Theorem 5.19. For every k ≥ 1, Lk(CF#RS) ⊂ Lk+1(CF#RS).

Proof of Theorem 5.19. In 1980, Gheorge Păun, using language {b(aib)2k |
i ≥ 1}, k ≥ 1, proved that programmed grammars of index k define an
infinite hierarchy of language families (see [Pău80] or page 160, Theorem 3.1.7
in [DP89]). Theorem 5.19 follows from Theorem 5.3 and from this infinite
hierarchy (see [KS06b]). �

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 89 — #99 i
i

i
i

i
i

5.2 Infinite Hierarchies of Language Families 89

Theorem 5.20. For every n ≥ 1, L (n-RLIN#RS) ⊂ L ((n+1)-RLIN#RS).

Proof of Theorem 5.20. Recall that L (m-Pn-G) ⊂ L (m-P(n+1)-G), for
all m,n ≥ 1 (see Theorem 8 in [Woo75]), which holds for m = 1 as well. There-
fore, the theorem follows from Theorem 5.7 proving that L (n-RLIN#RS) =
L (1-Pn-G). �

Next, we establish the infinite hierarchy of language families defined by
generalized #-rewriting systems based on the finite index restriction.

Theorem 5.21. For every k ≥ 1, Lk(G#RS) ⊂ Lk+1(G#RS).

Proof of Theorem 5.21. From Theorem 5.11 follows that Lk(G#RS) =
Lk(CF#RS). Recall that Lk(P) = Lk(CF#RS) (see [KMS06a]) and
Lk(P) ⊂ Lk+1(P) for every k ≥ 1 (see Theorem 3.1.2i and Theorem 3.1.7 in
[DP89]). Then, Theorem 5.21 holds. �

5.2.2 Based on n-limitation

In 1970, Kasai introduced state grammars (see Definition 2.23 in [Kas70])
where he proved that in the case of restriction of the number of nonterminals
that can be rewritten during a derivation (n-limitation, see Definition 3.1),
an infinite hierarchy of language families arises. By the demonstration of the
equivalence of n-limited state grammars and, just introduced, right-to-left re-
ducing deep pushdown automata, we get the same infinite hierarchy as well.
As compared to state grammars, the n-limitation is expressed by the maxi-
mum depth of reduction operations given by the set of rules of the reducing
deep pushdown automata.

Theorem 5.22. For every k ≥ 1, kL (rlRDPDA) ⊂ k+1L (rlRDPDA).

Proof of Theorem 5.22. Theorem 5.18 states that for every k ≥ 1,
kL (rlRDPDA) = kL (ST). Therefore, Theorem 5.22 follows from Theorem
5.18 and Theorem 2.5 in [Kas70]. �

We have shown several results concerning the changes of the power of
various rewriting systems depending on their restrictions. In addition, we es-
tablished three infinite hierarchies of language families depending on the used
rewriting system, on the restriction, and on the particular constraining con-
stant (see Section 5.2).

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 90 — #100 i
i

i
i

i
i

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 91 — #101 i
i

i
i

i
i

Part III

Relationship with Practice

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 92 — #102 i
i

i
i

i
i

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 93 — #103 i
i

i
i

i
i

6

Application of Configuration Restrictions

This chapter discusses potential applications of the introduced rewriting sys-
tems and their restrictions. Of course, the primary attention is dedicated to
#-rewriting systems.

First, we discuss the possible tasks that could be solved by these new
systems. Next, we study the practical properties of these systems, such as
determinism and canonical rewriting. Finally, we sum up all problems when
the application area is the syntactical parsing.

6.1 Application Areas

Searching real applications is very difficult and sometimes omitted when a
new regulated rewriting system without direct motivation of its definition
by some particular problem is concerned. With respect to the restrictions in
previous chapters, we can hardly find any applications in very challenging
areas, such as natural language description or general description of context-
sensitive properties of programming languages.

When we consider the formal language theory, the applications can be
classified into the following categories:

• parsers and compilers (the description and processing of programming
languages are the foundation stones of the computer science);

• linguistics (the study of the relationship between natural and formal lan-
guages; the formal description and processing of natural languages);

• biologically motivated systems (such as microbiology, bioinformatics, ge-
netics; see [Kel97, KKMVM00, Pău02, Coh04]);

• modeling (the usage of a formal language as a formal model for general
modeling and verification; see [BHV04]).

The general-purpose problem of rewriting systems is a membership of a
given sentence into a given language that is defined by such rewriting system.

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 94 — #104 i
i

i
i

i
i

94 6 Application of Configuration Restrictions

This task can be decided especially by the rewriting systems of accepting type,
such as deterministic automata of various types.

Some concrete examples of practical use of configuration restrictions of
rewriting systems follow next:

• the research of the relationship between k-limitation and syntactical
parsers; for instance, there is an analogy between LL(k) top-down parsers
and deep pushdown automata of depth k and between LR(k) bottom-up
parsers and reducing deep pushdown automata of depth k (see [SSS90]);

• the usage of restriction of the number of active symbols during the parsing;
in case of non-deterministic computation, the finite index restriction or the
n-limitation restriction reduces the searched state space;

• the introduction of comparable measures for the complexities of formal
models; for instance, the relationship of the normalized number of rules to
get a final sentence of a language of two different rewriting systems can be
studied from the dynamic complexity and descriptional complexity point
of view;

• the use of regulation and restriction mechanisms to make the rule applica-
tion decisions simpler; for instance, deterministic variants of the introduced
rewriting systems, such as deterministic #-rewriting systems of type 2 or
regulated pushdown automata.

6.2 Suitable Modifications of Formal Models

The deterministic variants of formal models are essential to the majority of
applications in the formal language theory. From the beginning, the comput-
ers work based upon an algorithm. Hereafter, we consider only deterministic
algorithms in order to repeat the computation and to get the same results for
the same inputs.

Regarding Turing machines and corresponding formal models, such as un-
restricted grammars, the determinism do not decrease the power of the formal
model, but it affects the effectivity of its computation. For example, the de-
terministic simulation of a non-deterministic Turing machine requires greater
space and time complexity in comparison with the non-deterministic variant.
In the rest of the present chapter, we focus on the weaker formal models,
such as #-rewriting systems and deep pushdown automata. Concerning these
models, the main advantage is the rapidly lower complexity of the determin-
istic versions. For instance, this complexity is decreased from the cubic to the
linear complexity.

The determinism is the key property of a formal model to work effectively.
For instance, a deterministic pushdown automaton accepts or rejects every
sentence in the linear time depending on the length of the sentence.

The definition of determinism for a particular regulated rewriting system is
rarely mathematically described in a simple way because when the description

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 95 — #105 i
i

i
i

i
i

6.2 Suitable Modifications of Formal Models 95

is simple, the determinism is mostly inapplicable in practice. In addition, the
determinism very often decreases the power of the formal model, and if not,
the use of such determinism is quite ineffective. This is illustrated by two
types of deterministic #-rewriting systems.

6.2.1 Deterministic #-Rewriting Systems

#-rewriting systems are generative rewriting systems, which implies a difficult
definition of determinism. For example, an analogy can be seen in case of
context-free grammars and pushdown automata.

More concretely, this section concentrates its attention to the context-free
#-rewriting systems. However, all types of determinism can be defined for
n-right-linear and generalized #-rewriting systems as well.

Type 1

The first way of defining a determinism of the context-free #-rewriting sys-
tems naturally is to restrict the set of rules, so in the current state for every
rewritable bounder there is at most one applicable rule, which leads to more
straightforward selection of the rule to be applied in comparison with the
general, non-deterministic, selection.

Definition 6.1. As a special case of context-free #-rewriting system H =
(Q,Σ,R, s), when for every p ∈ Q and every positive integer i ∈ N, pi# is
the left-hand side of no more than one rule in H; that is, for every pair p ∈ Q
and i ∈ N holds card({r | r : p i#→ q x ∈ R, q ∈ Q, x ∈ Σ∗}) ≤ 1, then
H is called deterministic context-free #-rewriting system of type 1 (abbrev.
det1CF#RS).

In general, a deterministic context-free #-rewriting system of type X is
denoted by detXCF#RS and the family of languages defined by these systems
is denoted by L(detXCF#RS).

For instance, H1 from Example 4.1 on page 48 is obviously non-determin-
istic because its second and fourth rule have the same left-hand side.

On the closer examination, we find out that during a sentence genera-
tion there is still the problem with the determination of the bounder that
is the most appropriate to be rewritten in the following computational step.
This problem of the determinism of type 1 (see Definition 6.1) significantly
influences the following results.

Theorem 6.1. L (CF#RS) = L(det1CF#RS).

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 96 — #106 i
i

i
i

i
i

96 6 Application of Configuration Restrictions

Proof of Theorem 6.1. Since det1CF#RS is a special case of CF#RS, we
only need to prove that L (CF#RS) ⊆ L(det1CF#RS).

Let H = (QH , Σ, sH , RH) be a CF#RS, where Σ = T ∪{#}. We construct
the det1CF#RS, D = (QD, Σ, sH , RD), where RD and QD are constructed
by performing the following steps:

1. For every p ∈ QH and i ∈ N, set i
p RH = {r : p i#→ q x | r ∈ RH , q ∈ QH ,

x ∈ Σ∗};
2. Set QD = QH and auxiliary set R′ =

⋃
{ ip RH | card(ip RH) ≤ 2};

3. For every i
p RH with card(ip RH) ≥ 3 compute the following algorithm:

o := p;
while (card(ip RH) ≥ 3) do:
• exclude r from i

p RH
• add 〈 ip RH〉 into QD
• add o i#→ rhs(r) and o i#→ 〈 ip RH〉 # into R′;
• o := 〈 ip RH〉;

4. Set RD =
⋃
{ ip R′ | card(ip R

′) = 1};
5. Let < be a strict order on Lab(R′). For every pair of rules ri : p i#→ q1 x1

and rj : p i# → q2 x2 from R′ such that ri < rj , add the following rules
into RD:
• p i#→ 〈ri, rj〉 ##
• 〈ri, rj〉 i#→ 〈ri〉 #
• 〈ri, rj〉 i+1#→ 〈rj〉 #
• 〈ri〉 i#→ 〈r′i〉 x1

• 〈rj〉 i#→ 〈r′j〉 x2

• 〈r′i〉 i+1#→ q1 ε
• 〈r′j〉 i+1#→ q2 ε
and add newly created states 〈ri, rj〉, 〈ri〉, 〈rj〉, 〈r′i〉, 〈r′j〉 into QD.

Basic Idea of the Proof of Theorem 6.1.

Step 1. The subsets i
p R denote the sets of rules with the same left-hand side.

Therefore, the cardinality of these sets equals to the number of rules with
the same left-hand side (the degree of non-determinism).

Steps 2-3. The set of rules, RH , is transformed into the new set of rules R′ that
contains at most two rules with the same left-hand side.

Step 4. The new set of rules, RD, is initialized by all already deterministic rules
from R′. Now, we only need to handle the pairs of rules with the same
left-hand side.

Step 5. Every pair of rules with the same left-hand side is simulated by the se-
quence of seven new rules in RD:
(1) generates the auxiliary (i+ 1)th bounder,
(2) and (3) do the selection from one of these simulated rules,
(4) and (5) rewrite the ith bounder,

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 97 — #107 i
i

i
i

i
i

6.2 Suitable Modifications of Formal Models 97

(6) and (7) change the state to the target state and erase the auxiliary
bounder.

�

Example 6.1. Let us show the construction based on the proof of Theo-
rem 6.1 by transforming CF#RS from Example 4.1 on page 48, H1, into
det1CF#RS, D. Since the degree of determinism is less than three, we can
skip first three steps of the construction. Then, we copy all deterministic
rules into RD by actions in step 4, so RD = {1: s 1# → p ##, 3: q 2# →
p #c, 5: f 1#→ f c} and QD = {s, p, q, f}. Finally, by step 5, we generate the
simulating sequence for the pair of non-deterministic rules, 2 : p 1# → q a#b
and 4: p 1#→ f ab.

Since ri = 2, rj = 4, p = p, i = 1, q1 = q, q2 = f , x1 = a#b, and x2 = ab,
add the following rules into RD:

p 1#→ 〈2, 4〉 ##
〈2, 4〉 1#→ 〈2〉 #
〈2, 4〉 2#→ 〈4〉 #
〈2〉 1#→ 〈2′〉 a#b
〈4〉 1#→ 〈4′〉 ab
〈2′〉 2#→ q ε
〈4′〉 2#→ f ε

At the end, QD = {s, p, q, f, 〈2, 4〉, 〈2〉, 〈4〉, 〈2′〉, 〈4′〉}.

Corollary 6.2. For every k ≥ 1, Lk(CF#RS) ⊆ Lk+1(det1CF#RS).

Proof of Corollary 6.2. Since there is always only one more bounder added
in the construction proof of Theorem 6.1, the corollary holds. �

Theorem 6.3. For k = 1 and language L ∈ Lk(det1CF#RS), card(L) ≤ 1.

Proof of Theorem 6.3. Let us assume that k = 1 and card(L) > 1. The
determinism implies that every rule has a unique left-hand side. Thus, the
states and their programming by the finite-state control restrict branching
and even cycles in the rules, thereby, in the computation. In det1CF#RS,
we cannot generate two different configurations from the initial configuration,
s#, by any number of computational steps. So, the assumption that k = 1
and card(L) > 1 is wrong. �

Hypothesis 6.1. There is a construction algorithm that does not increase the
index of the det1CF#RS during the construction from an arbitrary CF#RS of
index k. In symbols, for every k ≥ 2, Lk(CF#RS) = Lk(det1CF#RS).

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 98 — #108 i
i

i
i

i
i

98 6 Application of Configuration Restrictions

Let us discuss the solution of the hypothesis in greater detail. Notice that
we need not generate auxiliary bounder as the (i+ 1)th bounder. Specifically,
we can choose already existing bounder, which is not planned to be rewritten
in the following step, by modulo function (remainder after the integer division
operation). For instance, for k = 3, if we want to rewrite the second bounder,
we do not need introduce the fourth bounder and increase index k, but we
can use the rewriting of the first or third bounder, instead. Of course, this
principle works only for k ≥ 2. As a result, we can get even better result than
in Theorem 6.1; that is, for every k ≥ 2, Lk(CF#RS) = Lk(det1CF#RS).

In fact, the way of achieving the determinism (according to Definition
6.1) from non-deterministic CF#RS is the replacement of one type of non-
determinism by another. In other words, consider two questions about rule
selection:

• “Which bounder will be replaced and by which rule?”
• “Which bounder will be replaced in a fundamental rewriting step of a

computation?”.

Then, the first question describing a non-deterministic CF#RS is replace by
the second question characteristic for the determinism of type 1. Thus, in the
determinism of type 1, we do not care about which rule to choose, but only
which bounder to rewrite.

In the following paragraphs, we thought of another type of deterministic
#-rewriting system defined in a more practical way. For instance, it is useful
in the syntax analysis.

Type 2

In general, it is a problem to state reasonable condition for determinism of
generative formal models. In most cases, trivial conditions restricting the form
of rules are not enough. For example, the definition of deterministic context-
free grammars is based on the set of conditions for every rule. Specifically,
based on a few input symbols, we unambiguously decide which rule should
be used to successfully accept a sentence of a language. In addition, if the
sentence belongs to the language there will be no need to reconsider any part
of the computation chosen earlier. In other words, no backtracking is needed
to throw away some already done part of the computation and to choose
another path to the final configuration.

The problem of defining determinism in regulated rewriting systems is even
more difficult because additional regulated mechanisms extend the number of
variants. For instance, the definition of a determinism can be based on the
level of a regulating mechanism, on the level of a rewriting mechanism, or
even a combination.

By analogy with the conditions in LL(1) grammars (see [SSS90]), the def-
inition of determinism of type 2 contains less restricting determinism during

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 99 — #109 i
i

i
i

i
i

6.2 Suitable Modifications of Formal Models 99

the rewriting of the first bounder in a configuration and more restrictions
during the rewriting of other bounders. The whole idea is to avoid the necessity
to work and read the input in several places in the sentence. This approach
can be advantageously used in the case of deep pushdown automata as well.

Concept 6.1. Let H = (Q,Σ,R, s) be a deterministic context-free #-
rewriting system of type 2 (det2CF#RS) if the following conditions hold:

For every state, there is at most one rule that manipulates any bounder
but first. In addition, the existence of a rule that rewrites the first bounder in
this state is not allowed. In case of rules working with the first bounder, we
apply conditions analogical to LL(1) grammars. That is, only when the first
bounder is to be rewritten, the deterministic decision is made based on two
pieces of information—(1) the current state and (2) the read input symbol.
The rule in other rewriting steps is determined only by the current state. This
procedure is illustrated by Example 6.2.

Example 6.2. To illustrate the example, we describe an accepting mode of
deterministic CF#RS of type 2, H.

Mostly, H works in the original generative mode. Only when H applies
certain rules, it reads an input symbol denoted by in and moves the reading
head to the next input symbol. We do not require to read the whole input
string, only a prefix necessary to the right decisions during the rewriting of
the first bounders. The rules for the rewriting of the first bounder that read an
input symbol to do the proper rule selection contain the condition of the form
(in = the list of accepted symbols called a conditional set). A rule without
conditional set does not read an input because the current input symbol does
not matter. We require that every pair of rules with the same initial state
contains disjunctive conditional sets to avoid indecisiveness.

Let H contain the following rules:

1 : s 1#→ p ##
2: p 1#→ q a#b (in = {a})
3 : q 2#→ p c#
4: p 1#→ f ε (in = {b})
5 : f 1#→ f ε

H processes aabbcc as follows: s# ⇒ p## [1] ⇒ qa#b# [2 (in =
a)] ⇒ pa#bc# [3] ⇒ qaa#bbc# [2 (in = a)] ⇒ paa#bbcc# [3] ⇒
faabbcc# [4 (in = b)] ⇒ faabbcc [5].

By the determinism definition of type 2, we have solved the problem with
the sentence processing. A #-rewriting system works with the configuration
on several places (not only at the beginning). However, we hardly determine
which part of the configuration corresponds to which part of the input string.
Thus, the reading of the input tape can be handled only from the beginning

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 100 — #110 i
i

i
i

i
i

100 6 Application of Configuration Restrictions

to preserve the deterministic specification of the reading location in the input
tape, even for non-context-free languages, such as in Example 6.2.

To sum up this section, we showed that mathematically oriented determin-
ism of type 1 remains the power of the system unchanged. On the contrary,
more practical determinism of type 2 restricts the power significantly. But it
is still an open problem what is the exact power of det2CF#RS?

6.2.2 Canonical #-Rewriting Systems

The canonical derivation plays a crucial role in the syntactical analysis by
context-free grammars and in the parsing theory. That is the main motiva-
tion to study canonical rewriting in new formal models, especially #-rewriting
systems. The canonical step rewrites a bounder in more systematic and deter-
ministic way because it rewrites only the leftmost active symbol. This notion is
similar to n-limitation restriction, but more restrictive. In general, the canon-
ical rewriting replaces several leftmost active symbols. In case of the leftmost
rewriting (or only left rewriting) we consider a replacement of the leftmost
active symbol in a selected configuration component, such as sentential config-
uration component. Note that the component with the current state is usually
not limited in this way (see Note 6.1).

For instance, regulated grammars, which are the inspiration for #-rewriting
systems, allow several different types of canonical derivations as investigated
in [CMM73, DP89, Fer00, Mau73, Pău85].

Let us define a canonical computational step in #-rewriting systems in
two ways as follows:

a) Strictly canonical step rewrites one of k leftmost bounders without any
reflection to the current state, where k ≥ 1. This type directly corresponds
to the k-limitation restriction of the computation (see Definition 3.1).

b) State-controlled canonical rewriting step works with k leftmost bound-
er as well and, in addition, considers the current state. That is, we select
k leftmost occurrences of active symbols rewritable in the current state
by existing rules. Then, we choose the symbol from this selection to be
rewritten.

In the rest of this section, let H = (Q,Σ,R, s) be a context-free #-
rewriting system, n = max({i | p i# → q x ∈ R}) be the maximum index
of the bounder that can be rewritten by rules from R, and k ∈ N.

Definition 6.2. Strictly k-canonical rewriting step is a computational step
of degree j, where j ≤ k. Strictly k-canonical computation contains only k-
canonical rewriting steps. Strictly k-canonical language is defined as L(H) =
{w ∈ (Σ − {#})∗ | s# ⇒∗ qw by strictly k-canonical computation in H}.
L(CF#RS, k-strictly canonical) denotes the family of these languages.

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 101 — #111 i
i

i
i

i
i

6.2 Suitable Modifications of Formal Models 101

Definition 6.3. For every p ∈ Q, we define K(H, p) = {i | p i# → q x ∈ R}
to be the set of indices of all rewritable bounders in the current state p of
H. The rewriting step px ⇒ qy is said to be state-controlled k-canonical if
max(K(H, p))−min(K(H, p)) < k. State-controlled k-canonical computation
and language are defined by analogy with the previous definition. The lan-
guage family is denoted by L(CF#RS, state-controlled k-canonical).

Notice that k can be selected from interval 1 ≤ k ≤ n because every
CF#RS is implicitly from its definition strictly n-canonical.

Next, let us illustrate the core of an algorithm for the transformation of
each CF#RS into an equivalent state-controlled 1-canonical CF#RS; that is,
L (CF#RS) ⊆ L(CF#RS, state-controlled 1-canonical).

Algorithm 6.1 (sketch). Replace every rule r : p i# → q x ∈ R, where
i > min(K(H, p)) = m, by two new rules:

pm#→ 〈r〉 #

〈r〉 i#→ q x

where 〈r〉 is a new state.

From this algorithm, it follows that the second type of the canonical com-
putation is not very suitable for practical usage. Thus, we focus on the strictly
k-canonical rewriting in the rest of this section. The most valuable variant for
practice is the case when k = 1; that is, we say a leftmost rewriting step
and leftmost #-rewriting system, respectively. The leftmost rewriting steps
eliminate the fundamental source of non-determinism in #-rewriting systems.
Hence, if we consider strictly 1-canonical computation, only the rules manip-
ulating the first bounder of a configuration are relevant.

In the future, we suggest to study a hypothesis saying that every language
defined by a leftmost #-rewriting system belongs to CF. The main idea of
a potential proof for the previous hypothesis is to demonstrate that every
leftmost #-rewriting system can be transformed into an equivalent context-
free grammar. The problem is in a precise simulation of a state control of
#-rewriting system. Perhaps, we can use the first nonterminal occurrence in
the corresponding context-free sentential form to keep the information about
the simulated state. The other nonterminal occurrences reflect to the rest of
the bounders.

Open problem 6.2. L(CF#RS, 1-strictly canonical) ⊂ CF?

As a proof of the previous open problem, we have to prove the previous
hypothesis, and even in the other direction, we have to demonstrate that there
is a context-free language that can be generated by no leftmost #-rewriting
system.

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 102 — #112 i
i

i
i

i
i

102 6 Application of Configuration Restrictions

Note 6.1. In more detail, k-canonical rewriting of #-rewriting system con-
figuration does not include the rewriting of the current state into the constant
k. For instance, for k = 1, we apply the rewriting to the state configuration
component and to the leftmost bounder of the sentential configuration compo-
nent. In other words, we rewrite two leftmost active symbols—(1) the current
state in the first component of the configuration and (2) the first bounder in
the second component of the configuration.

In conclusion, let us make a note that from a practical point of view, the
combination of some type of k-canonical rewriting and some type of deter-
minism should be investigated in further detail.

6.2.3 Comment on Deterministic Deep Pushdown Automata

A similar transformation as for deterministic #-rewriting systems of type 1
can be used for deep pushdown automata that are deterministic with respect
to their depth of expansions (see Definition 4.10 and Corollary 1 in [Med06]).

Let us present the main idea of the transformation algorithm that sketches
the conversion between a deep pushdown automaton nM and an equivalent
deterministic deep pushdown automaton with respect to its depth of expan-
sions.

Algorithm 6.2 (sketch). If for some p ∈ Q exists two rules r′ : ipA → qu
and r′′ : jpB → ov in R, where i 6= j (that is, r′ and r′′ do not satisfy the
condition about the determinism with respect to depth of expansions), then
we replace these two rules by the following three rules:

r′ : ipA→ qu,

ρ : ipA→ 〈r′′〉A,

ρ′ : j〈r′′〉B → ov,

where ρ, ρ′ are new unique rule labels and 〈r′′〉 is a new state. We repeat this
conversion of rules until we get R that contains only deterministic rules with
respect to their depth of expansions.

Still, a question whether a deep pushdown automaton can be transformed
into an equivalent strictly deterministic deep pushdown automata remains
open.

6.3 Syntactical Analysis

The major task of syntactical analysis is to decide whether a given sentence
belongs to the language defined by a given rewriting system (see [ALSU06,
SSS87]).

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 103 — #113 i
i

i
i

i
i

6.3 Syntactical Analysis 103

In general, the main problem in regulated rewriting systems classified un-
der the family of context-sensitive languages is the possibility to rewrite their
configuration in several places. The selection of such place is usually not ran-
dom or the leftmost, but it is regulated by finite-state control that includes
another dimension of non-determinism to these systems. Both generative and
accepting systems require a mechanism to predict which active symbol cor-
responds to which substring segment of the resulting sentence or the input
sentence. The straightforward solution to this difficult problem is to intro-
duce a restriction that ensures the disjunctiveness of sets of starting prefixes
of these substring segments, so every starting prefix identifies the segment
unambiguously.

6.3.1 Programming Languages

The most common usage of syntactical analysis and parsing theory is in
the area of programming language processing (see [IRS76, LMW79, Weg72,
Wol96, Woo84]). Mostly, programming languages are specified by context-free
grammars with special additional context conditions to their rules. When we
build up a parser of a programming language, the essential phase is focused
on the integration of these context conditions with rules of the grammar into
the parser.

Unfortunately, #-rewriting systems do not suit well to the description
of programming languages since these systems cannot even describe every
context-free language, such as the language for expressions (see Example 4.2
with unlimited number of bracket types). In fact, #-rewriting systems cannot
handle even some context-sensitive problems that are introduced by program-
ming language structures.

For example, consider a programming language that requires the occur-
rence of a variable declaration before the variable definition and a use of the
variable in a program. We call this problem a declaration-definition problem
of variables. In addition, this problem is complicated by structured programs
that can be contained in another program structure. Then, the variables with
the same name but different memory location can occur. The location of
the variable value depends on its name and program context. The idea of
declaration-definition problem is described by language D = {(wc)n| n ≥ 1,
w ∈ (Σ − {c})∗} (see [DP89]), where c is a separator, c /∈ alph(w), and w is
the name of the variable such that the first occurrence of w corresponds to
its declaration and the other occurrences of w correspond to the definition of
w or its use. Though #-rewriting systems cannot solve this problem, they are
somewhat better than context-free grammars. Indeed, for some positive, con-
stant integer n, there exists a context-free #-rewriting system that generates
D.

This chapter studied the properties of context-free #-rewriting systems
and their modifications from the practical point of view.

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 104 — #114 i
i

i
i

i
i

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 105 — #115 i
i

i
i

i
i

Part IV

Conclusion

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 106 — #116 i
i

i
i

i
i

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 107 — #117 i
i

i
i

i
i

7

Conclusion

Traditionally, the last chapter summarizes the results and suggests a future
investigation. In addition, we discuss a few hypotheses and open problem areas
to be studied consecutively.

7.1 Summary

This monograph generalizes automata and grammars as a common notion of
a rewriting system that changes its inner state by steps that rewrite various
parts of its configuration according to the concrete rewriting system defini-
tion. The notion of configuration represents the inner state and was absorbed
from the theory of automata and generalized for rewriting systems. The con-
figuration is a finite sequence of components. A component is a string over
the total alphabet of the rewriting system. A rewriting step (computational
step) between configurations is made by a rewriting rule. Consecutively, we
unify the notions from the area of automata and grammars to be able to study
rewriting systems created by their various combinations (see Chapter 1 and
Chapter 2).

Next, we introduced an intuitive classification of restrictions and regu-
lation classification of rewriting systems to study easier dynamic complexity,
which investigates rewriting systems from another point of view in comparison
with the descriptional and time and space complexity. The descriptional com-
plexity describes the effectiveness of language description by an instance of a
rewriting system, such as the cardinality of rule set. On the other hand, the
dynamic complexity examines the effectiveness of rewriting itself during the
processing a language sentence. For instance, the maximum sufficient number
of nonterminals in configurations during a computation is the measure of the
dynamic complexity (see Chapter 3).

Chapter 4 defines new rewriting systems and Chapter 5 demonstrates re-
sults achieved by the restriction of their configuration and the restriction of

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 108 — #118 i
i

i
i

i
i

108 7 Conclusion

sequences of applied rules. More specifically, we consider the following formal
models (with the corresponding language families):

• #-rewriting systems:
– context-free #-rewriting systems (L(CF#RS))
– n-right-linear #-rewriting systems (L (n-RLIN#RS))
– generalized #-rewriting systems (L(G#RS))

• deep pushdown automata (L (DTDP)) and reducing deep pushdown au-
tomata (L (rlRDPDA))

• restricted pushdown automata (L(RPDA, X))

These rewriting systems are restricted by the following types of restrictions
that are classified in Chapter 3:

• finite index k (Lk(X))
• k-limitation (kL (X))
• depth k (kL (X))
• restriction of configurations by a language Y (L(X, Y))

The relationship between the dynamic complexity and the configuration
restriction mostly leads to the infinite hierarchies of language families, which
is illustrated by several examples of various regulated rewriting systems.

Next, recall the most important results of this book (see Chapter 5) that
characterize the infinite hierarchies of language families based on the various
restrictions of rewriting systems restricted by a parameter k ≥ 1:

kL (ST) = kL (DTDP) = kL (rlRDPDA)

Lk(P) = Lk(RC) = Lk(CF#RS) = Lk(det1CF#RS) = Lk(G#RS)

L (k-RLIN#RS) = L (1-Pk-G)

The investigation of restrictions and regulations of formal models is a part
of the formal language theory for several decades. Still, there are some the-
oretical and practical challenges, such as in [Kol05, KM05a, Kot02, Ryc07].
Therefore, Chapter 6 focuses on properties that are relevant to a practical
use of introduced #-rewriting systems that are the core formal model in this
monograph. Specifically, we study the following properties and their perspec-
tive for applications:

• two types of determinism
• two types of canonical rewriting and their relation to the limitation

As a conclusion of Chapter 6, the potential applications require even more
sophisticated algorithms and modifications of regulated rewriting systems that

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 109 — #119 i
i

i
i

i
i

7.3 Future Investigation 109

are not available now. Therefore, the effort of finding a reasonable applica-
tion of #-rewriting systems continues. On the other hand, more general deep
pushdown automata can obviously adopt the introduced concepts of limitation
and apply them in practical field, such as syntax analysis of non-context-free
languages.

7.2 Contribution

Let us condense the main contributions of this monograph:

1. the study of the combinational rewriting systems and the connected no-
tions that simplify and generalize their investigation (the uniform ap-
proach);

2. the classification of formal model restrictions with emphasis on the con-
figuration restrictions of rewriting systems (including a few results con-
cerning infinite hierarchies of language families);

3. the introduction of a new regulated generative rewriting system—#-
rewriting system that combines grammars, automata and some additional
properties.

7.3 Future Investigation

As usual, some questions remain unanswered. Now, we discuss several ques-
tions and areas of the future investigation.

7.3.1 Hypotheses and Open Problems

Apart from the previous discussion, here, we study the modifications of rewrit-
ing systems and open problems from the text in more detail.

#-Rewriting Systems

Through the entire book, various restrictions of rewriting systems are studied.
The natural question asks what is the influence on the power of such systems
if we relax these restrictions from their definitions. For instance, think of the
power of unbounded index of #-rewriting systems of all introduced types. In
fact, there will be paid some attention to similar open problems, such as Open
Problem 5.2 in the future.

Open problem 7.1. nL (ST) ⊆ L(G#RS) ⊆ CS?

Open problem 7.2. CF ⊆ L(CF#RS)?

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 110 — #120 i
i

i
i

i
i

110 7 Conclusion

In brief, we sketch a few natural modifications and extensions of #-
rewriting systems:

• reducing and parallel #-rewriting systems as drafted in Section 4.1.5;
• generalized #-rewriting systems with an alphabet of nonterminals that we

know from grammars; as a matter of fact, we can define grammars that
consider the order of a rewritten nonterminal in their rules;

• #-rewriting systems with limited cardinality of the set of states which
probably lead to even more fine-grained infinite hierarchy of language fam-
ilies.

Deep Pushdown Automata

Firstly, notice the similarity between context-free #-rewriting systems (with-
out the finite index restriction) and deep pushdown automata. Both automata
and systems have implicitly from-left restricted number of variables that can
be rewritten. Both contain a finite-state control. Therefore, what is the rela-
tionship between the power of context-free #-rewriting systems and the power
of deep pushdown automata?

To gain practical applications, the determinism of the introduced rewriting
systems has to be investigated in more detail. The mainstream inspiration
comes from LL(k) grammars and deterministic #-rewriting systems of type
2. Next, the combination of such approaches with deep pushdown automata
may work as well.

When we consider natural modifications of general n-limitation, such as
introduced in deep pushdown automata, we can define more restricted n-
limitation dependent on a concrete symbol A; that is, (n,A)-limitation (see
symbol-dependent modification of RDPDA in Section 5.1.5).

Restricted Pushdown Automata

As the complementary notion to regulated pushdown automata (see [KM00]),
we introduce RPDA. The main difference is that instead of restriction of the
sequence of applied rules by some regulating language, we restrict the content
of the pushdown of RPDA. If we consider linear restricting languages, there
remains an open question whether RPDA has the similar power to regulated
pushdown automata.

Open problem 7.3. L(RPDA,LIN) = RE?

There are a few ways of proving this problem. The most natural one is to
establish an equivalence with another rewriting system that characterizes RE,
such as regulated pushdown automata regulated by linear languages, queue
grammars (see [KR83]), and unrestricted grammars.

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 111 — #121 i
i

i
i

i
i

Index

#-rewriting system
canonical, 100
context-free, 47
deterministic, 53, 95, 99
generalized, 51
leftmost, 101
parallel, 53
reducing, 53
right-linear, 49
unrestricted, 79

Accepting step, 22, 23
Active symbol, 19
alph, 14
Alphabet, 12

input, 22, 23
pushdown, 23
total, 16, 19, 20

Appearance checking, 26, 28
Axiom, 20

Bijection, 11
Bounder, 47

Cardinality, 9

Cartesian product, 10
Chomsky hierarchy, 24
Closure

of language, 13
reflexive-transitive, 11
transitive, 11

Complexity, 39
descriptional, 40, 41
dynamic, 40, 41
space, 40
time, 40

Component, 15
component, 15, 18
Computation, 17

successful, 50
Computational step, 17, 47, 55, 79

#-erasing, 50
canonical

state-controlled, 101
strictly, 100

degree, 50
leftmost, 101
parallel, 54

Concatenation, 12

111

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 112 — #122 i
i

i
i

i
i

112 INDEX

Conditional set, 99
Configuration, 18, 22, 23, 47, 55

final, 50
initial, 18
starting, 18, 76
target, 18

Configuration restriction, 33, 36
explicit, 37
implicit, 36

Context-free grammar, 21
Context-sensitive grammar, 21
Control language, 36

Declaration, 103
Deep pushdown automaton, 55

deterministic, 57
left-to-right reducing, 59
reducing, 59
right-to-left reducing, 59
strictly deterministic, 57

Definition, 103
Derivation

direct, 21
successful, 21

Derivation step, 20
Domain, 10
Dyck language, 49

Expansion, 55
depth, 55

Failure field, 26
Finite automaton, 22
Finite index, 37, 48
Finite-state control, 29
first, 14
Forbidding set, 28
Formal model, 15, 16

instance, 16
Free monoid, 12
Function, 11

partial, 11
total, 11

Gstates, 28

Homomorphism, 14

inf, 11
Infimum, 11
Injection, 11

Lab, 19
lab, 19
Label, 19
Language, 12

accepted, 22, 23, 55
complement, 13
context-free, 21
context-sensitive, 21
limited, 29, 35
linear, 22
recursively enumerable, 21
regular, 22
right-linear, 22

Language family, 12
last, 14
lhs, 16, 21
Limitation, 34
Limited derivation, 29
Linear grammar, 22
Linear order, 11
Linearly ordered set, 11
Lower bound, 11

Mapping, 11
Matrix rule, 31
max, 12
Maximum, 11
maxL, 52
maxprefix, 13
maxR, 52
maxsuffix, 13
Minimum, 11
Morphism, 14
Move, 55, 59
multisub, 15
Multisubstring, 15

Nonterminal, 19, 21
starting, 20

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 113 — #123 i
i

i
i

i
i

INDEX 113

occur, 14
Ordered pair, 10

Parallel right-linear grammar, 31
simple matrix, 31

Parallelism, 31, 53
Partial order, 11
Partially ordered set, 11
Passive symbol, 19
Permitting set, 28
Phrase-structure grammar, 20
Pop, 55
Potentially active symbol, 19
Power set, 10
Prefix, 13

proper, 13
prefix, 13
prefixes, 13
Product
k-fold, 11

Production, 21
Programmed grammar, 25
Programming language, 103
Pushdown automaton, 23

extended, 23
Pushdown bottom, 55, 59
Pushdown configuration component,

18, 23
Pushdown top, 23, 59
Pushdown-string, 23

reversed, 23, 61

Range, 10
Reducing step, 53
Reduction, 59

depth, 59
Regular grammar, 22
Regulated grammar, 24, 25, 38
Regulation, 24
Relation, 10

antisymmetric, 11
binary, 10
ireflexive, 11
reflexive, 11
symmetric, 11

transitive, 11
Restriction, 24, 33

applied rules, 33, 34
configuration, 33, 36
dynamic, 33
hybrid, 33
static, 33

rev, 13
Rewrite, 17

leftmost, 29
Rewriting step, 17
Rewriting system, 16
rhs, 16, 21
Right-linear grammar, 22
Rule, 16, 21

core, 18, 25, 26, 28
parallel, 54

depth, 55, 59
erasing, 25, 29, 48
label, 19, 26
left context, 51
right context, 51

Sentential configuration component,
18, 29

Sentential form, 18, 20, 21
Sequence, 12

empty, 12
finite, 12
infinite, 12
length, 12

Set, 9
empty, 9
finite, 9
infinite, 9

Shift, 59
Simple matrix grammar, 31

parallel right-linear, 31
State, 22, 23, 28

final, 22, 23
initial, 29
starting, 22, 23
target, 29

State grammar, 28
Strict partial order, 11

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 114 — #124 i
i

i
i

i
i

114 INDEX

Strictly partially ordered set, 11
String, 12

empty, 12
power of, 13
reversal of, 13

sub, 14
Subset, 10

proper, 10
Substitution, 14
Substring, 14

proper, 14
Success field, 26
Suffix, 13

proper, 13
suffix, 13
suffixes, 13
sup, 11
Supremum, 11
Surjection, 11
sym, 14
Symbol, 12, 19

active, 35
non-input, 19
starting, 20
starting pushdown, 23, 55, 59

Terminal, 20
Transition, 22, 23
Tuple, 15

Unrestricted grammar, 20
Upper bound, 11

Variable, 19, 35

word, 12
Workspace, 38

limited, 39
WS, 39

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 115 — #125 i
i

i
i

i
i

References

[ALSU06] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers:
Principles, Techniques, and Tools. Addison Wesley, 2nd edition,
2006.

[AP02] A. W. Appel and J. Palsberg. Modern Compiler Implementation
in Java. Cambridge University Press, Cambridge, 2nd edition,
2002.

[AU72] A. V. Aho and J. D. Ullman. The Theory of Parsing, Transla-
tion and Compiling, Volume I: Parsing. Prentice-Hall, Engle-
wood Cliffs, New Jersey, 1972.

[AU73] A. V. Aho and J. D. Ullman. The Theory of Parsing, Transla-
tion and Compiling, Volume II: Compiling. Prentice-Hall, En-
glewood Cliffs, New Jersey, 1973.

[AU77] A. V. Aho and J. D. Ullman. Principles of Compiler Design.
Addison-Wesley, Reading, Massachusetts, 1977.

[BB05] R. Bidlo and P. Blatný. How to generate recursively enumer-
able languages using only context-free productions and eight
nonterminals. In Proceedings of 11th Conference and Compe-
tition Student EEICT 2005, Volume 3, pages 536–541. Faculty
of Electrical Engineering and Communication BUT, 2005.

[BF95] H. Borodihn and H. Fernau. Accepting grammars and systems:
an overview. In Proceedings of Development in Language Theory
Conf., volume 53, pages 199–208, Magdeburg, 1995.

[BHV04] A. Bouajjani, P. Habermehl, and T. Vojnar. Abstract regular
model checking. In Proc. of 16th International Conference on
Computer Aided Verification—CAV’04, volume 3114 of LNCS,
pages 197–202. Springer-Verlag, 2004.

[Bro89] J. G. Brookshear. Theory of Computation. Benjamin/Cum-
mings, Redwood City, California, 1989.

[CMM73] A. Cremers, H. A. Maurer, and O. Mayer. A note on leftmost
restricted random context grammars. Information Processing
Letters, 2:31–33, 1973.

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 116 — #126 i
i

i
i

i
i

116 REFERENCES

[Coh04] J. Cohen. Bioinformatics–an introduction for computer scien-
tists. ACM Computing Surveys, 36:122–158, 2004.

[CVDKP94] E. Csuhaj-Varju, J. Dassow, J. Kelemen, and Gh. Păun. Gram-
mar systems. A grammatical approach to distribution and co-
operation. Topics in Computer Mathematics 8. Gordon and
Breach Science Publishers, Yverdon, 1994.

[DP89] J. Dassow and Gh. Păun. Regulated Rewriting in Formal Lan-
guage Theory. Akademie-Verlag, Berlin, 1989.

[Fer97] H. Fernau. Graph-controlled grammars as language acceptors.
Journal Automata, Languages and Combinatorics, 2(2):79–91,
1997.

[Fer00] H. Fernau. Regulated grammars under leftmost derivation.
Grammars, pages 37–62, 2000.

[Hoo87] H. J. Hoogeboom. Coordinated Pair Systems. Universiteit Lei-
den, 1987.

[HU79] J. E. Hopcroft and J. D. Ullman. Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley, Read-
ing, Massachusetts, 1979.

[Iba70] O. H. Ibarra. Simple matrix languages. Information and Con-
trol, 17:359–394, 1970.

[IRS76] P. M. Lewis II, D. J. Rosenkrantz, and R. E. Stearns. Compiler
Design Theory. Addison-Wesley, Reading, Massachusetts, 1976.

[Kar91] L. Kari. On insertion and deletion in formal languages. Turku,
Finland, 1991.

[Kas70] T. Kasai. A hierarchy between context-free and context-
sensitive languages. Journal of Computer and System Sciences,
4:492–508, 1970.

[Kel97] J. Kelemen. Colonies as models of reactive systems. Lecture
Notes in Computer Science: New Trends in Formal Languages,
1218:220–235, 1997.

[KKMVM00] J. Kelemen, A. Kelemenová, C. Mart́ın-Vide, and V. Mitrana.
Colonies with limited activation of components. Theoretical
Computer Science, 244:289–298, 2000.

[KM00] D. Kolář and A. Meduna. Regulated pushdown automata. Acta
Cybernetica, 4:653–664, 2000.

[KM05a] D. Kolář and A. Meduna. Regulated automata: From theory
towards applications. In Proceeding of 8th International Con-
ference on Information Systems Implementation and Modelling
ISIM’05, pages 33–48, Ostrava, CZ, 2005. MARQ.

[KM05b] Z. Křivka and A. Meduna. Random context and programmed
grammars of finite index have the same generative power. In
Proceedings of 8th International Conference ISIM’05 Informa-
tion Systems Implementation and Modelling, 1st edition, pages
67–72, 2005.

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 117 — #127 i
i

i
i

i
i

REFERENCES 117

[KM06] Z. Křivka and A. Meduna. General top-down parsers based on
deep pushdown expansions. In Proceedings of 1st International
Workshop on Formal Models (WFM’06), pages 11–18, 2006.

[KMS06a] Z. Křivka, A. Meduna, and R. Schnecker. Generation of lan-
guages by rewriting systems that resemble automata. Interna-
tional Journal of Foundations of Computer Science, 17(5):1223–
1229, 2006.

[KMS06b] Z. Křivka, A. Meduna, and R. Schnecker. Reducing deep push-
down automata and infinite hierarchy. In MEMICS 2006 Second
Doctoral Workshop on Mathematical and Engineering Methods
in Computer Science, pages 214–221, 2006.

[Kol05] D. Kolář. Pushdown Automata: Another Extensions and Trans-
formations. FIT VUT, Brno, CZ, 2005.

[Kot02] M. Kot. Řı́zené gramatiky [Diplomová práce]. VŠB Technická
univerzita Ostrava, Fakulta elektrotechniky a informatiky, Ka-
tedra informatiky, 2002.

[KR83] H. C. M. Kleijn and G. Rozenberg. On the generative power of
regular pattern grammars. Acta Informatica, 20:391–411, 1983.

[Kři04a] Z. Křivka. Dvoucestné k-lineárńı n-komponentńı gramatické
systémy. In Proceedings of the 10th Conference and Competition
STUDENT EEICT 2004 Volume 1, pages 203–205. Faculty of
Electrical Engineering and Communication, Brno University of
Technology, 2004.

[Kři04b] Z. Křivka. Zásobńıkové automaty s omezeným obsahem zásob-
ńıku. In ACM STUDENT CZ, page 8, 2004.

[Kři05a] Z. Křivka. Recursive erasing in programmed grammars. In
Pre-Proceedings MEMICS 2005, pages 139–144, 2005.

[Kři05b] Z. Křivka. String-partitioning systems. In Proceedings of 11th
Conference and Competition STUDENT EEICT 2005 Volume
3, pages 556–560. Faculty of Electrical Engineering and Com-
munication BUT, 2005.

[Kři05c] Z. Křivka. String-partitioning systems. In Proceedings of In-
ternational Interdisciplinary HONEYWELL EMI 2005, pages
217–221. Faculty of Electrical Engineering and Communication
BUT, 2005.

[KS06a] Z. Křivka and R. Schnecker. Reducing deep pushdown au-
tomata. In Proceedings of the 12th Conference and Competition
STUDENT EEICT 2006 Volume 4, pages 365–369, 2006.

[KS06b] Z. Křivka and R. Schnecker. String-partitioning systems and an
infinite hierarchy. In Proceedings of 1st International Workshop
on Formal Models (WFM’06), pages 53–60, 2006.

[Lin90] P. Linz. An Introduction to Formal Languages and Automata.
D.C. Heath and Co., Mass, Lexigton, 1990.

[LM05] L. Lorenc and A. Meduna. Self-reproducing pushdown trans-
ducers. Kybernetika, 41(4):531–537, 2005.

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 118 — #128 i
i

i
i

i
i

118 REFERENCES

[LMW79] R. C. Linger, H. D. Mills, and B. I. Witt. Structured Program-
ming: Theory and Practice. Addison-Wesley, Reading, Mas-
sachusetts, 1979.

[Mau73] H. A. Maurer. Simple matrix languages with a leftmost restric-
tion. Information and Control, 23:128–139, 1973.

[Med96] A. Meduna. Syntactic complexity of context-free grammars over
word monoids. Acta Informatica, 33:457–462, 1996.

[Med97a] A. Meduna. Four-nonterminal scattered context grammars
characterize the family of recursively enumerable languages. In-
ternational Journal of Computer Mathematics, 63:67–83, 1997.

[Med97b] A. Meduna. On the number of nonterminals in matrix gram-
mars with leftmost derivations. LNCS, 1217:27–38, 1997.

[Med98] A. Meduna. Descriptional complexity of multi-continuous gram-
mars. Acta Cybernetica, 13:375–384, 1998.

[Med99] A. Meduna. Prefix pushdown automata and their simplifica-
tion. International Journal of Computer Mathematics, 71(1):1–
20, 1999.

[Med00] A. Meduna. Automata and Languages: Theory and Applica-
tions. Springer, London, GB, 2000.

[Med04] A. Meduna. Moderńı Teoretická Informatika [materiály k před-
náškám]. FIT VUT, Brno, CZ, 2004.

[Med06] A. Meduna. Deep pushdown automata. Acta Informatica,
2006(98):114–124, 2006.

[MF03] A. Meduna and H. Fernau. A simultaneous reduction of sev-
eral measures of descriptional complexity in scattered context
grammars. Information Processing Letters, 86:235–240, 2003.

[MHHO05] E. Moriya, D. Hofbauer, M. Huber, and F. Otto. On state-
alternating context-free grammars. Theoretical Computer Sci-
ence, 337:183–216, 2005.

[MK02] A. Meduna and D. Kolář. One-turn regulated pushdown au-
tomata and their reduction. Fundamenta Informaticae, 16:399–
405, 2002.

[MM07] T. Masopust and A. Meduna. Descriptional complexity of gram-
mars regulated by context conditions. In LATA 2007 Pre-
proceedings, pages 403–411, Tarragona, ES, 2007.

[MŠ05] A. Meduna and M. Švec. Grammars with Context Conditions
and Their Applications. John Wiley & Sons, Hoboken, New
Jersey, USA, 2005.

[MV04] A. Meduna and M. Vı́tek. New language operations in formal
language theory. Schedae Informaticae, 2004(13):123–150, 2004.

[Pap94] C. H. Papadimitriou. Computational Complexity. Addison-
Wesley, Reading, Mass, 1994.

[Pău80] Gh. Păun. An infinite hierarchy of matrix languages. Stud.
Cerc. Mat., 32:697–707, 1980.

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 119 — #129 i
i

i
i

i
i

REFERENCES 119

[Pău85] Gh. Păun. On leftmost derivation restriction in regulated
rewriting. Rev. Roumaine Math. Pures Appl., 30:751–758, 1985.

[Pău02] Gh. Păun. Membrane Computing: An Introduction. Springer,
2002.

[PL90] P. Prusinkiewicz and A. Lindenmayer. The Algorithmic Beauty
of Plants. Springer-Verlag, New York, 1990.

[RD71] G. Rozenberg and P. Doucet. On 0l-languages. Information
and Control, 19:302–318, 1971.

[Ros69] D. J. Rosenkrantz. Programmed grammars and classes of formal
languages. Journal of the ACM, 16:107–131, 1969.

[RS97] G. Rozenberg and A. Salomaa. Handbook of Formal Languages,
volume 1–3. Springer, Berlin, 1997.

[RW73] R. D. Rosebrugh and D. Wood. A characterization theorem
for n-parallel right linear languages. Journal of Computer and
System Sciences, 7:579–582, 1973.

[RW75] R. D. Rosebrugh and D. Wood. Restricted parallelism and right
linear grammars. Utilitas Mathematica, 7:151–186, 1975.

[Ryc07] L. Rychnovský. Parsing of context-sensitive languages. In In-
formation Systems and Formal Models (Proceedings of 2nd In-
ternational Workshop on Formal Models (WFM’07)). Silesian
University, 2007.

[Sal69] A. Salomaa. Theory of Automata. Pergamon Press, London,
1969.

[Sal73] A. Salomaa. Formal Languages. Academic Press, New York,
1973.

[Sal85] A. Salomaa. Computation and Automata. Cambridge Univer-
sity Press, Cambridge, England, 1985.

[Šla01] J. Šlapal. Metody diskrétńı matematiky. VUT Brno, FSI, Tech-
nická 2, Brno, 2001.

[Sol] S. H. von Solms. Modelling the growth of simple biological
organisms using formal language theory. Manuscript.

[SSS87] S. Sippu and E. Soisalon-Soininen. Parsing Theory. Springer-
Verlag, New York, 1987.

[SSS90] S. Sippu and E. Soisalon-Soininen. Parsing Theory II: LR(k)
and LL(k) Parsing (Monographs in Theoretical Computer Sci-
ence. An EATCS Series). Springer, 1990.

[Sud96] T. A. Sudkamp. Languages and Machines: An Introduction to
the Theory of Computer Science. Addison-Wesley, Reading,
Massachusetts, USA, 2nd edition, 1996.

[Wal70] A. P. J. van der Walt. Random context grammars. In Pro-
ceedings of the Symposium on Formal Languages, Oberwolfach,
1970.

[Weg72] P. Wegner. Programming language semantics. In R. Rustin, ed-
itor, Formal Semantics of Programming Languages, pages 149–
248. Prentice-Hall, Englewood Cliffs, New Jersey, 1972.

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 120 — #130 i
i

i
i

i
i

120 REFERENCES

[Wol96] M. Wolfe. High Performance Compilers for Parallel Computing.
Addison-Wesley Publishing Company, Inc., 1996.

[Woo75] D. Wood. m-parallel n-right linear simple matrix languages.
Utilitas Mathematica, 8:3–28, 1975.

[Woo76] D. Wood. Iterated a-ngsm maps and γ systems. Information
and Control, 32(1), 1976.

[Woo84] D. Wood. Paradigms and Programming with PASCAL. Com-
puter Science Press, Rockville, Maryland, 1984.

i
i

“krivka-dissertation-fitmono” — 2009/4/11 — 0:25 — page 121 — #131 i
i

i
i

i
i

Název Rewriting Systems with Restricted Configurations
Autor Ing. Zbyněk Křivka, Ph.D.

Vydavatel Vysoké učeńı technické v Brně
Fakulta informačńıch technologíı

Obálka Mgr. Dagmar Hejduková
Tisk MJ servis, spol. s r.o.
Vyšlo Brno, 2008
Vydáńı prvńı

Tato publikace neprošla redakčńı ani jazykovou úpravou.

