
Digital Systems Architectures Based on On-line Checkers

Martin Straka, Zdenek Kotasek, Jan Winter
Brno University of Technology

Faculty of Information Technology
Bozetechova 2, Brno, 612 66, Czech Republic
{strakam, kotasek, iwinter}@fit.vutbr.cz

Abstract

In this paper, a methodology for generating VHDL de-
scriptions of hardware checkers is presented. It is shown
how the methodology can be used to generate on-line check-
ers of communication protocols, counters, decoders, reg-
isters, comparators, etc. It is also demonstrated how a
checker for more complex structures can be developed. We
describe the possibilities of utilizing this approach in the de-
sign of Fault Tolerant Systems (FTS). Experimental results
in terms of FPGA resources needed to synthesize different
types of checkers are presented.

1. Introduction

On-line checkers in digital system design can be used
for several purposes: a) design verification, b) on-line test-
ing, c) fault-tolerant system design. For the purposes of
design verification, methods exist which enable to synthe-
size monitors from declarative specifications written in PSL
standard.

Different Fault Tolerant (FT) architectures are known to
improve reliability in real-time systems, Triple Modular Re-
dundancy and duplex systems can serve as examples. Real-
time systems are often used in hazardous or remote appli-
cations, such as aircraft and spacecraft where the systems
are highly susceptible to errors due to radiation [11]. In
these applications, the length of mission plays an important
role. Usual approach to provide fault tolerance is through
redundancy, such as N-modular redundancy or duplex sys-
tems [5]. With the design of FTS, the concept of on-line
testing is combined [8]. It can be implemented on different
levels of digital systems, e. g. NoC [1]. The concepts com-
bined with on-line/off-line testing are discussed in [13].

Assertion-Based Verification (ABV) is emerging as a
powerful methodology for design verification [2]. Using
temporal logic, a precise description of the expected be-
havior of a design is modeled, and any deviation from this

expected behavior is captured by simulation or by formal
methods. Hardware verification assertions are written in
verification languages such as PSL (Property Specification
Language) or SVA (SystemVerilog Assertions). When used
in dynamic verification, a simulator monitors the Device
Under Verification (DUV) and reports when assertions are
violated. Information on where and when assertions fail is
an important aid in the debugging process, and is the fun-
damental reasoning behind the ABV. Such sequences form
the core of increasingly-used Assertion-Based Verification
(ABV) languages. A checker generator capable of trans-
forming assertions into efficient circuits allows the adop-
tion of ABV in hardware emulation. Method for generating
checker circuits from sequential-extended regular expres-
sions (SEREs) with PSL is demonstrated in [3].

One approach how to construct FT systems is through
the use of checkers. From among languages which can
be used to describe functions checked by checkers, PSL
(Property Specification Language) and SVA (System Ver-
ilog Assertions) can be mentioned [10], [3]. While PSL
is based on Sugar language from IBM, SVA combines fea-
tures of Synopsys OVA, Motorola CBV, and Accelera PSL.
The problem of on-line testing is widely discussed in nu-
merous papers [16]. In [9], it is presented how path (min)
delay faults when designing on-line testable circuits should
be taken into account. The challenges that this poses to the
existing on-line testing strategies are discussed. Examples
showing the possible incorrect behaviour of a self-checking
circuit as a result of this kind of faults are given. In [6], the
idea of combining self-test technology for production test
and for on-line self test is presented.

Protocols have grown larger and more complex with the
advent of computer and communication technologies [12].
As a result, the task of conformance testing of protocol im-
plementation has also become more complex. The study of
DFT (Design For Testability) is a research area in which re-
searchers investigate design principles that will help to over-
come the ever increasing complexity of testing distributed
systems. Testability metrics are essential for evaluating and



comparing designs. In [4], a new metric for testability of
communication protocols is introduced, based on the detec-
tion probability of a default. The authors presents two ap-
proaches for improved testing of a protocol implementation
once those faults that are difficult to detect are identified.

In [7], the author proposes a novel method for PSL lan-
guage assertions simulation-based checking. The method
uses a system representation model called High-Level De-
cision Diagrams (HLDD). Previous works have shown that
HLDDs are an efficient model for simulation and conve-
nient for diagnosis and debug. The presented approach pro-
poses a temporal extension for the existing HLDD model
aimed at supporting temporal properties expressed in PSL.
Other contributions of the paper are methodology for direct
conversion of PSL properties to HLDD and HLDD-based
simulator modification for assertions checking support.

2. Motivation for the Research and Definition
of the Problem

In our research we tried to evaluate the possibilities of
constructing checkers of different functions which can pos-
sibly occur in a digital system. The architectures based on
checkers can be possibly used in on-line testing methodolo-
gies or in FTS design. To be able to do so, it was necessary:

• to develop formal tools needed to describe functions to
be checked by the checker,

• to develop a compiler to transform formal description
of properties to be checked into synthesizable VHDL
code,

• to synthesize the VHDL code into some platform,

• to evaluate the results, i.e. the sources needed to imple-
ment the checker into FPGA (number of CLBs/slices).

• to evaluate the possibilities of developing FT systems
based on the usage of checkers in the design (i.e. the
comparison of architectures based on checkers with
other FT architectures).

As mentioned above, other tools exist for the description
of conditions required to be fulfilled by the design, e.g. PSL
and SVA languages. The software packages which exist to
support them are intended to be used primarily for the de-
sign verification purposes.

The paper is organized as follows. First of all, our
methodology which we use to describe conditions to be ful-
filled by the design is described in section 3. The section 4
deals with the demonstration of the compiler which we use
to convert formal description to VHDL code. The principles
of communication protocol checker design are presented in
section 5 - two approaches are demonstrated and discussed.

Then, the basic ideas of utilizing the methodology for the
design of digital components like counters, decoders, mul-
tiplexers and combinations of them are described (section
6). In section 7 - experimental results - the impact on the
number of slices needed to implement the design into FPGA
is evaluated for each design. This information is important
for the comparison of architectures based on checkers with
other architectures like TMR. This comparison is important
for the evaluation of possible applications of on-line check-
ers. As a result, it should be clearly stated whether TMR
architectures can be replaced by other architectures contain-
ing on-line checkers which do not require so many sources.

3. Formal Description of Design Conditions

As stated above, we developed our tool to define condi-
tions to be satisfied. The conditions are then compiled into
checker VHDL code which can be then integrated into the
resulting design together with the functional unit which will
be checked by the checker. We have done so even when it
is known that tools based on the use of PSL exist. They
generate checker VHDL code which is primarily supposed
to be used for hardware simulation of conditions to be used
for design verification purposes, not for the synthesis into
some platform and the use as a checker. Therefore, we do
not see PSL and its software support as a proper alternative
to fulfill our objectives.

To describe communication protocol specification or se-
quential component behavior, the definition language uses
FSM construction. This approach combines the description
of sequential component behavior and the description of
communication protocol or sequential component states. A
communication protocol description must contain also the
description of sequences of signals. Thus, the language for
communication protocol specification consists of two types
of tools: for the description of either combinational or se-
quential logic. Our formal approach is based on the follow-
ing definitions:

A deterministic Finite State Machine is an initialized complete
deterministic machine that can be formally defined as a
5-tupleA = (Q, T, P, S0, Serr), whereQ is a finite set of
states,S0 is the initial state andS0 ∈ Q, T is a finite set
of input symbols,P is a next state (or transition) function:
P : Q× T → Q andSerr is the finite state andSerr ∈ Q.
FurthermoreQ ∩ T = ∅.

A condition is formally defined as aC(i) = Sig ×Oper× Int,
whereSig is a name of control signal,Oper ∈ (<, >, <=
, =, ==, <>) is a comparison operator between controlled
signal andInt ∈ N numeric constant.i ∈ 1, 2, 3, ...

An input automata symbols are defined as conjunction of
conditions, formally defined as ap(n) =

VX
i=1 C(i),



where n ∈ 1, 2, 3, ..., N and p(n) ∈ T and
X =

P
(control signals in checking protocol)

A transition function is represented by a set of transitions:
P (n) : Q × T → Q, wheren ∈ 1, 2, 3, ..., N andQ is a
finite set of states

4. The Compiler from Checker Formal De-
scription to VHDL Code

As mentioned above, we are developing the compiler
from formal language into VHDL specification. The VHDL
code is synthesized and the checker design is then evalu-
ated in terms of the sources needed to implement the design
into FPGA. So far, we concentrated on certain components
and their checkers, and possible combinations of functional
components and their checkers. We do not concentrate on
constructions which can possibly appear in the formal de-
scription but on components which can appear in the design.
We do it in this way because we primarily need to verify the
volume of checker circuitry generated by our compiler from
checker formal description. Thus, we worked with such
components as counters, registers, decoders, multiplexers,
etc. and the impact of their design on resulting checker size.
It is important for our research because the implementation
of checker represents an additional area overhead compared
to other FT architectures which do not use checkers, but are
based on other topologies, like TMR based architectures.

5. Communication Protocol Checker Design

We used two approaches in this part of our research, both
of them were verified on the design of Locallink protocol
checker [15], [14]. The LocalLink protocol is used es-
pecially for FPGA components interconnection and it has
been integrated to many IP Cores.

Figure 1. LocalLink protocol specification

The LocalLink is based on synchronous point-to-point
communication protocol which transfers data in the form

of packets. The specification of LocalLink communication
protocol is shows in Figure 1. The LocalLink formal de-
scription of conditions to be checked has the following form
(p0−pn are input symbols of automata composed of condi-
tions over control signals combinations, transition function
(Sn, pn) describes correct sequences of states):

p0 = SRC RDY N == 0 and DST RDY N == 0

and SOF N == 0 and SOP N == 1 and

EOP N == 1 and EOF N == 1;

p1 = SRC RDY N == 0 and DST RDY N == 0

and SOF N == 1 and SOP N == 0 and

EOP N == 1 and EOF N == 1;

p2 = SRC RDY N == 0 and DST RDY N == 0

and SOF N == 1 and SOP N == 1 and

EOP N == 0 and EOF N == 1;

p3 = SRC RDY N == 0 and DST RDY N == 0

and SOF N == 1 and SOP N == 1 and

EOP N == 1 and EOF N == 0;

p4 = SRC RDY N == 0 and DST RDY N == 0

and SOF N == 1 and SOP N == 1 and

EOP N == 1 and EOF N == 1;

p5 = SRC RDY N == 0 or DST RDY N == 0;

(S0, p5) : S0; (S0, p0) : S1;
(S1, p5) : S1; (S1, p1) : S2; (S1, p4) : S1;
(S2, p5) : S2; (S2, p2) : S3; (S2, p4) : S2;
(S3, p5) : S3; (S3, p3) : S0; (S3, p4) : S3;

In the first approach we consider the protocol as an en-
tity which cannot be partitioned into communication slices.
Locallink checker was developed and the requirements on
FPGA sources evaluated. The checker of LocalLink is
shown in Figure 2.

Figure 2. Checker for LocalLink protocol

Recently, we have developed a methodology which al-
lows to partition the communication protocol into time seg-
ments and develop the checker for each segment separately.
This approach allows to assemble selected segments and
their checkers together. It allows the user to develop check-
ers which check only the most important segments of the
communication and thus can reduce the circuitry needed.

The checker which checks combinations of control sig-
nals participating on communication protocol is seen on
Figure 3. Each checker checks certain part of the protocol
and then the checker structure consists of modules, each of



them checking certain part of the protocol. The first mod-
ule (CHCK PH1) checks the combinations of control sig-
nal during protocol phase1 when header is transmitted. The
second checker (CCHPH2) checks the protocol during data
transmission while the third one is responsible for checking
the phase during which footer is transmitted (CHCKPH3).
The last module detects the final phase of the protocol and
the idle period of the communication protocol.

Figure 3. Module based checker of LocalLink
protocol

The error outputs of all modules are evaluated by the
main checker which then generates the error signal of the
system together with the identification of the module which
identified the error. We then compared the results and ana-
lyzed possible use of both approaches.

6. On-line Checkers for Simple Circuits

Our methodology is based on constructing checkers for
basic digital circuits and their combinations. For this pur-
pose a specialized language was developed which allows to
describe properties to be checked. Different levels of prop-
erties can be described.

6.1 Counter Decoder Checker Design

A counter and its decoder are two components which are
frequently used in digital systems design (see Figure 4).
The counter counts clock signals (CLK), when RST signal
is generated, the status is changes to zero state. It is a se-
quential component, to describe the sequence of states, our
formal language was used. The checker will then have a
character of FSM. A simple form of the checking can be
provided through checking the sequence of states and the
zero state after RST is generated. A more sophisticated
checking procedure will be based on checking all possible
combinations of signals in all states. If the counter con-
tains Start (STR) and Stop signals, then proper values on
both of these inputs must be checked. Both alternatives are

compared later in this text in terms of slices needed to im-
plement the checker into FPGA.

Figure 4. Counter and decoder checkers

On the contrary, a decoder is a purely combinational
component, its checker must certify whether the outputs of
the counter are correct related to decoder inputs. The re-
quirements on FPGA sources are also presented in experi-
mental results. The counter formal description of conditions
to be checked has the following form:

p0 = OUT == 000 and STR == 1;

p1 = OUT == 001 and STR == 1;

p2 = OUT == 010 and STR == 1;

p3 = OUT == 011 and STR == 1;

p4 = OUT == 100 and STR == 1;

p5 = OUT == 101 and STR == 1;

p7 = OUT == 111 and STR == 1;

p8 = OUT == 000 and STR == 0

and RST == 1;

(S0, p0) : S1; (S1, p1) : S2; (S1, p8) : S0;
(S2, p2) : S3; (S2, p8) : S0; (S3, p3) : S4;
(S3, p8) : S0; (S4, p4) : S5; (S4, p8) : S0;
(S5, p5) : S6; (S5, p8) : S0; (S6, p6) : S7;
(S6, p8) : S0; (S7, p7) : S0; (S7, p8) : S0;

6.2 Counter and its Decoder Checker De-
sign

In Figure 5, a structure with counter and its decoder is
shown. The checker checks both components. As an ad-
vantage we see the fact that two components are checked
with one checker. The formal description of conditions to
be checked has the following form:

p0 = OUT == 00000001 and TMP == 000;

p1 = OUT == 00000010 and TMP == 001;

p2 = OUT == 00000100 and TMP == 010;

p3 = OUT == 00000100 and TMP == 011;

p4 = OUT == 00001000 and TMP == 100;

p5 = OUT == 00010000 and TMP == 101;

p7 = OUT == 01000000 and TMP == 110;

p8 = OUT == 10000000 and TMP == 111;

p9 = OUT == 10000000 and TMP == 000

and RST == 1;



(S0, p0) : S1; (S1, p1) : S2; (S1, p9) : S0;
(S2, p2) : S3; (S2, p9) : S0; (S3, p3) : S4;
(S3, p9) : S0; (S4, p4) : S5; (S4, p9) : S0;
(S5, p5) : S6; (S5, p9) : S0; (S6, p6) : S7;
(S6, p9) : S0; (S7, p7) : S8; (S7, p9) : S0;
(S8, p8) : S0; (S8, p9) : S0;

Figure 5. Counter and its decoder checker

6.3 Serialiser - Register with Multiplexer

In Figure 6, a circuit which converts parallel data into se-
rial form is shown. It consists of a register and multiplexer.
Data is loaded into register by CLK signal, ENWR must
be active. The checker checks the correctness of data on
multiplexer output.

Figure 6. Serialiser checker

6.4 TMR and Duplex with Checkers

Fault tolerant system is often implemented as TMR.
TMR system is based on duplicating functional units and
evaluates the results by means of majority element (see Fig-
ure 7). Another alternative of FT system is in duplex sys-
tem with one or two checkers. The outputs of duplex system
are evaluated by means of comparator or multiplexor. The
comparison of both techniques for basic digital components
described in previous sections is available in section 7. Even
when it happens that the checker requires more resources to
cover all its functions, it can be still acceptable solution be-
cause typical duplex systems need to implement compara-
tor into the design to indicate that an error occurred while
for TMR based architectures the resulting design contains a
voter which can be possibly more resources demanding.

Figure 7. TMR and Duplex with checker

7. Experimental Results

The experiments were performed XILINX FPGA plat-
form. The components were synthesized into Virtex2Pro
and Virtex5. We compared the number of slices needed
to cover the function and checker implementation. Table
1 demonstrates these requirements. It can be seen that a
checker requires more sources than the component being
checked.

Virtex2Pro - XC2VP2 Circuit Checker
- [slices] [slices]

Counter - complete checking 2 14
Counter - states checking 2 12

Decoder 4 5
Counter+decoder 5 13

Serialiser 3 4
Shift register 4 6

Voter 7 -
Comparator 5 -

Table 1. Resources usage in slices for Vir-
tex2Pro

Interesting results were gained for the implementation
into FPGA Virtex5 (see Table 2). It is evident from the table
that a new technology and the option to use LUTs with 6 in-
puts allows to implement N-variable functions with a lower
number of slices. For some components the sources needed
for checker implementation is not significantly higher than
the sources needed for the functional unit.

We performed additional experiments to compare FT
techniques, namely TMR with duplex techniques based on
the use of checkers. For the comparison, both techniques
were implemented into FPGA Virtex2Pro and Virtex5. The
following structures were implemented: TMR system, du-
plex system with one checker and duplex system with two
checkers. All combinations of components in Table 3 were
implemented as TMR with voter. As a metric, the sources
needed for the implementation in FPGA Virtex2Pro and
Virtex5 of TMR system, duplex with one checker and du-
plex with two checkers were used. All types of digital com-



Virtex5 - XCV50E Circuit Checker
- [slices] [slices]

Counter - complete checking 2 7
Counter - states checking 2 4

Decoder 4 4
Counter+decoder 5 6

Serialiser 3 3
Shift register 3 4

Voter 7 -
Comparator 5 -

Table 2. Resources usage in slices for Virtex5

ponents in Table 3 were implemented as TMR with voter.

Virtex2Pro - XC2VP2 TMR DUPL.+1CH DUPL.+2CH
- [slices] [slices] [slices]

Counter - complete checking 12 22 35
Counter - states checking 12 18 30

Decoder 20 17 22
Counter+decoder 26 25 26

Serialiser 12 13 15
Shift register 16 18 20

Table 3. Virtex2Pro resources usage in slices
for TMR and Duplex

It can be derived from the table that good results can be
gained in duplex architectures with one checker. In some
configurations, it requires less sources than TMR based ar-
chitectures. On the other hand, duplex architectures with
two checkers provide a good solution to cover checked
functions, the sources needed are much higher than for
TMR. A similar situation holds for FPGA Virtex5, the re-
sults are summarized in Table 4.

Virtex5 - XCV50E TMR DUPL.+1CH DUPL.+2CH
- [slices] [slices] [slices]

Counter - complete checking 9 14 17
Counter - states checking 9 11 15

Decoder 20 18 20
Counter+decoder 20 22 26

Serialiser 12 13 14
Shift register 13 15 18

Table 4. Virtex5 resources usage in slices for
TMR and Duplex

The last set of experiments was performed for Locallink
communication protocol. We compared the requirements
on the number of sources for both FPGA types and different
levels of communication protocol checking. We checked
the phases of the communication protocol with a checker

generated for each phase. The Table 5 demonstrates the
number of slices needed for different levels of checking pro-
cedure.

LocalLink - checker Virtex5 Virtex2Pro
- [slices] [slices]

Single - only combinations 3 4
Complex - only combinations 3 4

Single - all states 5 8
Complex - all states 7 9

Table 5. Resources usage in slices for Lo-
calLink

As single checker (Table 5) we understand a separate
checker which checks either combination or states. A com-
plex checker consists of several checkers, each of them
checking particular LocalLink protocol segment (see Fig-
ure 5).

8. Conclusions and Future Research

In this paper, a technique for automated design of check-
ers for different types of digital components and its combi-
nations is presented. A methodology for automated design
of communication protocol is demonstrated in the paper as
well.

For the purposes of our research, we developed a for-
mal language which allows to describe properties of digital
components and communication protocols to be checked.
The software which allows to compile the properties to be
checked into VHDL description was then developed. We
also experimented with FoCs tool to verify the possibility of
using PSL language for checker design. Unfortunately, the
designs gained from FoCs are resulting in too many slices
needed to implement the design into FPGA. In our opinion,
it is so because VHDL codes gained from FoCs are primar-
ily supposed to be used for verification purposes.

The goal of our research was to evaluate the developed
checkers in terms of the area overhead and its comparison
with the area needed to cover the function being checked.
Various combinations of digital components and its check-
ers were developed as either TMR or duplex architectures.
The results can be summarized in the following way:

• The complexity of the configuration based on duplex
architecture with one checker results in the same com-
plexity as TMR.

• Duplex architecture with two checkers requires more
sources than TMR and thus appears to be inconvenient
for the use in the design of FT systems.



It can be concluded that the methodology described in
this paper can be used for the design of architectures where
the use of on-line checkers is required. The methodology
presented in this paper starts with formal description of the
properties to be checked and results in VHDL checker code
and its synthesis with a professional design tool.

In the future research we intend to deal with applica-
tions in which long lifetime is required, and the resources
in FPGA can be possibly exhausted. To solve this problem,
the faulty configuration has to be reconfigured into a new
fault tolerant design with smaller area. The methodology
will allow to develop a sequence of architectures, each ar-
chitecture covering the required function and equipped with
certain level of diagnostic circuitry. For each level, depend-
ability parameters will be evaluated. The lifetime of these
architectures will depend strongly on the area available in
FPGA and sources needed to cover the function.

Acknowledgements

This work was supported by the Research Project No.
MSM 0021630528 - Security-Oriented Research in Infor-
mation Technology and by GACR project No. 102/05/H050
- Integrated Approach to Education of PhD Students in the
Area of Parallel and Distributed Systems (Grant Agency of
the Czech Republic).

References

[1] P. S. Bhojwani and R. N. Mahapatra. A robust protocol
for concurrent on-line test (colt) of noc-based systems-on-
a-chip. InDAC ’07: Proceedings of the 44th annual confer-
ence on Design automation, pages 670–675, New York, NY,
USA, 2007. ACM.

[2] M. Boule, J.-S. Chenard, and Z. Zilic. Assertion check-
ers in verification, silicon debug and in-field diagnosis. In
ISQED ’07: Proceedings of the 8th International Sympo-
sium on Quality Electronic Design, pages 613–620, Wash-
ington, DC, USA, 2007. IEEE Computer Society.

[3] M. Boule and Z. Zilic. Automata-based assertion-checker
synthesis of psl properties. volume 13, pages 1–21, New
York, NY, USA, 2008. ACM.

[4] A. Chung and T. Huang. Two approaches for the improve-
ment in testability of communication protocols. InICIS ’05:
Proceedings of the Fourth Annual ACIS International Con-
ference on Computer and Information Science, pages 562–
565, Washington, DC, USA, 2005. IEEE Computer Society.

[5] S. D’Angelo, G. R. Sechi, and C. Metra. Transient and
permanent fault diagnosis for fpga-based tmr systems. In
DFT ’99: Proceedings of the 14th International Symposium
on Defect and Fault-Tolerance in VLSI Systems, pages 330–
338, Washington, DC, USA, 1999. IEEE Computer Society.

[6] C. Galke, M. Grabow, and H. T. Vierhaus. Perspectives of
combining on-line and off-line test technology for depend-
able systems on a chip. volume 00, page 183, Los Alamitos,
CA, USA, 2003. IEEE Computer Society.

[7] M. Jenihhin, J. Raik, A. Chepurov, and R. Ubar. Tempo-
rally extended high-level decision diagrams for psl asser-
tions simulation. InETS ’08: Proceedings of the 13th IEEE
European Test Symposium 2008, pages 61–68, Los Alami-
tos, USA, 2008. IEEE Computer Society.

[8] P. Kubalik, P. Fiser, and H. Kubatova. Fault tolerant sys-
tem design method based on self-checking circuits. InPro-
ceedings of the 12th IEEE International Symposium on On-
Line Testing (IOLTS06), pages 185–186, Corno, Italy, 2006.
IEEE Computer Society.

[9] C. Metra, M. Omana, D. Rossi, J. M. Cazeaux, and T. Mak.
Path (min) delay faults and their impact on self-checking
circuits’ operation. InProceedings of the 12th IEEE Inter-
national Symposium on On-Line Testing (IOLTS06), pages
17–22, Corno, Italy, 2006. IEEE Computer Society.

[10] K. Morin-Allory and D. Borrione. Proven correct monitors
from psl specifications. InDATE ’06: Proceedings of the
conference on Design, automation and test in Europe, pages
1246–1251, 3001 Leuven, Belgium, Belgium, 2006. Euro-
pean Design and Automation Association.

[11] R. Oliveira, A. Jagirdar, and T. J. Chakraborty. A tmr
scheme for seu mitigation in scan flip-flops. InISQED ’07:
Proceedings of the 8th International Symposium on Quality
Electronic Design, pages 905–910, Washington, DC, USA,
2007. IEEE Computer Society.

[12] A. Petrenko, R. Dssouli, and H. K̈onig. On evaluation of
testability of protocol structures. InProceedings of the IFIP
TC6/WG6.1 Sixth International Workshop on Protocol Test
systems VI, pages 111–124, Amsterdam, The Netherlands,
The Netherlands, 1994. North-Holland Publishing Co.

[13] J. Savir. On-line and off-line test of airborne digital systems:
a reliability study. InITC ’00: Proceedings of the 2000
IEEE International Test Conference, page 35, Washington,
DC, USA, 2000. IEEE Computer Society.

[14] M. Straka, J. Tobola, and Z. Kotasek. Checker design for on-
line testing of xilinx fpga communication protocols. InDFT
’07: Proceedings of the 22nd IEEE International Sympo-
sium on Defect and Fault-Tolerance in VLSI Systems, pages
152–160, Washington, DC, USA, 2007. IEEE Computer So-
ciety.

[15] Xilinx Inc. 2100 Logic Drive. LocalLink Interface Specifi-
cation. San Jose, September 2006.

[16] S.-Y. Yu and E. J. McCluskey. On-line testing and recovery
in tmr systems for real-time applications. InITC ’01: Pro-
ceedings of the 2001 IEEE International Test Conference,
page 240, Washington, DC, USA, 2001. IEEE Computer So-
ciety.


