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Preface

The subject of this monograph is divided into two parts—regulated and reduced for-
mal models.

The first part introduces and studies self-regulating finite and pushdown au-
tomata. In essence, these automata regulate the use of their rules by a sequence of
rules applied during the previous moves. A special attention is paid to turns defined
as moves during which a self-regulating automaton starts a new self-regulating se-
quence of moves.

Based on the number of turns, two infinite hierarchies of language families result-
ing from two variants of these automata are established (see Sections 4.1.1 and 4.1.2).
Section 4.1.1 demonstrates that in case of self-regulating finite automata these hier-
archies coincide with the hierarchies resulting from parallel right linear and right
linear simple matrix grammars, so the self-regulating finite automata can be viewed
as the automaton counterparts to these grammars. Finally, both infinite hierarchies
are compared. In addition, Section 4.1.2 discusses some results and open problems
concerning self-regulating pushdown automata.

The second part studies descriptional complexity of partially parallel grammars
(Section 5.1) and grammars regulated by context conditions (Section 5.2) with re-
spect to the number of nonterminals and a special type of productions.

Specifically, Chapter 5 proves that every recursively enumerable language is gen-
erated (i) by a scattered context grammar with no more than four non-context-free
productions and four nonterminals, (ii) by a multisequential grammar with no more
than two selectors and two nonterminals, (iii) by a multicontinuous grammar with no
more than two selectors and three nonterminals, (iv) by a context-conditional gram-
mar of degree (2,1) with no more than six conditional productions and seven nonter-
minals, (v) by a simple context-conditional grammar of degree (2,1) with no more
than seven conditional productions and eight nonterminals, (vi) by a generalized for-
bidding grammar of degree two and index six with no more than ten conditional
productions and nine nonterminals, (vii) by a generalized forbidding grammar of de-
gree two and index four with no more than eleven conditional productions and ten
nonterminals, (viii) by a generalized forbidding grammar of degree two and index
nine with no more than eight conditional productions and ten nonterminals, (ix) by
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a generalized forbidding grammar of degree two and unlimited index with no more
than nine conditional productions and eight nonterminals, (x) by a semi-conditional
grammar of degree (2,1) with no more than seven conditional productions and eight
nonterminals, and (xi) by a simple semi-conditional grammar of degree (2,1) with
no more than nine conditional productions and ten nonterminals.

Chapter 2 contains basic definitions and the notation used during this monograph.
Chapter 3 then summarizes the previous known results related to the studied formal
models; regulated automata and descriptional complexity of partially parallel gram-
mars and grammars regulated by context conditions. Chapter 4 studies self-regulating
automata, and Chapter 5 presents the new results concerning descriptional complex-
ity of partially parallel grammars and grammars regulated by context conditions.
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Introduction

At the end of 50’s, linguist Naom Chomsky introduced the well-known hierarchy
of languages (regular, context-free, context-sensitive, and recursively enumerable
languages), which is in his honour called Chomsky hierarchy. His work inspired
mathematicians and theoretical computer scientists, who gave that theory the needed
formal shape convenient for its application in informatics. Thereby, formal language
theory was established.

In classical formal language theory, there are three main approaches to formal
languages.

1. Grammatical approach—language generation.
2. Automata approach—language recognition.
3. Algebraic approach—based on algebraic properties of languages and families

of languages, such as closure properties under some language operations, etc.
(see [Gin75]).

According to the previous approaches, this monograph is divided into two parts.
The first part, consisting of Chapter 4, is concerning the automata approach to

the theory of formal languages. This chapter introduces and studies so-called self-
regulating automata (see [MM07d]). Automata theory has, over its history, modi-
fied and restricted classical automata in many ways (see [Cou77, FR68, GGH67,
GS68, Gre69, Med03, Med06, Sak81, Sir71, Val89]). Recently, regulated automata
have been introduced and studied in [MK00, MK02]. In essence, these automata
regulate the use of their rules according to which they make moves by control lan-
guages. This monograph continues with this topic by defining and investigating self-
regulating finite (pushdown) automata. Instead of prescribed control languages, the
self-regulating automata restrict the selection of a rule according to which the current
move is made by a rule according to which a previous move was made.

To give a more precise insight into self-regulating automata, consider a finite au-
tomaton, M, with a finite binary relation, R, over M’s rules. Furthermore, suppose that
M makes a sequence of moves, ρ , that leads to the acceptance of a string, so ρ can
be expressed as a concatenation of n+1 consecutive subsequences, ρ = ρ0ρ1 . . .ρn,
|ρi|= |ρ j|, 0≤ i, j ≤ n, in which r j

i denotes the rule according to which the ith move
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2 1 Introduction

in ρ j is made, for all 0 ≤ j ≤ n and 1 ≤ i ≤ |ρ j| (as usual, |ρ j| denotes the length
of ρ j).

If for all 0 ≤ j < n, (r j
1,r

j+1
1 ) ∈ R, then M represents an n-turn first-move self-

regulating finite automaton with respect to R.
If for all 0 ≤ j < n and, in addition, for all 1 ≤ i ≤ |ρi|, (r j

i ,r
j+1
i ) ∈ R, then M

represents an n-turn all-move self-regulating finite automaton with respect to R.
Based on the number of turns, two infinite hierarchies of language families that

lie between the families of regular and context-sensitive languages are established.
First, a demonstration that n-turn first-move self-regulating finite automata give rise
to an infinite hierarchy of language families coinciding with the hierarchy resulting
from (n + 1)-parallel right linear grammars (see [RW73, RW75, Woo73, Woo75])
is given. Recall that n-parallel right linear grammars generate a proper language
subfamily of the language family generated by (n + 1)-parallel right linear gram-
mars (see Theorem 5 in [RW75]). As a result, n-turn first-move self-regulating fi-
nite automata accept a proper language subfamily of the language family accepted
by (n + 1)-turn first-move self-regulating finite automata, for all n ≥ 0. Similarly,
a proof that n-turn all-move self-regulating finite automata give rise to an infinite
hierarchy of language families coinciding with the hierarchy resulting from (n+1)-
right linear simple matrix grammars (see [DP89, Iba70, Woo75]) is given. As n-right
linear simple matrix grammars generate a proper subfamily of the language fam-
ily generated by (n + 1)-right linear simple matrix grammars (see Theorem 1.5.4
in [DP89]), n-turn all-move self-regulating finite automata accept a proper language
subfamily of the language family accepted by (n + 1)-turn all-move self-regulating
finite automata. Furthermore, since the families of right linear simple matrix lan-
guages coincide with the language families accepted by multitape nonwriting au-
tomata (see [FR68]) and by finite-turn checking automata (see [Sir71]), the all-move
self-regulating finite automata characterize these families, too. Finally, the results
about both infinite hierarchies are summarized.

Next, self-regulating pushdown automata are discussed. Regarding all-move self-
regulating pushdown automata, a proof that all-move self-regulating pushdown au-
tomata do not give rise to any infinite hierarchy analogical to hierarchies resulting
from the self-regulating finite automata is given. It is shown that while zero-turn
all-move self-regulating pushdown automata define the family of context-free lan-
guages, one-turn all-move self-regulating pushdown automata define the family of
recursively enumerable languages.

On the other hand, as far as first-move self-regulating pushdown automata are
concerned, it is an easy observation that zero-turn first-move self-regulating push-
down automata define the family of context-free languages. However, the question
whether these automata define an infinite hierarchy with respect to the number of
turns or not is open.

The second part of this monograph, consisting of Chapter 5, is concerning the
grammatical approach. Specifically, it studies descriptional complexity of partially
parallel grammars and grammars regulated by context conditions. The main aim of
descriptional complexity of grammars is to describe grammars in a reduced and suc-
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1 Introduction 3

cinct way (see pages 145–148 of Volume 2 in [RS97] for an overview). This trend of
formal language theory has recently so intensified that an annual international con-
ference Descriptional Complexity of Formal Systems is held to discuss this specific
topic (see [MPPW05, LRCP06, GP07] for its latest proceedings). As a central topic,
this investigation of descriptional complexity studies how to reduce the number of
grammatical components, such as the number of nonterminals or (special) produc-
tions.

Consider a family of languages, L , and a family of grammars, G , such that
L ∈L if and only if there is a grammar G ∈ G such that L = L(G). To reduce the
number of nonterminals means to find a natural number (if it exists), k, such that
for every language L ∈ L , there is a grammar G ∈ G such that the set of all G’s
nonterminals, N, contains no more than k elements, |N| ≤ k, and G generates L,
L = L(G). In other words, the question is what is the minimal k such that there is
a subfamily, H , of G consisting of grammars having no more than k nonterminals
such that any language from L is generated by a grammar from H . The reduction
of special productions is defined analogously, i.e., the aim is to find a natural number
(if it exists), l, such that for every language L ∈L , there is a grammar G ∈ G with
P being the set of all its productions, P = P′ ∪P′′, where P′′ is the set of all special
productions, such that |P′′| ≤ l and L = L(G). For instance, let P′ be the set of all
context-free and P′′ the set of all remaining productions of P.

This monograph studies the simultaneous reduction of both the number of non-
terminals and the number of special productions. In other words, in case of studied
grammars, it is well-known that there are natural numbers k and l such that there is
a subfamily, H , of G having no more than k nonterminals and l special productions
such that any language from L is generated by a grammar from H . We decrease
these numbers as follows.

The first section of Chapter 5 studies descriptional complexity of scattered con-
text, multisequential, and multicontinuous grammars (see [DP89, KR83a, Med97a,
Med97c, Med98a, Med00b, Med00c, Med02, MF03a, MF03b, Vas05] for more de-
tails). These grammars are ordinary context-free grammars, where a limited number
of productions is allowed to be parallelly applied in one derivation step. Recall that
every recursively enumerable language was shown to be generated

(1) by a scattered context grammar with no more than five nonterminal symbols and
two non-context-free productions (see [Vas05]);

(2) by a multisequential grammar with no more than six nonterminal symbols
(see [Med97c]); and

(3) by a multicontinuous grammar with no more than six nonterminal symbols
(see [Med98a]).

In this monograph, these results are improved (see [MMa]). Specifically, it proves
that every recursively enumerable language is generated

(A) by a scattered context grammar with no more than four nonterminal symbols
and four non-context-free productions;

(B) by a multisequential grammar with no more than two nonterminal symbols and
two selectors; and
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4 1 Introduction

(C) by a multicontinuous grammar with no more than three nonterminal symbols
and two selectors.

The second section of Chapter 5 studies descriptional complexity of context-
conditional grammars. Context-conditional grammars are context-free grammars in
which two sets of strings, called a permitting and a forbidding context, are attached
to each production. Such a production is then applicable if each element of its per-
mitting context occurs in the current sentential form while none of its forbidding
context does.

Many variants of these grammars that differ in requirements put on their permit-
ting and forbidding contexts are studied in the literature, such as generalized for-
bidding, semi-conditional, or simple semi-conditional grammars (see [DP89, Kel84,
Mv02, Mv05, P8̆5]). All these grammars are proved to be able to generate the fam-
ily of recursively enumerable languages. Specifically, recall that every recursively
enumerable language was shown to be generated

(1) by a context-conditional grammar of degree (1,1) (however, the number of con-
ditional productions and nonterminals is not limited, see [DP89, May72, Sal73]);

(2) by a generalized forbidding grammar of degree two with no more than thirteen
conditional productions and fifteen nonterminals (see [Mv03]); and

(3) by a simple semi-conditional grammar of degree (2,1) with no more than ten
conditional productions and twelve nonterminals (see [Vas05]).

This monograph improves these results (see [Mas06, Mas07b, MM07a, MM07c,
MM07b]). Specifically, it proves that every recursively enumerable language is gen-
erated

(A) by a context-conditional grammar of degree (2,1) with no more than seven con-
ditional productions and eight nonterminals;

(B) by a generalized forbidding grammar of degree two and index six with no more
than ten conditional productions and nine nonterminals;

(C) by a generalized forbidding grammar of degree two and index four with no more
than eleven conditional productions and ten nonterminals;

(D) by a generalized forbidding grammar of degree two and index nine with no more
than eight conditional productions and ten nonterminals;

(E) by a generalized forbidding grammar of degree two and unlimited index with no
more than nine conditional productions and eight nonterminals;

(F) by a simple semi-conditional grammar of degree (2,1) with no more than nine
conditional productions and ten nonterminals; and

(G) by a semi-conditional grammar of degree (2,1) with no more than seven condi-
tional productions and eight nonterminals.

In fact, except for result (E), all these results are established for grammars with con-
text conditions represented by strings consisting solely of nonterminals as opposed
to the previous results that allow terminals to appear in them as well.
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Notation and Basic Definitions

The set of all natural numbers is denoted by N. The set of all natural numbers with
zero is denoted by N0. The cardinality of a set, A, is denoted by |A|. For two sets, A
and B, A ⊆ B denotes that A is a subset of B; A ⊂ B denotes that A ⊆ B and A 6= B,
i.e. A is a proper subset of B.

2.1 Alphabets and Strings

An alphabet is an arbitrary finite nonempty set of elements, which are called symbols.
A finite sequence, w, of symbols forms a string. The empty string, denoted by ε , is
the string that contains no symbols. The length of w, |w|, is the number of all symbols
in w.

Let x and y be two strings over an alphabet T . Then, xy is the concatenation of x
and y. The following equation is an immediate consequence of the definition;

xε = εx = x .

Definition 2.1.1. Let x be a string over an alphabet T . For i ∈ N0, the ith power of x
is defined as

1. x0 = ε

2. xi = xxi−1

Observe that for any string x,

xix j = x jxi = xi+ j ,

for any i, j ∈ N0.

Definition 2.1.2. Let x be a string over an alphabet T . The reversal of x, xR, is defined
as

1. εR = ε
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2. if x = a1 . . .an, for some n ∈ N, and ai ∈ Σ , for i = 1, . . . ,n, then (a1 . . .an)R =
an . . .a1.

Definition 2.1.3. Let x and y be two strings over an alphabet T . Then, x is a substring
of y if there exist two strings z and z′ over T so that zxz′ = y. If z = ε , then x is a
prefix of y. If z′ = ε , then x is a suffix of y. Moreover, if x 6∈ {ε,y}, then x is a proper
substring (prefix, suffix) of y.

2.2 Languages and Language Operations

Let T be an alphabet and let T ∗ denote the set of all strings over T . Set T + = T ∗−
{ε}. In other words, T + denotes the set of all nonempty strings over T .

A language, L, over T is a subset of T ∗, i.e.

L⊆ T ∗ .

(Sometimes, if it does not lead to confusion, a singleton set {a} is denoted as a.)
As languages are sets, the common set operations can be applied to them (such

as union, intersection, difference, and complement). That is, for two languages L1
and L2,

L1∪L2 = {x : x ∈ L1 or x ∈ L2},
L1∩L2 = {x : x ∈ L1 and x ∈ L2},
L1−L2 = {x : x ∈ L1 and x 6∈ L2}.

Consider a language, L, over an alphabet T . The complement of L, L̄, is defined as

L̄ = T ∗−L .

A language, L, is said to be finite if |L|= n, for some n ∈N0; otherwise, L is said
to be infinite.

The basic language operations follow.

Definition 2.2.1. Let L1 and L2 be two languages. The concatenation of L1 and L2,
L1L2, is defined as

L1L2 = {xy : x ∈ L1 and y ∈ L2} .

Definition 2.2.2. Let L be a language. The reversal of L, LR, is defined as

LR = {xR : x ∈ L} .

Definition 2.2.3. Let L be a language. For i ∈ N0, the ith power of L, Li, is defined
as

1. L0 = ε

2. Li = LLi−1
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Definition 2.2.4. Let L be a language. The Kleene closure of L, L∗, is defined as

L∗ =
∞⋃

i=0

Li .

Definition 2.2.5. Let L be a language. The positive closure of L, L+, is defined as

L+ =
∞⋃

i=1

Li .

Definition 2.2.6. Let f : T ∗→ 2U∗ be a mapping, T , U alphabets. If f satisfies the
following conditions, then f is said to be a substitution.

1. f (ε) = {ε},
2. f (xy) = f (x) f (y), where x,y ∈ T ∗.

f is said to be finite if f (a) is a finite language, for all a ∈ T . For any language
L⊆ T ∗,

f (L) =
⋃
x∈L

f (x) .

The substitution f is called nonerasing if ε 6∈ f (a), for any a ∈ T .
A homomorphism is a substitution f such that | f (a)|= 1, for all a ∈ T . Let f be

a homomorphism. Then, the inverse homomorphic image of L is the set

f−1(L) = {x ∈ T ∗ : f (x) ∈ L} ,

and, for strings,
f−1(w) = {x ∈ T ∗ : f (x) = w} .

Definition 2.2.7. A right quotient of a language L with a language K is the set

L/K = {w : wx ∈ L, for some x ∈ K} .

Definition 2.2.8. Let F be a family of languages and O be an n-ary language op-
eration. F is closed under the operation O if, for any languages L1, . . . ,Ln ∈ F ,
O(L1, . . . ,Ln) ∈F .

Definition 2.2.9. Let w be a string over an alphabet T . Then,

sub(w) = {u : u is a substring of w} ,

and
alph(w) = {a ∈ T : a appears in w} .

For any language, L, over T ,

alph(L) =
⋃

w∈L

alph(w) .

Definition 2.2.10. For a finite subset W ⊆ T ∗, T is an alphabet, max(W ) is the
minimal nonnegative integer n such that |x| ≤ n, for all x ∈W .

Definition 2.2.11. For integers n1, . . . ,nk, k ∈ N, max{n1, . . . ,nk} denotes the maxi-
mum of n1, . . . ,nk.
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8 2 Notation and Basic Definitions

2.3 Grammars

In this section, devices generating languages are defined. Such devices are called
grammars and play the main role in formal language theory.

Definition 2.3.1. A grammar, G, is a quadruple

G = (N,T,P,S) ,

where

• N is a nonterminal alphabet,
• T is a terminal alphabet such that N∩T = /0,
• P is a finite set of productions of the form

u→ v ,

where u ∈V ∗NV ∗ and v ∈V ∗; V denotes the total alphabet of G, i.e. V = N∪T .
• S ∈ N is the start symbol.

Every grammar G = (N,T,P,S) defines a binary relation of direct derivation on
the set V ∗ denoted by⇒ and defined as

x⇒ y

provided that

1. there is a production u→ v ∈ P and
2. strings x1,x2 ∈V ∗ such that
• x = x1ux2 and
• y = x1vx2.

If x,y ∈V ∗ and m ∈ N, then x⇒m y if and only if there is a sequence x0⇒ x1⇒
. . .⇒ xm, where x0 = x and xm = y. We write x⇒+ y if and only if there is m ∈ N
such that x⇒m y, and x⇒∗ y if and only if x = y or x⇒+ y. In other words,⇒+ and
⇒∗ are the transitive and the reflexive and transitive closures of⇒, respectively.

The elements of V ∗ that can be derived from the start symbol, S, are called sen-
tential forms of G = (N,T,P,S). More precisely, x ∈V ∗ is a sentential form if

S⇒∗ x .

If x does not contain nonterminals, then x is called a sentence. If x is a sentence, then
S⇒∗ x is said to be a terminal derivation. The set of all sentences is the language
generated by G, denoted by L(G), i.e.

L(G) = {w ∈ T ∗ : S⇒∗ w} .

Grammars G1 and G2 are said to be equivalent if and only if they generate the
same language, i.e.

L(G1) = L(G2) .
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2.3 Grammars 9

Chomsky Hierarchy of Languages

At the end of 50’s, linguist Naom Chomsky separated grammars into four basic
groups according to limitations put on their productions. Chomsky hierarchy dis-
tinguishes the following four basic types of grammars:

type 0: Any grammar is a type 0 grammar.
type 1: A grammar is a type 1 (or context-sensitive) grammar if all its productions

are of the form u→ v with |u| ≤ |v|; except for the case S→ ε , where S does not
occur on the right-hand side of any production.

type 2: A grammar is a type 2 (or context-free) grammar if all its productions are of
the form u→ v with u ∈ N.

type 3: A grammar is a type 3 (or regular) grammar if all its productions are of the
form u→ v with u ∈ N and v ∈ T N∪T ∪{ε}.

The hierarchy of grammars establishes the hierarchy of languages. A language, L,
is said to be regular (context-free, context-sensitive, recursively enumerable) if there
is a regular (context-free, context-sensitive, type 0) grammar, G, such that L = L(G).
These families of languages are denoted by REG, CF , CS, and RE, respectively. The
following theorem holds (see [Med00a]).

Theorem 2.3.2. REG⊂CF ⊂CS⊂ RE.

Definition 2.3.3. Let G = (N,T,P,S) be a grammar. G is in the Kuroda normal form
if each production in P is in one of the following four forms

1. AB→CD,
2. A→ BC,
3. A→ a,
4. A→ ε ,

where A,B,C,D ∈ N and a ∈ T .
In addition, if for each production of the form AB→CD we have A = C, then G

is in the Penttonen normal form.

Proofs of the following theorem can be found in [Med00a, Pen74].

Theorem 2.3.4. Let L be a recursively enumerable language. Then, there is a gram-
mar G in the Kuroda (Penttonen) normal form such that L = L(G).

The following three normal forms are fundamental for the results concerning
descriptional complexity of grammars proved in this monograph.

Definition 2.3.5. Let G = (N,T,P,S) be a grammar.

1. G is in the first Geffert normal form if it is of the form

G = ({S,A,B,C},T,P∪{ABC→ ε},S) ,

where P contains context-free productions of the form
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10 2 Notation and Basic Definitions

S→ uSa, where u ∈ {A,AB}∗, a ∈ T,
S→ uSv, where u ∈ {A,AB}∗, v ∈ {BC,C}∗,
S→ uv, where u ∈ {A,AB}∗, v ∈ {BC,C}∗.

2. G is in the second Geffert normal form if it is of the form

G = ({S,A,B,C,D},T,P∪{AB→ ε,CD→ ε},S) ,

where P contains context-free productions of the form

S→ uSa, where u ∈ {A,C}∗, a ∈ T,
S→ uSv, where u ∈ {A,C}∗, v ∈ {B,D}∗,
S→ uv, where u ∈ {A,C}∗, v ∈ {B,D}∗.

3. G is in the third Geffert normal form if it is of the form

G = ({S,A,B},T,P∪{ABBBA→ ε},S) ,

where P contains context-free productions of the form

S→ uSa, where u ∈ {AB,ABB}∗, a ∈ T,
S→ uSv, where u ∈ {AB,ABB}∗, v ∈ {BA,BBA}∗,
S→ uv, where u ∈ {AB,ABB}∗, v ∈ {BA,BBA}∗.

The following three theorems are proved in [Gef88a, Gef91b].

Theorem 2.3.6. Let L be a recursively enumerable language, then there is a gram-
mar, G, in the first Geffert normal form such that L = L(G).

In addition, any terminal derivation in G is of the form S⇒∗ w1w2w by produc-
tions from P, where w1 ∈ {A,AB}∗, w2 ∈ {BC,C}∗, w ∈ T ∗, and w1w2w⇒∗ w is
derived by ABC→ ε .

Theorem 2.3.7. Let L be a recursively enumerable language, then there is a gram-
mar, G, in the second Geffert normal form such that L = L(G).

In addition, any terminal derivation in G is of the form S⇒∗ w1w2w by produc-
tions from P, where w1 ∈ {A,C}∗, w2 ∈ {B,D}∗, w∈ T ∗, and w1w2w⇒∗ w is derived
by AB→ ε and CD→ ε .

Theorem 2.3.8. Let L be a recursively enumerable language, then there is a gram-
mar, G, in the third Geffert normal form such that L = L(G).

In addition, any terminal derivation in G is of the form S⇒∗ w1w2w by produc-
tions from P, where w1 ∈ {AB,ABB}∗, w2 ∈ {BA,BBA}∗, w ∈ T ∗, and w1w2w⇒∗ w
is derived by ABBBA→ ε .

2.4 Automata

In this section, basic devices for recognizing strings of a given (regular or context-
free) language are defined—finite and pushdown automata. These definitions are
based on the notation of [Med00a], however, they are equivalent to the so-called
delta-notation (see [HU79]).
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2.4 Automata 11

2.4.1 Finite Automata

Definition 2.4.1. A finite automaton, M, is a quintuple

M = (Q,Σ ,δ ,q0,F) ,

where

• Q is a finite set of states,
• Σ is a finite input alphabet,
• δ is a finite set of rules of the form

qw→ p ,

where q, p ∈ Q and w ∈ Σ ∗,
• q0 ∈ Q is an initial state, and
• F is a set of final states.

Definition 2.4.2. Let Ψ be an alphabet of rule labels such that |Ψ |= |δ |, and ψ be
a bijection from δ to Ψ . For simplicity, to express that ψ maps a rule qw→ p ∈ δ to
r, where r ∈Ψ , we write

r.qw→ p ∈ δ ;

in other words, r.qw→ p means ψ(qw→ p) = r.
A configuration of M is any string from QΣ ∗. For any configuration qwy, where

q ∈ Q, wy ∈ Σ ∗, and any r.qw→ p ∈ δ , M makes a move from configuration qwy to
configuration py according to r, written as

qwy⇒ py [r] .

Let χ be any configuration of M. M makes zero moves from χ to χ according to ε ,
written as

χ ⇒0
χ [ε] .

Let there exist a sequence of configurations χ0,χ1, . . . ,χn, for some n ∈ N, such that
χi−1 ⇒ χi [ri], where ri ∈Ψ , i = 1, . . . ,n. Then, M makes n moves from χ0 to χn
according to r1, . . . ,rn, symbolically written as

χ0⇒n
χn [r1 . . .rn] .

Such a sequence of moves is also called a computation. We write χ0⇒+ χn [r1 . . .rn]
if χ0⇒n χn [r1 . . .rn], for some n ∈ N. Analogously, we write χ0⇒∗ χn [µ] if either
χ0 = χn and µ = ε , or χ0⇒+ χn [µ], where µ = r1 . . .rn, for some r1, . . . ,rn ∈Ψ . If
w∈ Σ ∗ and q0w⇒∗ f [µ], for some f ∈F , then w is accepted by M and q0w⇒∗ f [µ]
is an acceptance of w in M.

The language of M is defined as

L(M) = {w ∈ Σ
∗ : q0w⇒∗ f [µ] is an acceptance of w} .

For a proof of the following theorem see [Med00a].

Theorem 2.4.3. Let L be a language. L is regular if and only if there is a finite
automaton, M, such that L = L(M).
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2.4.2 Pushdown Automata

Pushdown automata represent finite automata extended by a potentially unbounded
pushdown store.

Definition 2.4.4. A pushdown automaton, M, is a septuple

M = (Q,Σ ,Γ ,δ ,q0,Z0,F) ,

where

• Q is a finite set of states,
• Σ is a finite input alphabet,
• Γ is a finite pushdown alphabet,
• δ is a finite set of rules of the form

Zqw→ γ p ,

where q, p ∈ Q, Z ∈ Γ , w ∈ Σ ∗, and γ ∈ Γ ∗,
• q0 ∈ Q is an initial state,
• Z0 is an initial pushdown symbol, and
• F is a set of final states.

Definition 2.4.5. Again, let ψ denote the bijection from δ to Ψ , and write

r.Zqw→ γ p

instead of ψ(Zqw→ γ p) = r.
A configuration of M is any string from Γ ∗QΣ ∗. For any configuration xAqwy,

where x ∈ Γ ∗, A ∈ Γ , q ∈ Q, wy ∈ Σ ∗, and any r.Aqw→ γ p ∈ δ , M makes a move
from xAqwy to xγ py according to r, written as

xAqwy⇒ xγ py [r] .

As usual, we define ⇒n, for n ∈ N0, ⇒+, and ⇒∗. If w ∈ Σ ∗ and Z0q0w⇒∗ f [µ],
for some f ∈ F , then w is accepted by M and Z0q0w⇒∗ f [µ] is an acceptance of w
in M.

The language of M is defined as

L(M) = {w ∈ Σ
∗ : Z0q0w⇒∗ f [µ] is an acceptance of w} .

For a proof of the following theorem see [Med00a].

Theorem 2.4.6. Let L be a language. L is context-free if and only if there is a push-
down automaton, M, such that L = L(M).
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Current Concepts and Results

Undoubtedly, over its history, the most studied languages of the Chomsky hierarchy
were regular and context-free languages because of their great practical use. How-
ever, a short time after its introduction, some practical applications were discovered
for which context-free languages were shown not to be sufficient. According to the
Chomsky hierarchy, there was no other way than to consider such languages as be-
ing context-sensitive. Nevertheless, most of these languages were quite simple and,
therefore, new ways how to describe languages of such types were looked for. These
efforts eventually led to the idea of increasing the power of existing formal systems
by their regulation.

3.1 Regulated Formal Systems

Formal language theory has paid a great attention to regulated and modified gram-
mars, see [DP89, Mv05] and papers [Bak72, Boo72, DFP99, Fer00, FP94, GG66,
Hib74, Med91, Med94, Med97b]. Specifically, the following regulated grammars
have been intensively studied.

• matrix grammars;
• programmed grammars;
• random context grammars;
• scattered context grammars;
• conditional grammars.

The main idea behind the regulation of grammars is to take a simple, well-known
grammar that is not as powerful as needed, and to find a new way how to simply in-
crease the power of this grammar. For instance, in most cases of regulated grammars,
a context-free grammar is taken as the initial or basic simple grammar. However,
other types of grammars of the Chomsky hierarchy were studied as well.

On the other side, the notion of regulated automata is rather new. So far, only two
papers by Meduna and Kolář concerning the topic of regulated automata have been
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14 3 Current Concepts and Results

published (see [MK00, MK02]). In essence, these automata regulate the use of their
rules according to which they make moves by control languages.

Informally, consider a pushdown automaton, M, and a control language, L, over
M’s rule labels. With L, M accepts a string, w, if and only if L contains a control
string according to which M makes a sequence of moves so that it reaches a final
configuration after reading w. Moreover, with L, M defines the following three types
of accepted languages:

L(M,L,1)—the language accepted by final state;
L(M,L,2)—the language accepted by empty pushdown;
L(M,L,3)—the language accepted by final state and empty pushdown.

For any family of languages, F , set RPD(F , i) = {L(M,L, i) : M is a pushdown
automaton and L ∈F}, where i = 1,2,3.

The following results are proved in [MK00].

1. CF = RPD(REG,1) = RPD(REG,2) = RPD(REG,3), and
2. RE = RPD(LIN,1) = RPD(LIN,2) = RPD(LIN,3).

Here, LIN denotes the family of context-free languages, where any context-free pro-
duction A→ α contains no more than one nonterminal in α . Such languages are
called linear.

In [MK02], some restrictions of regulated pushdown automata are studied. Con-
sider two consecutive moves made by a pushdown automaton, M. If during the first
move M does not shorten its pushdown and during the second move it does, then M
makes a turn during the second move. A pushdown automaton is one-turn if it makes
no more than one turn during any computation starting from an initial configuration.
Recall that the one-turn pushdown automata are less powerful than the pushdown
automata.

It is proved that one-turn regulated pushdown automata characterize the family
of recursively enumerable languages and that this equivalence holds even for some
restricted versions of one-turn regulated pushdown automata, such as atomic and
reduced one-turn pushdown automata.

During a move, an atomic one-turn regulated pushdown automaton changes a
state and, in addition, performs exactly one of the following actions:

1. it pushes a symbol onto the pushdown;
2. it pops a symbol from the pushdown;
3. it reads an input symbol.

A reduced one-turn regulated pushdown automaton has a limited number of some
components, such as the number of states, pushdown symbols, or transition rules.

The main result proved in [MK02] is that every recursively enumerable language
is accepted by an atomic reduced one-turn regulated pushdown automaton in terms
of (A) acceptance by final state, (B) acceptance by empty pushdown, and (C) ac-
ceptance by final state and empty pushdown. More specifically, it proves that atomic
one-turn pushdown automata with no more than one state and two pushdown sym-
bols regulated by linear languages characterize the family of recursively enumerable
languages.
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3.2 Descriptional Complexity of Grammars 15

One of the main aims of this monograph is to contribute to this topic.

3.2 Descriptional Complexity of Grammars

The second part of this monograph is concerning descriptional complexity of gram-
mars. As mentioned above, this is a vivid trend of formal language theory that has re-
cently so intensified that an annual international conference Descriptional Complex-
ity of Formal Systems is held to discuss this specific topic (see [MPPW05, LRCP06,
GP07] for its latest proceedings). The following list presents the known results con-
cerning descriptional complexity of partially parallel grammars and grammars regu-
lated by context conditions. It is known that every recursively enumerable language
is generated

(1) by a scattered context grammar with no more than five nonterminal symbols and
two non-context-free productions (see [Vas05]);

(2) by a multisequential grammar with no more than six nonterminal symbols
(see [Med97c]);

(3) by a multicontinuous grammar with no more than six nonterminal symbols
(see [Med98a]);

(4) by a context-conditional grammar of degree (1,1) (however, the number of con-
ditional productions and nonterminals is not limited, see [DP89, May72, Sal73]);

(5) by a generalized forbidding grammar of degree two with no more than thirteen
conditional productions and fifteen nonterminal symbols (see [Mv03]); and

(6) by a simple semi-conditional grammar of degree (2,1) with no more than ten
conditional productions and twelve nonterminal symbols (see [Vas05]).
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Self-Regulating Automata
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4

Self-Regulating Automata

This chapter studies self-regulating finite and pushdown automata. The first section
introduces self-regulating finite and pushdown automata and defines two variants
how they accept an input string—so-called first-move and all-move self-regulating
finite and pushdown automata. The second section studies first-move and all-move
self-regulating finite automata and describes their power with respect to the num-
ber of turns. Then, some closure properties of families of languages accepted by
these automata are studied. Finally, both variants of self-regulating finite automata
are compared. The last section of this chapter studies self-regulating pushdown au-
tomata. Although the first-move self-regulating pushdown automata are introduced,
the question of their power is an open problem.

4.1 Definitions and Examples

This section introduces self-regulating finite and pushdown automata and two ways
how they accept an input string.

Consider a finite (pushdown) automaton with a selected state, so-called turn state,
and with a finite relation on the alphabet of rule labels. Such an automaton is said to
be a self-regulating finite (pushdown) automaton.

Definition 4.1.1. Let N = (Q,Σ ,δ ,q0,F) be a finite (N = (Q,Σ ,Γ ,δ ,q0,Z0,F) be a
pushdown) automaton. A self-regulating finite (pushdown) automaton, SFA (SPDA),
M, is a triple

M = (N,qt ,R) ,

where

1. qt ∈ Q is a turn state, and
2. R ⊆Ψ ×Ψ is a finite relation on the alphabet of N’s rule labels, Ψ (see Defini-

tion 2.4.2).

Notation 1. Let N = (Q,Σ ,δ ,q0,F) be a finite automaton. The self-regulating finite
automaton
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20 4 Self-Regulating Automata

M = (N,qt ,R)

is, to clarify the components of N, written as

M = (Q,Σ ,δ ,q0,qt ,F,R)

from now on. Analogously for self-regulating pushdown automata.

4.1.1 Self-Regulating Finite Automata

The main idea of the self-regulating finite automata is as follows. Consider a finite
automaton, N. This automaton starts its computation in the start state and then, during
its computation, reads the input string and, accordingly, goes from a state to another
one. If, having read the whole input string, the computation ends in a final state, the
input is accepted; otherwise, the input is rejected. A self-regulating finite automaton,
M = (N,qt ,R), is a finite automaton that behaves as follows. M starts in the start
state and while it does not reach the turn state, it reads the input, moves from a state
to another state according to the applied rule and records the rule. If M reaches the
turn state for the first time, i.e. state qt is, for the first time, the current state of M,
the automaton makes a turn. It means that M, in addition, starts to read the recorded
sequence of rules, and the computation proceeds according to the relation R. More
precisely, M reads an input symbol a, reads the first recorded rule, r1, of the sequence
of rules, r1r2 . . .rk, goes from the current state to another one according to a rule s1
such that (r1,s1)∈ R, replaces r1 with s1, and the next recorded rule is read, r2. After
the whole sequence r1r2 . . .rk has been read, M makes a turn again or finishes its
computation. Note that only in case of the first turn the current state is required to
be the turn state qt . If M makes n ∈ N0 turns during its computation, it is called an
n-turn self-regulating finite automaton.

Now, let us formally define two variants self-regulating finite automata can ac-
cepted an input string. The first variant are so-called n-turn first-move self-regulating
finite automata. The phrase ”first-move” means that only the first rule applied after
a turn is required to be in R with the first rule of the current recorded sequence of
rules.

Definition 4.1.2. Let n ∈ N0 and

M = (Q,Σ ,δ ,q0,qt ,F,R)

be a self-regulating finite automaton. M is said to be an n-turn first-move self-
regulating finite automaton, n-first-SFA, if M accepts w in the following way. There
is an acceptance of the form q0w⇒∗ f [µ] such that

µ = r0
1 . . .r0

k r1
1 . . .r1

k . . .rn
1 . . .rn

k ,

where k ∈ N, r0
k is the first rule of the form qx→ qt , for some q ∈ Q, x ∈ Σ ∗, and

(r j
1,r

j+1
1 ) ∈ R ,

for all 0≤ j < n.
The family of languages accepted by n-first-SFAs is denoted by FIRSTn.
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4.1 Definitions and Examples 21

Example 4.1.3. Consider a one-turn first-move self-regulating finite automaton,

M = ({s, t, f},{a,b},δ ,s, t,{ f},{(1,3)}) ,

with δ containing rules 1.sa→ s, 2.sa→ t, 3.tb→ f , and 4. f b→ f (see Fig. 4.1).

s t f
a b

a b

Fig. 4.1. One-turn first-move self-regulating finite automaton M.

With aabb, M makes

saabb⇒ sabb [1]⇒ tbb [2]⇒ f b [3]⇒ f [4] .

In brief, saabb⇒∗ f [1234]. Observe that L(M) = {anbn : n ≥ 1}, which belongs to
CF−REG.

The second variant are so-called n-turn all-move self-regulating finite automata.
The phrase ”all-move” means that all rules applied after a turn are required to be in
R with the corresponding rules of the current recorded sequence of rules.

Definition 4.1.4. Let n ∈ N0 and

M = (Q,Σ ,δ ,q0,qt ,F,R)

be a self-regulating finite automaton. M is said to be an n-turn all-move self-
regulating finite automaton, n-all-SFA, if M accepts w in the following way. There is
an acceptance q0w⇒∗ f [µ] such that

µ = r0
1 . . .r0

k r1
1 . . .r1

k . . .rn
1 . . .rn

k ,

where k ∈ N, r0
k is the first rule of the form qx→ qt , for some q ∈ Q, x ∈ Σ ∗, and

(r j
i ,r

j+1
i ) ∈ R ,

for all 1≤ i≤ k, 0≤ j < n.
The family of languages accepted by n-all-SFAs is denoted by ALLn.

Example 4.1.5. Consider a one-turn all-move self-regulating finite automaton,

M = ({s, t, f},{a,b},δ ,s, t,{ f},{(1,4),(2,5),(3,6)}) ,

with δ containing rules 1.sa→ s, 2.sb→ s, 3.s→ t, 4.ta→ t, 5.tb→ t, and 6.t→ f
(see Fig. 4.2).
With abab, M makes
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s t f
ε ε

a, b a, b

Fig. 4.2. One-turn all-move self-regulating finite automaton M.

sabab⇒ sbab [1]⇒ sab [2]⇒ tab [3]⇒ tb [4]⇒ t [5]⇒ f [6] .

In brief, sabab⇒∗ f [123456]. Observe that L(M) = {ww : w ∈ {a,b}∗}, which be-
longs to CS−CF .

4.1.2 Self-Regulating Pushdown Automata

Self-regulating pushdown automata are defined in the same manner as self-regulating
finite automata. Formal definitions follow.

Definition 4.1.6. Let n ∈ N0 and

M = (Q,Σ ,Γ ,δ ,q0,qt ,Z0,F,R)

be a self-regulating pushdown automaton. M is said to be an n-turn first-move self-
regulating pushdown automaton, n-first-SPDA, if M accepts w in the following way.
There is an acceptance Z0q0w⇒∗ f [µ] such that

µ = r0
1 . . .r0

k r1
1 . . .r1

k . . .rn
1 . . .rn

k ,

where k ∈N, r0
k is the first rule of the form Zqx→ γqt , for some Z ∈Γ , q∈Q, x∈ Σ ∗,

γ ∈ Γ ∗, and
(r j

1,r
j+1
1 ) ∈ R ,

for all 0≤ j < n.
The family of languages accepted by n-first-SPDAs is denoted by FIRST -

SPDAn.

Definition 4.1.7. Let n ∈ N0 and

M = (Q,Σ ,Γ ,δ ,q0,qt ,Z0,F,R)

be a self-regulating pushdown automaton. M is said to be an n-turn all-move self-
regulating pushdown automaton, n-all-SPDA, if M accepts w in the following way.
There is an acceptance Z0q0w⇒∗ f [µ] such that

µ = r0
1 . . .r0

k r1
1 . . .r1

k . . .rn
1 . . .rn

k ,

where k ∈N, r0
k is the first rule of the form Zqx→ γqt , for some Z ∈Γ , q∈Q, x∈ Σ ∗,

γ ∈ Γ ∗, and
(r j

i ,r
j+1
i ) ∈ R ,

for all 1≤ i≤ k, 0≤ j < n.
The family of languages accepted by n-all-SPDAs is denoted by ALL-SPDAn.
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4.2 Self-Regulating Finite Automata

In this section, the main results concerning self-regulating finite automata are proved.

4.2.1 First-Move Self-Regulating Finite Automata

This section proves the identity between the family of languages accepted by n-
turn first-move self-regulating finite automata and the family of languages generated
by (n + 1)-parallel right linear grammars. To do so, a special form of parallel right
linear grammars is needed. First, however, parallel right linear grammars are defined
(see [RW73, RW75, Woo73, Woo75]).

Definition 4.2.1. For n ∈ N, an n-parallel right linear grammar, n-PRLG, is an
(n+3)-tuple

G = (N1, . . . ,Nn,T,S,P) ,

where

• Ni, 1≤ i≤ n, are pairwise disjoint nonterminal alphabets,
• T is a terminal alphabet,
• S 6∈ N = N1∪ . . .∪Nn is the start symbol, N∩T = /0, and
• P is a finite set of productions of the following three forms:

1. S→ X1 . . .Xn, Xi ∈ Ni, 1≤ i≤ n;
2. X → wY , X ,Y ∈ Ni, for some 1≤ i≤ n, w ∈ T ∗;
3. X → w, X ∈ N, w ∈ T ∗.

For x,y ∈ (N∪T ∪{S})∗, x⇒ y if and only if

1. either x = S and S→ y ∈ P, or
2. x = y1X1 . . .ynXn, y = y1x1 . . .ynxn, where yi ∈ T ∗, Xi ∈ Ni, and Xi→ xi ∈ P, for

i = 1, . . . ,n.

Relations⇒n, for n ∈ N0,⇒+, and⇒∗ are defined as usual.
The language generated by an n-parallel right linear grammar, G, is defined as

L(G) = {w ∈ T ∗ : S⇒∗ w} .

A language, L, is an n-parallel right linear language, n-PRLL, if there is an n-
PRLG, G, such that L = L(G). The family of n-PRLLs is denoted by Rn.

Definition 4.2.2. Let G = (N1, . . . ,Nn,T,S,P) be an n-PRLG, for some n ∈ N, and
let i = 1, . . . ,n. By the ith component of G we understand a one-PRLG

G = (Ni,T,S′,P′) ,

where P′ contains productions of the following forms:

1. S′→ Xi if S→ X1 . . .Xn ∈ P, Xi ∈ Ni;
2. X → wY if X → wY ∈ P and X ,Y ∈ Ni;
3. X → w if X → w ∈ P and X ∈ Ni.
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24 4 Self-Regulating Automata

The following special form of parallel right linear grammars is needed to prove
the main results.

Lemma 4.2.3. For every n-PRLG G = (N1, . . . ,Nn,T,S,P), there is an equivalent
n-PRLG

G′ = (N′1, . . . ,N
′
n,T,S,P′)

that satisfies:

1. if S→ X1 . . .Xn ∈ P′, then Xi does not occur on the right-hand side of any pro-
duction, for i = 1, . . . ,n;

2. if S→ α , S→ β ∈ P′ and α 6= β , then alph(α)∩alph(β ) = /0.

Proof. If G does not satisfy conditions from the lemma, then we will construct a
new n-PRLG G′ = (N′1, . . . ,N

′
n,T,S,P′), where P′ contains all productions of the

form X → β ∈ P, X 6= S, and N j ⊆ N′j, for j = 1, . . . ,n. For each production S→
X1 . . .Xn ∈ P, we add new nonterminals Yj 6∈ N′j into N′j, and productions include
S→ Y1 . . .Yn and Yj→ X j in P′, for j = 1, . . . ,n. Clearly,

S⇒G X1 . . .Xnif and only if S⇒G′ Y1 . . .Yn⇒ X1 . . .Xn .

Thus, L(G) = L(G′).

The following lemma says that every language generated by an n-parallel right
linear grammar can be accepted by an (n− 1)-turn first-move self-regulating finite
automaton. Thus, first-move self-regulating finite automata are at least as powerful
as parallel right linear grammars.

Lemma 4.2.4. Let G be an n-PRLG. Then, there is an (n−1)-first-SFA, M, such that
L(G) = L(M).

The basic idea of the proof is that M is divided into n parts (see Fig. 4.3). The ith
part represents a finite automaton accepting the language of G’s ith component, and
R also connects the ith part to the (i+1)st part as depicted in Fig. 4.3.

Proof. Without loss of generality, we can assume that G = (N1, . . . ,Nn,T,S,P) is in
the form from Lemma 4.2.3. Construct an (n−1)-first-SFA

M = (Q,T,δ ,q0,qt ,F,R) ,

where

Q = {q0, . . . ,qn}∪N, N = N1∪ . . .∪Nn, and {q0,q1, . . . ,qn}∩N = /0,

F = {qn},

δ =

{qi→ Xi+1 : S→ X1 . . .Xn ∈ P, 0≤ i < n}∪
{Xw→ Y : X → wY ∈ P}∪
{Xw→ qi : X → w ∈ P, w ∈ T ∗, X ∈ Ni, 1≤ i≤ n},

qt = q1,

Ψ = δ with the identity map, and
R = {(qi→ Xi+1,qi+1→ Xi+2) : S→ X1 . . .Xn ∈ P, 0≤ i≤ n−2}.
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We prove that L(G) = L(M). To prove that L(G)⊆ L(M), consider a derivation of
w in G and construct an acceptance of w in M depicted in Fig. 4.3. This figure clearly

S
⇓

X1
1 X2

1 . . . Xn
1

⇓
x1

1X1
2 x2

1X2
2 . . . xn

1Xn
2

⇓
...

⇓
x1

1 . . .x1
k−1X1

k x2
1 . . .X2

k . . . xn
1 . . .Xn

k
⇓

w = x1
1 . . .x1

k x2
1 . . .x2

k . . . xn
1 . . .xn

k

in G

q0
ε ↓

X1
1

x1
1 ↓

X1
2

x1
2 ↓...

x1
k−1 ↓

X1
k

x1
k ↓

q1

ε ↓
X2

1
x2

1 ↓
X2

2
x2

2 ↓...
x2

k−1 ↓
X2

k
x2

k ↓
q2

...

ε ↓
Xn

1
xn

1 ↓
Xn

2
xn

2 ↓...
xn

k−1 ↓
Xn

k
xn

k ↓
qn

in M
Fig. 4.3. A derivation of w in G and the corresponding acceptance of w in M.

demonstrates the fundamental idea behind this part of the proof; its complete and
rigorous version is lengthy and left to the reader. Thus, for each derivation S⇒∗ w,
w ∈ T ∗, there is an acceptance of w in M.

To prove that L(M) ⊆ L(G), let w ∈ L(M), and consider an acceptance of w in
M. Observe that the acceptance is of the form depicted on the right-hand side of
Fig. 4.3. It means that the number of steps M made from qi−1 to qi is the same as
from qi to qi+1 since the only rule in the relation with qi−1→X i

1 is the rule qi→X i+1
1 .

Moreover, M can never come back to a state corresponding to a previous component.
(By a component of M, we mean the finite automaton Mi = (Q,Σ ,δ ,qi−1,{qi}), for
1 ≤ i ≤ n.) Now, construct a derivation of w in G. By Lemma 4.2.3, we have |{X :
(qi→ X i+1

1 ,qi+1→ X) ∈ R}|= 1, for all 0≤ i < n−1. Thus, S→ X1
1 X2

1 . . .Xn
1 ∈ P.

Moreover, if X i
jx

i
j → X i

j+1, we apply X i
j → xi

jX
i
j+1 ∈ P, and if X i

kxi
k → qi, we apply

X i
k→ xi

k ∈ P, 1≤ i≤ n, 1≤ j < k.
Hence, Lemma 4.2.4 holds.

The following lemma says that every language accepted by an n-turn first-move
self-regulating finite automaton can be generated by an (n + 1)-parallel right linear
grammar. Thus, parallel right linear grammars are at least as powerful as first-move
self-regulating finite automata.

Lemma 4.2.5. Let M be an n-first-SFA. There is an (n + 1)-PRLG, G, such that
L(G) = L(M).

Proof. Let M = (Q,Σ ,δ ,q0,qt ,F,R). Consider

G = (N0, . . . ,Nn,Σ ,S,P) ,

where
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Ni =
(
Q(Σ ∪{ε})l×Q×{i}×Q

)
∪ (Q×{i}×Q),

l = max{|w| : qw→ p ∈ δ}, 0≤ i≤ n, and
P = {S→ [q0x0,q0,0,qt ][qtx1,q1,1,qi1 ][qi1 x2,q2,2,qi2 ] . . . [qin−1xn,qn,n,qin ] :

r0.q0x0→ q0, r1.qtx1→ q1, r2.qi1x2→ q2, . . . , rn.qin−1xn→ qn ∈ δ ,

(r0,r1),(r1,r2), . . . ,(rn−1,rn) ∈ R, qin ∈ F}∪
{[px,q, i,r]→ x[q, i,r]}∪
{[q, i,q]→ ε : q ∈ Q}∪
{[q, i, p]→ w[q′, i, p] : qw→ q′ ∈ δ}.

We prove that L(G) = L(M). To prove that L(G)⊆ L(M), observe that we make
n+1 copies of M and go through them similarly to Fig. 4.3. Consider a derivation of
w in G. Then, in greater detail, this derivation is of the form

S ⇒ [q0x0
0,q

0
1,0,qt ][qtx1

0,q
1
1,1,qi1 ] . . . [qin−1xn

0,q
n
1,n,qin ]

⇒ x0
0[q

0
1,0,qt ]x1

0[q
1
1,1,qi1 ] . . .x

n
0[q

n
1,n,qin ]

⇒ x0
0x0

1[q
0
2,0,qt ]x1

0x1
1[q

1
2,1,qi1 ] . . .x

n
0xn

1[q
n
2,n,qin ] (4.1)

...
⇒ x0

0x0
1 . . .x0

k [qt ,0,qt ]x1
0x1

1 . . .x1
k [qi1 ,1,qi1 ] . . .x

n
0xn

1 . . .xn
k [qin ,n,qin ]

⇒ x0
0x0

1 . . .x0
kx1

0x1
1 . . .x1

k . . .xn
0xn

1 . . .xn
k

and

r0.q0x0
0→ q0

1, r1.qtx1
0→ q1

1, r2.qi1x2
0→ q2

1, . . . , rn.qin−1xn
0→ qn

1 ∈ δ ,

(r0,r1), (r1,r2), . . . , (rn−1,rn) ∈ R,

and qin ∈ F .
Thus, the list of rules used in the acceptance of w in M is

µ = (q0x0
0→ q0

1)(q
0
1x0

1→ q0
2) . . .(q

0
kx0

k → qt)
(qtx1

0→ q1
1)(q

1
1x1

1→ q1
2) . . .(q

1
kx1

k → qi1)

(qi1x2
0→ q2

1)(q
2
1x2

1→ q2
2) . . .(q

2
kx2

k → qi2) (4.2)
...

(qin−1xn
0→ qn

1)(q
n
1xn

1→ qn
2) . . .(q

n
kxn

k → qin).

Now, we prove that L(M)⊆ L(G). Informally, the acceptance is divided into n+1
parts of the same length. Grammar G generates the ith part by the ith component and
records the state from which the next component starts.

Let µ be a list of rules used in an acceptance of

w = x0
0x0

1 . . .x0
kx1

0x1
1 . . .x1

k . . .xn
0xn

1 . . .xn
k
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in M of the form (4.2). Then, the derivation of the form (4.1) is the corresponding
derivation of w in G since

[qi
j, i, p]→ xi

j[q
i
j+1, i, p] ∈ P

and
[q, i,q]→ ε ,

for all 0≤ i≤ n, 1≤ j < k.
Hence, Lemma 4.2.5 holds.

The first main result of this chapter is that first-move self-regulating finite au-
tomata are as powerful as parallel right linear grammars.

Theorem 4.2.6. For all n ∈ N0, FIRSTn = Rn+1.

Proof. This proof follows from Lemmas 4.2.4 and 4.2.5.

Corollary 4.2.7. The following statements hold true.

1. REG = FIRST0 ⊂ FIRST1 ⊂ FIRST2 ⊂ . . .⊂CS.
2. FIRST1 ⊂CF.
3. FIRST2 6⊆CF.
4. CF 6⊆ FIRSTn for any n ∈ N0.
5. For all n∈N0, FIRSTn is closed under union, finite substitution, homomorphism,

intersection with a regular language, and right quotient with a regular language.
6. For all n ∈ N, FIRSTn is not closed under intersection and complement.

Proof. Recall the following statements proved in [RW75]:

• REG = R1 ⊂ R2 ⊂ R3 ⊂ . . .⊂CS.
• R2 ⊂CF .
• CF 6⊆ Rn, n ∈ N.
• For all n ∈ N, Rn is closed under union, finite substitution, homomorphism, in-

tersection with a regular language, and right quotient with a regular language.
• For all n ∈ N−{1}, Rn is not closed under intersection and complement.

These statements and Theorem 4.2.6 imply statements 1, 2, 4, 5, 6 of Corollary 4.2.7.
Moreover, observe that {anbnc2n : n ∈ N0} ∈ FIRST2−CF , which proves 3.

Theorem 4.2.8. For all n ∈ N, FIRSTn is not closed under inverse homomorphism.

Proof. For n = 1, let L = {akbk : k ∈N}, and let the homomorphism h : {a,b,c}∗→
{a,b}∗ be defined as h(a) = a, h(b) = b, and h(c) = ε . Then, it is not hard to see that
L ∈ FIRST1. However, we prove that

L′ = h−1(L)∩ c∗a∗b∗ = {c∗akbk : k ∈ N} 6∈ FIRST1 .

Assume that L′ is in FIRST1. Then, by Theorem 4.2.6, there is a two-PRLG

G = (N1,N2,T,S,P)
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such that L(G) = L′. Let k > |P| ·max{|w| : X → wY ∈ P}. Consider a derivation of
ckakbk ∈ L′. The second component can generate only finitely many as; otherwise,
it derives {akbn : k < n}, which is not regular. Analogously, the first component
generates only finitely many bs. Therefore, the first component generates any number
of as, and the second component generates any number of bs. Moreover, there is a
derivation of the form X ⇒m X , for some X ∈ N2, and m ∈ N, used in the derivation
in the second component. In the first component, there is a derivation A⇒l asA,
for some A ∈ N1, and s, l ∈ N. Then, we can modify the derivation of ckakbk so
that in the first component, we repeat the cycle A⇒l asA (m + 1)-times, and in the
second component, we repeat the cycle X ⇒m X (l + 1)-times. The derivations of
both components have the same length—the added cycles are of length ml, and the
rest is of the same length as in the derivation of ckakbk. Therefore, we have derived
ckarbk, where r > k, which is not in L′—a contradiction.

For n > 1, the proof is analogous and left to the reader.

Corollary 4.2.9. For all n∈N, FIRSTn is not closed under concatenation. Therefore,
it is not closed under Kleene closure either.

Proof. For n = 1, let L1 = {c}∗ and L2 = {akbk : k ∈N}. Then, L1L2 = {c∗akbk : k ∈
N}. Analogously for n > 1. Moreover, let L = L1∪L2. Then, L∗∩{c}∗{a}+{b}+ =
L1L2.

4.2.2 All-Move Self-Regulating Finite Automata

This section discusses n-turn all-move self-regulating finite automata. It proves that
the family of languages accepted by n-turn all-move self-regulating finite automata
coincides with the family of languages generated by n-right linear simple matrix
grammars.

Definition 4.2.10. For n ∈ N, an n-right linear simple matrix grammar, n-RLSMG,
is an (n+3)-tuple

G = (N1, . . . ,Nn,T,S,P) ,

where

• Ni, 1≤ i≤ n, are pairwise disjoint nonterminal alphabets,
• T is a terminal alphabet,
• S 6∈ N = N1∪ . . .∪Nn is the start symbol, N∩T = /0, and
• P is a finite set of matrix rules. Any matrix rule can be in one of the following

three forms:

1. [S→ X1 . . .Xn], Xi ∈ Ni, 1≤ i≤ n;
2. [X1→ w1Y1, . . . ,Xn→ wnYn], wi ∈ T ∗, Xi,Yi ∈ Ni, 1≤ i≤ n;
3. [X1→ w1, . . . ,Xn→ wn], Xi ∈ Ni, wi ∈ T ∗, 1≤ i≤ n.

Let m be a matrix, then m[i] denotes the ith rule of m.
For x,y ∈ (N∪T ∪{S})∗, x⇒ y if and only if

1. either x = S and [S→ y] ∈ P,
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4.2 Self-Regulating Finite Automata 29

2. or x = y1X1 . . .ynXn, y = y1x1 . . .ynxn, where yi ∈ T ∗, Xi ∈ Ni, and
[X1→ x1, . . . ,Xn→ xn] ∈ P, for i = 1, . . . ,n.

We define⇒n, for n ∈ N0, x⇒+ y, and x⇒∗ y as usual.
The language generated by an n-right linear simple matrix grammar, G, is defined

as
L(G) = {w ∈ T ∗ : S⇒∗ w} .

A language, L, is an n-right linear simple matrix language, n-RLSML, if there is
an n-RLSMG, G, such that L = L(G). The family of n-RLSMLs is denoted by R[n].

The ith component of an n-RLSMG is defined analogously as in case of parallel
right linear grammars.

To prove the main result, the following lemma is needed.

Lemma 4.2.11. For every n-RLSMG, G = (N1, . . . ,Nn,T,S,P), there is an equivalent
n-RLSMG, G′, that satisfies:

1. if [S→ X1 . . .Xn], then Xi does not occur on the right-hand side of any rule, for
i = 1, . . . ,n;

2. if [S→ α], [S→ β ] ∈ P and α 6= β , then alph(α)∩alph(β ) = /0;
3. for any two matrices m1,m2 ∈ P, if m1[i] = m2[i], for some 1≤ i≤ n, then m1 =

m2.

Proof. The first two conditions can be proved analogously to Lemma 4.2.3. Suppose
that there are matrices m and m′ such that m[i] = m′[i], for some 1 ≤ i ≤ n. Let
m = [X1→ x1, . . . ,Xn→ xn], m′= [Y1→ y1, . . . ,Yn→ yn]. Replace these matrices with
matrices m1 = [X1→ X ′1, . . . ,Xn→ X ′n], m2 = [X ′1→ x1, . . . ,X ′n→ xn], and m′1 = [Y1→
Y ′′1 , . . . ,Yn→Y ′′n ], m′2 = [Y ′′1 → y1, . . . ,Y ′′n → yn], where X ′i , Y ′′i are new nonterminals,
for all i = 1, . . . ,n. These new matrices satisfy condition 3. Repeat this replacement
until the resulting grammar satisfies the properties of G′ given in this lemma.

The following lemma says that every language generated by an n-right linear
simple matrix grammar can be accepted by an (n−1)-turn all-move self-regulating
finite automaton. Thus, all-move self-regulating finite automata are at least as pow-
erful as right linear simple matrix grammars.

Lemma 4.2.12. Let G be an n-RLSMG. There is an (n− 1)-all-SFA, M, such that
L(G) = L(M).

Proof. Without loss of generality, we can assume that G = (N1, . . . ,Nn,T,S,P) is in
the form described in Lemma 4.2.11. Construct an (n−1)-all-SFA

M = (Q,T,δ ,q0,qt ,F,R) ,

where



i
i

“masopust-phdthesis-fitmono” — 2008/1/25 — 12:08 — page 30 — #38 i
i

i
i

i
i

30 4 Self-Regulating Automata

Q = {q0, . . . ,qn}∪N, N = N1∪ . . .∪Nn, and {q0,q1, . . . ,qn}∩N = /0,

F = {qn},

δ =

{qi→ Xi+1 : [S→ X1 . . .Xn] ∈ P, 0≤ i < n}∪
{Xiwi→ Yi : [X1→ w1Y1, . . . ,Xn→ wnYn] ∈ P, 1≤ i≤ n}∪
{Xiwi→ qi : [X1→ w1, . . . ,Xn→ wn] ∈ P, wi ∈ T ∗, 1≤ i≤ n},

qt = q1,

Ψ = δ with the identity map, and

R =



{(qi→ Xi+1,qi+1→ Xi+2) :
[S→ X1 . . .Xn] ∈ P, 0≤ i≤ n−2}∪

{(Xiwi→ Yi,Xi+1wi+1→ Yi+1) :
[X1→ w1Y1, . . . ,Xn→ wnYn] ∈ P, 1≤ i < n}∪

{(Xiwi→ qi,Xi+1wi+1→ qi+1) :
[X1→ w1, . . . ,Xn→ wn] ∈ P, wi ∈ T ∗, 1≤ i < n}.

We prove that L(G) = L(M). The proof of the inclusion L(G) ⊆ L(M) is very
similar to the proof of the same inclusion of Lemma 4.2.4, so it is left to the reader.

To prove that L(M) ⊆ L(G), consider w ∈ L(M) and an acceptance of w in M.
As in Lemma 4.2.4, the derivation looks like the one depicted on the right-hand
side of Fig. 4.3. We generate w in G as follows. By Lemma 4.2.11, there is matrix
[S→ X1

1 X2
1 . . .Xn

1 ] in P. Moreover, if X i
jx

i
j→ X i

j+1, 1≤ i≤ n, then

(X i
j→ xi

jX
i
j+1,X

i+1
j → xi+1

j X i+1
j+1) ∈ R ,

for 1≤ i < n, 1≤ j < k. We apply

[X1
j → x1

jX
1
j+1, . . . ,X

n
j → xn

jX
n
j+1]

from P. If X i
kxi

k→ qi, 1≤ i≤ n, then

(X i
k→ xi

k,X
i+1
k → xi+1

k ) ∈ R ,

for 1≤ i < n, and we apply

[X1
k → x1

k , . . . ,X
n
k → xn

k ] ∈ P .

Thus, w ∈ L(G).
Hence, Lemma 4.2.12 holds.

The following lemma says that every language accepted by an n-turn all-move
self-regulating finite automaton can be generated by an (n + 1)-right linear simple
matrix grammar. Thus, right linear simple matrix grammars are at least as powerful
as all-move self-regulating finite automata.

Lemma 4.2.13. Let M be an n-all-SFA. There is an (n + 1)-RLSMG, G, such that
L(G) = L(M).
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Proof. Let M = (Q,Σ ,δ ,q0,qt ,F,R). Consider

G = (N0, . . . ,Nn,Σ ,S,P) ,

where

Ni =
(
Q(Σ ∪{ε})l×Q×{i}×Q

)
∪ (Q×{i}×Q),

l = max{|w| : qw→ p ∈ δ}, 0≤ i≤ n, and
P = {[S→ [q0x0,q0,0,qt ][qtx1,q1,1,qi1 ] . . . [qin−1xn,qn,n,qin ]] :

r0.q0x0→ q0, r1.qtx1→ q1, . . . , rn.qin−1xn→ qn ∈ δ ,

(r0,r1), . . . , (rn−1,rn) ∈ R, qin ∈ F}∪
{[[p0x0,q0,0,r0]→ x0[q0,0,r0], . . . , [pnxn,qn,n,rn]→ xn[qn,n,rn]]}∪
{[[q0,0,q0]→ ε, . . . , [qn,n,qn]→ ε] : qi ∈ Q, 0≤ i≤ n}∪
{[[q0,0, p0]→ w0[q′0,0, p0], . . . , [qn,n, pn]→ wn[q′n,n, pn]] :

r j.q jw j→ q′j ∈ δ , 0≤ j ≤ n, (ri,ri+1) ∈ R, 0≤ i < n}.

We prove that L(G) = L(M). To prove that L(G) ⊆ L(M), consider a derivation
of w in G. Then, the derivation is of the form (4.1) and there are rules

r0.q0x0
0→ q0

1, r1.qtx1
0→ q1

1, . . . , rn.qin−1 xn
0→ qn

1

in δ such that (r0,r1), . . . , (rn−1,rn) ∈ R. Moreover, (rl
j,r

l+1
j ) ∈ R, where rl

j.q
l
jx

l
j→

ql
j+1 ∈ δ , and (rl

k,r
l+1
k )∈R, where rl

k.q
l
kxl

k→ qil ∈ δ , 0≤ l < n, 1≤ j < k, qi0 denotes
qt , and qin ∈ F . Thus, M accepts w with the list of rules µ of the form (4.2).

To prove that L(M)⊆ L(G), let µ be a list of rules used in an acceptance of

w = x0
0x0

1 . . .x0
kx1

0x1
1 . . .x1

k . . .xn
0xn

1 . . .xn
k

in M of the form (4.2). Then, the derivation is of the form (4.1) because

[[q0
j ,0,qt ]→ x0

j [q
0
j+1,0,qt ], . . . , [qn

j ,n,qin ]→ xn
j [q

n
j+1,n,qin ]] ∈ P ,

for all qi
j ∈ Q, 1≤ i≤ n, 1≤ j < k, and [[qt ,0,qt ]→ ε, . . . , [qin ,n,qin ]→ ε] ∈ P.

Hence, Lemma 4.2.13 holds.

The second main result of this chapter is that all-move self-regulating finite au-
tomata are as powerful as right linear simple matrix grammars.

Theorem 4.2.14. For all n ∈ N0, ALLn = R[n+1].

Proof. This proof follows from Lemmas 4.2.12 and 4.2.13.

Corollary 4.2.15. The following statements hold:

1. REG = ALL0 ⊂ ALL1 ⊂ ALL2 ⊂ . . .⊂CS.
2. ALL1 6⊆CF.
3. CF 6⊆ ALLn, for every n ∈ N0.
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32 4 Self-Regulating Automata

4. For all n ∈ N0, ALLn is closed under union, concatenation, finite substitution,
homomorphism, intersection with a regular language, and right quotient with a
regular language.

5. For all n ∈ N, ALLn is not closed under intersection, complement, and Kleene
closure.

Proof. Recall the following statements proved in [Woo75]:

• REG = R[1] ⊂ R[2] ⊂ R[3] ⊂ . . .⊂CS.
• For all n ∈ N, R[n] is closed under union, finite substitution, homomorphism,

intersection with a regular language, and right quotient with a regular language.
• For all n ∈ N−{1}, R[n] is not closed under intersection and complement.

Furthermore, recall statements proved in [Sir69] and [Sir71]:

• For all n ∈ N, R[n] is closed under concatenation.
• For all n ∈ N−{1}, R[n] is not closed under Kleene closure.

These statements and Theorem 4.2.14 imply statements 1, 4, and 5 of Corol-
lary 4.2.15. Moreover, observe that {ww : w ∈ {a,b}∗} ∈ ALL1−CF (see Exam-
ple 4.1.5), which proves 2. Finally, let L = {wcwR : w ∈ {a,b}∗}. In [DP89, Theo-
rem 1.5.2], there is a proof that L 6∈ R[n], for any n ∈ N. Thus, 3 follows from Theo-
rem 4.2.14.

Theorem 4.2.16, given next, follows from Theorem 4.2.14 and from Corollary
3.3.3 in [Sir71]. However, Corollary 3.3.3 in [Sir71] is not proved effectively. We
next prove Theorem 4.2.16 effectively.

Theorem 4.2.16. ALLn is closed under inverse homomorphism, for all n ∈ N0.

The basic idea of the proof is to simulate the derivation of a one-all-SFA, M,
as follows. If M reads a, the simulation proceeds as if M reads h(a), where h is
a given homomorphism. Since h(a) is a string, we store h(a) in the state of the
simulating automaton and then, in the state, simulate the reading of h(a). However,
the automaton can make a turn while a piece of h(a) is still stored in the state. This
string, in the proof denoted by y, must be carried over.

Proof. For n = 1, let M = (Q,Σ ,δ ,q0,qt ,F,R) be a one-all-SFA, and let h : ∆ ∗→ Σ ∗

be a homomorphism. Construct a one-all-SFA

M′ = (Q′,∆ ,δ ′,q′0,q
′
t ,{q′f },R′)

accepting h−1(L(M)) as follows. Denote k = max{|w| : qw→ p ∈ δ}+max{|h(a)| :
a ∈ ∆}. Let

Q′ = q′0∪{[x,q,y] : x,y ∈ Σ
∗, |x|, |y| ≤ k, q ∈ Q} .

Initially, set δ ′ and R′ to /0. Then, extend δ ′ and R′ by performing 1 through 5, where
δ ′ contains exactly the rules used in R′.

1. For y ∈ Σ ∗, |y| ≤ k, add
(q′0→ [ε,q0,y],q′t → [y,qt ,ε]) to R′;
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2. For A ∈ Q′, q 6= qt , add
([x,q,y]a→ [xh(a),q,y],A→ A) to R′;

3. For A ∈ Q′, add
(A→ A, [x,q,ε]a→ [xh(a),q,ε]) to R′;

4. For (qx→ p,q′x′→ p′) ∈ R, q 6= qt , add
([xw,q,y]→ [w, p,y], [x′w′,q′,ε]→ [w′, p′,ε]) to R′;

5. For q f ∈ F , add
([y,qt ,y]→ q′t , [ε,q f ,ε]→ q′f ) to R′.

In essence, M′ simulates M in the following way. In a state of the form [x,q,y], the
three components have the following meaning:

• x = h(a1 . . .an), where a1 . . .an is the input string that M′ has already read;
• q is the current state of M;
• y is the suffix remaining as the first component of the state that M′ enters during

a turn; y is thus obtained when M′ reads the last symbol right before the turn
occurs in M; M reads y after the turn.

More precisely, h(w) = w1yw2, where w is an input string, w1 is accepted by M
before making the turn, i.e. from q0 to qt , and yw2 is accepted by M after making the
turn, i.e. from qt to q f ∈ F .

For n > 1, the proof is analogous.

4.2.3 Language Families Accepted by n-first-SFAs and n-all-SFAs

This section compares the family of languages accepted by n-turn first-move self-
regulating finite automata with the family of languages accepted by n-turn all-move
self-regulating finite automata.

Theorem 4.2.17. For all n ∈ N, FIRSTn ⊂ ALLn.

Proof. In [RW75] and [Woo75], it is proved that for all n ∈ N−{1}, Rn ⊂ R[n]. The
proof of Theorem 4.2.17 thus follows from Theorems 4.2.6 and 4.2.14.

Theorem 4.2.18. FIRSTn 6⊆ ALLn−1, for all n ∈ N.

Proof. It is easy to see that L = {ak
1ak

2 . . .ak
n+1 : k ∈ N} ∈ FIRSTn = Rn+1. However,

L 6∈ ALLn−1 = R[n] (see Lemma 1.5.6 in [DP89]).

Lemma 4.2.19. For each regular language, L, language {wn : w ∈ L} ∈ ALLn−1.

Proof. Let L = L(M), where M is a finite automaton. Make n copies of M. Rename
their states so all the sets of states are pairwise disjoint. In this way, also rename the
states in the rules of each of these n automata; however, keep the labels of the rules
unchanged. For each rule label r, include (r,r) into R. As a result, we obtain an n-turn
all-move self-regulating finite automaton that accepts {wn : w ∈ L}.

Theorem 4.2.20. ALLn−FIRST 6= /0, FIRST =
⋃

∞
m=1 FIRSTm, for all n ∈ N.
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34 4 Self-Regulating Automata

Proof. By induction on n ∈ N, we prove that language

L = {(cw)n+1 : w ∈ {a,b}∗} 6∈ FIRST .

From Lemma 4.2.19, L ∈ ALLn.

Basis: For n = 1, let G be an m-PRLG generating L, for some positive integer m.
Consider a sufficiently large string cw1cw2 ∈ L such that w1 = w2 = an1bn2 , n2 >
n1 > 1. Then, there is a derivation of the form

S ⇒p

x1A1x2A2 . . .xmAm ⇒k x1y1A1x2y2A2 . . .xmymAm (4.3)

in G, where cycle (4.3) generates more than one a in w1. The derivation continues as

x1y1A1x2y2A2 . . .xmymAm ⇒r

x1y1z1B1 . . .xmymzmBm ⇒l x1y1z1u1B1 . . .xmymzmumBm (4.4)
(cycle (4.4) generates no as) ⇒s cw1cw2.

Next, modify the left derivation, the derivation in components generating cw1, so
that the a-generating cycle (4.3) is repeated (l +1)-times. Similarly, modify the right
derivation, the derivation in the other components, so that the no-a-generating cycle
(4.4) is repeated (k +1)-times. Thus, the modified left derivation is of length

p+ k(l +1)+ r + l + s = p+ k + r + l(k +1)+ s ,

which is the length of the modified right derivation. Moreover, the modified left
derivation generates more as in w1 than the right derivation in w2—a contradiction.

Induction step: Suppose that the theorem holds for n≥ 2, and consider n+1. Let

{(cw)n+1 : w ∈ {a,b}∗} ∈ FIRSTl ,

for some l ∈N. As FIRSTl is closed under right quotient with a regular language, and
{cw : w∈ {a,b}∗} is regular, we obtain {(cw)n : w∈ {a,b}∗} ∈FIRSTl ⊆FIRST —a
contradiction.

Fig. 4.4 summarizes the language families discussed so far.

4.3 Self-Regulating Pushdown Automata

The previous section has discussed self-regulating finite automata. Next section dis-
cusses self-regulating pushdown automata.
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CS

FIRST

ALL

CF REG F1

A1

. . . Fn

An

Fig. 4.4. The hierarchy of languages. Here, Fn stands for FIRSTn, and An for ALLn.

4.3.1 All-Move Self-Regulating Pushdown Automata

It is easy to see that an all-move self-regulating pushdown automaton without making
any turn is exactly a common pushdown automaton. Therefore, ALL-SPDA0 = CF .
Next, we prove that one-turn all-move self-regulating pushdown automata are as
powerful as Turing machines.

Theorem 4.3.1. ALL-SPDA1 = RE.

The main idea of the proof is that every recursively enumerable language, L, can
be expressed as L = h(L(G)∩L(H)), where G and H are context-free grammars, and
h is a homomorphism. Then, on the pushdown, automaton M simulates

1. G that generates a string, w, so that if a is on the top, M reads h(a); then,
2. H that generates w, which is verified by R (no input is read).

Proof. For any recursively enumerable language, L⊆ ∆ ∗, there are context-free lan-
guages L(G) and L(H) and a homomorphism h : Σ ∗→ ∆ ∗ such that

L = h(L(G)∩L(H))

(see Theorem 1.12 in [MS97]).
Suppose that G = (NG,Σ ,PG,SG) and H = (NH ,Σ ,PH ,SH) are context-free gram-

mars in the Greibach normal form, i.e. all productions are of the form

A→ aα ,

where A is a nonterminal, a is a terminal, and α is a (possibly empty) string of
nonterminals. Let us construct one-all-SPDA

M = ({q0,q,qt , p, f},∆ ,Σ ∪NG∪NH ∪{Z},δ ,q0,Z,{ f},R) ,

where Z 6∈ Σ ∪NG∪NH , with R made as follows:
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36 4 Self-Regulating Automata

1. add (Zq0→ ZSGq,Zqt → ZSH p) to R
2. add (Aq→ Bn . . .B1aq,Cp→ Dm . . .D1ap) to R if

A→ aB1 . . .Bn ∈ PG and
C→ aD1 . . .Dm ∈ PH

3. add (aqh(a)→ q,ap→ p) to R
4. add (Zq→ Zqt ,Zp→ f ) to R

Moreover, δ contains only the rules from the definition of R.
We prove that w ∈ h(L(G)∩L(H)) if and only if w ∈ L(M).

Only if Part: Let w ∈ h(L(G)∩L(H)). There are a1,a2, . . . ,an ∈ Σ such that

a1a2 . . .an ∈ L(G)∩L(H)

and w = h(a1a2 . . .an), for some n ∈ N0. There are leftmost derivations

SG⇒n a1a2 . . .an and SH ⇒n a1a2 . . .an

of length n in G and H, respectively, because in every derivation step exactly one
terminal symbol is derived. Thus, M accepts h(a1)h(a2) . . .h(an) as

Zq0h(a1)h(a2) . . .h(an)⇒ ZSGqh(a1)h(a2) . . .h(an), . . . ,Zanqh(an)⇒ Zq ,

Zq⇒ Zqt ,

Zqt ⇒ ZSH p, . . . ,Zan p⇒ Zp, Zp⇒ f .

In state q, by using its pushdown, M simulates G’s derivation of a1 . . .an but reads
h(a1) . . . h(an) as the input. In p, M simulates H’s derivation of a1a2 . . .an but reads
no input. As a1a2 . . .an can be derived in both G and H by making the same number
of steps, the automaton can successfully complete the acceptance of w.

If Part: Notice that in one step, M can read only h(a) ∈ ∆ ∗, for some a ∈ Σ . Let
w ∈ L(M), then w = h(a1)h(a2) . . .h(an), for some a1,a2, . . . ,an ∈ Σ . Consider M’s
acceptance of w

Zq0h(a1)h(a2) . . .h(an)⇒ ZSGqh(a1)h(a2) . . .h(an), . . . ,Zanqh(an)⇒ Zq ,

Zq⇒ Zqt ,

Zqt ⇒ ZSH p, . . . ,Zan p⇒ Zp, Zp⇒ f .

As stated above, in q, M simulates G’s derivation of a1a2 . . .an, and then, in p, M
simulates H’s derivation of a1a2 . . .an. It successfully completes the acceptance of w
only if a1a2 . . .an can be derived in both G and H. Hence, the if part holds, too.

4.3.2 First-Move Self-Regulating Pushdown Automata

Although the fundamental results about self-regulating automata have been achieved
in previous sections, there still remain several open problems concerning them. One
of them is the question what is the language family accepted by n-turn first-move
self-regulating pushdown automata, when n ∈ N? It is clear that for n = 0 the lan-
guage family accepted by zero-turn first-move self-regulating pushdown automata is
exactly the family of all context-free languages.
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4.3.3 Open Problems

Perhaps the most important open problems include 1 through 3 given next.

1. What is the language family accepted by n-turn first-move self-regulating push-
down automata, when n ∈ N?

2. By analogy with standard deterministic finite and pushdown automata, introduce
the deterministic versions of self-regulating automata. What is their power?

3. Discuss the closure properties under other language operations, such as the re-
versal.
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Descriptional Complexity
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Descriptional Complexity

This chapter studies descriptional complexity of partially parallel grammars and
grammars regulated by context conditions, where the well-known results concerning
this topic are supplemented and improved. The main aim of this chapter is to study
how to describe partially parallel grammars and grammars regulated by context con-
ditions in a reduced and succinct way with respect to the number of grammatical
components, such as the number of nonterminals and special productions.

First of all, however, we define the notion of descriptional complexity of gram-
mars with respect to the number of nonterminals and special productions.

Consider a family of languages, L , and a family of grammars, G , such that every
language from L is generated by a grammar from G , and every grammar from G
generates only a language from L , i.e. L ∈ L if and only if there is a grammar
G ∈ G such that L = L(G).

To reduce the number of nonterminals means to find a natural number (if it ex-
ists), k, such that for every language L ∈L , there is a grammar G ∈ G such that the
set of all G’s nonterminals, N, contains no more than k elements, i.e. |N| ≤ k, and G
generates L, i.e. L = L(G).

In other words, the question is what is the minimal k such that there is a subfam-
ily, H , of G consisting of grammars having no more than k nonterminals such that
any language from L is generated by a grammar from H .

The reduction of special productions is defined analogously, i.e., the aim is to
find a natural number (if it exists), l, such that for every language L ∈L , there is a
grammar G ∈ G with P being the set of all its productions, P = P′∪P′′, where P′′ is
the set of all special productions, such that |P′′| ≤ l and L = L(G).

For instance, let P′ be the set of all context-free and P′′ the set of all remaining
productions of P.

This chapter studies the simultaneous reduction of both the number of nonter-
minals and the number of special productions. In other words, in case of studied
grammars, it is well-known that there are natural numbers k and l such that there is
a subfamily, H , of G having no more than k nonterminals and l special productions
such that any language from L is generated by a grammar from H . We decrease
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42 5 Descriptional Complexity

these numbers. More precisely, we prove that every recursively enumerable language
is generated

(1) by a scattered context grammar with no more than four non-context-free produc-
tions and four nonterminals;

(2) by a multisequential grammar with no more than two selectors and two nonter-
minals;

(3) by a multicontinuous grammar with no more than two selectors and three non-
terminals;

(4) by a context-conditional grammar of degree (2,1) with no more than six condi-
tional productions and seven nonterminals;

(5) by a simple context-conditional grammar of degree (2,1) with no more than
seven conditional productions and eight nonterminals;

(6) by a generalized forbidding grammar of degree two and index six with no more
than ten conditional productions and nine nonterminals;

(7) by a generalized forbidding grammar of degree two and index four with no more
than eleven conditional productions and ten nonterminals;

(8) by a generalized forbidding grammar of degree two and index nine with no more
than eight conditional productions and ten nonterminals;

(9) by a generalized forbidding grammar of degree two and unlimited index with no
more than nine conditional productions and eight nonterminals;

(10) by a semi-conditional grammar of degree (2,1) with no more than seven con-
ditional productions and eight nonterminals; and

(11) by a simple semi-conditional grammar of degree (2,1) with no more than nine
conditional productions and ten nonterminals.

5.1 Partially Parallel Grammars

This section studies descriptional complexity of partially parallel grammars. Specif-
ically, descriptional complexity of scattered context grammars with respect to the
number of nonterminals and context-sensitive productions, and descriptional com-
plexity of multisequential and multicontinuous grammars with respect to the number
of nonterminals and selectors.

5.1.1 Scattered Context Grammars

A scattered context grammar is an ordinary context-free grammar that uses its pro-
ductions in a partially parallel way. More precisely, there is an integer n such that in
each derivation step, no more than n nonterminals of the current sentential form is
rewritten.

More details about scattered context grammars can be found in [Fer96, GW89,
GH69, Mas07c, Med95, Med98b, Med02, MR71, P8̆2, Vir73].
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Definition 5.1.1. A scattered context grammar, G, is a quadruple

G = (N,T,P,S) ,

where

• N is a nonterminal alphabet,
• T is a terminal alphabet such that N∩T = /0,
• S ∈ N is the start symbol, and
• P is a finite set of productions of the form

(A1, . . . ,An)→ (x1, . . . ,xn) ,

for some n ∈ N, where Ai ∈ N and xi ∈ (N ∪T )∗, for i = 1, . . . ,n. If n ≥ 2, then
the production is said to be context-sensitive; otherwise, the production is said to
be context-free.

If x = u1A1u2 . . .unAnun+1 and y = u1x1u2 . . .unxnun+1, where ui ∈ (N ∪T )∗, for all
i = 1, . . . ,n, and

(A1, . . . ,An)→ (x1, . . . ,xn) ∈ P ,

then
x⇒ y

in G. As usual,⇒ is extended to⇒i, for i ∈ N0,⇒+, and⇒∗. The language gener-
ated by a scattered context grammar, G, is defined as

L(G) = {w ∈ T ∗ : S⇒∗ w} .

The last result concerning descriptional complexity of scattered context gram-
mars is by Vaszil, who proved the following result (see [Vas05]). However, in spite
of this fact, the presented construction of the proof is independently discovered by
Masopust, Meduna, and Techet.1

Theorem 5.1.2. Every recursively enumerable language is generated by a scattered
context grammar with no more than five nonterminals and two context-sensitive pro-
ductions.

Proof. Let L ⊆ T ∗ be any recursively enumerable language over an alphabet T =
{a1, . . . ,an}. Then, there is an extended Post correspondence problem2

E = ({(u1,v1), . . . ,(ur,vr)},(za1 , . . . ,zan)),

1 Unpublished result.
2 Let T = {a1, . . . ,an}, for some n ≥ 1. An extended Post correspondence problem E =

({(u1,v1), . . . ,(ur,vr)}, (za1 , . . . ,zan)), where ui,vi,za j ∈ {0,1}∗, for i = 1, . . . ,r, j =
1, . . . ,n. The language represented by E is the set L(E) = {b1 . . .bk ∈ T ∗ : ∃s1, . . . ,sl ∈
{1, . . . ,r}, l ≥ 1,vs1 . . .vsl = us1 . . .usl zb1 . . .zbk ,k≥ 0}. It is well known that for each recur-
sively enumerable language L, there is an extended Post correspondence problem, E, such
that L(E) = L (see Theorem 1 in [Gef88a]).
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where ui,vi,za j ∈ {0,1}∗, for i = 1, . . . ,r, j = 1, . . . ,n, such that L(E) = L. Define
the scattered context grammar

G = ({S,A,0,1,$},T,P,S)

with P constructed as follows:

1. For every a ∈ T , add
a) (S)→ (zR

a Sa), and
b) (S)→ (zR

a Aa) to P;
2. a) For every (ui,vi) ∈ E, 1≤ i≤ r, add (A)→ (uR

i Avi) to P;
b) Add (A)→ ($$) to P;

3. Add
a) (0,$,$,0)→ ($,ε,ε,$),
b) (1,$,$,1)→ ($,ε,ε,$), and
c) ($)→ (ε) to P.

Examine the introduced productions to see that G generates b1 . . .bk ∈ L(E) by a
derivation of this form:

S ⇒ zR
bk

Sbk

⇒ zR
bk

zR
bk−1

Sbk−1bk

⇒∗ zR
bk

. . .zR
b2

Sb2 . . .bk

⇒ zR
bk

. . .zR
b2

zR
b1

Ab1b2 . . .bk

⇒ zR
bk

. . .zR
b1

uR
sl

Avsl b1 . . .bk

⇒∗ zR
bk

. . .zR
b1

uR
sl

. . .uR
s1

Avs1 . . .vsl b1 . . .bk

⇒ zR
bk

. . .zR
b1

uR
sl

. . .uR
s1

$$vs1 . . .vsl b1 . . .bk

= (us1 . . .usl zb1 . . .zbk)
R$$vs1 . . .vsl b1 . . .bk

⇒∗ b1 . . .bk.

Productions introduced in steps 1 and 2 of the construction find nondetermin-
istically the solution of the extended Post correspondence problem which is subse-
quently verified by productions from step 3. Therefore w ∈ L if and only if w ∈ L(G)
and the theorem holds.

Now, we supplement this result as shown in the following theorem. Specifically,
we prove that the number of nonterminals can be decreased, however, the number of
conditional productions (nonsignificantly) increases.

Theorem 5.1.3. Every recursively enumerable language is generated by a scattered
context grammar with no more than four nonterminals and four context-sensitive
productions.
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Basic idea.
The main idea of the proof and, actually, all proofs in this chapter is to simulate
a terminal derivation of a grammar, G, in one of the Geffert normal forms.3 To do
this, we first apply all context-free productions as applied in the G’s derivation, and
then we simulate a non-context-free production, say AB→ ε , so that we mark with
′ precisely one of As and one of Bs and check that these two marked symbols form
a substring A′B′ of the current sentential form. If so, the marked symbols can be
removed, which completes the simulation of the production AB→ ε in G; otherwise,
the derivation must be blocked. The formal proof follows.

Proof. Let L⊆ T ∗ be a recursively enumerable language and

G2 = ({S′,A,B,C,D},T,P′∪{AB→ ε,CD→ ε},S′)

be a grammar in the second Geffert normal form such that L(G2) = L. Define the
homomorphism h : {A,B,C,D}∗ → {0,1}∗ so that h(A) = h(B) = 00, h(C) = 10,
and h(D) = 01. Set N = {S,0,1,$}. Define the scattered context grammar

G = (N,T,P,S)

with P constructed as follows:

1. (S)→ (h(z)S1a1), where S′→ zS′a ∈ P′;
2. (S)→ (h(u)Sh(v)), where S′→ uS′v ∈ P′;
3. (S)→ (11S);
4. (S)→ (h(u)$$h(v)), where S′→ uv ∈ P′;
5. ($)→ (ε);
6. (0,0,$,$,0,0)→ ($,ε,ε,ε,ε,$);
7. (1,0,$,$,0,1)→ ($,ε,ε,ε,ε,$);
8. (1,1,$,$,1,1)→ (11$,ε,ε,ε,ε,$);
9. (1,1,$,$,1,1)→ (ε,ε,ε,ε,ε,ε).

Consider a derivation of the form

S′⇒∗ αa1a2 . . .an⇒∗ a1a2 . . .an ,

where α ∈ {A,B,C,D}∗, ai ∈ T , for i = 1, . . . ,n, and neither AB→ ε nor CD→ ε

has been applied in
S′⇒∗ αa1a2 . . .an .

Moreover, only productions AB→ ε and CD→ ε have been applied in

αa1a2 . . .an⇒∗ a1a2 . . .an .

If a1a2 . . .an 6= ε , then G can derive

S⇒∗ 11h(α)1a111a21 . . .1an1

3 See Definition 2.3.5 on page 9.
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and, by productions constructed in 6 and 7, eliminate h(α). Thus,

S⇒∗ 11$$1a111a21 . . .1an1 .

By productions constructed in 8 and 9, G eliminates all nonterminals 1 and $.
If a1a2 . . .an = ε , then G can derive S⇒∗ h(α); then, by productions constructed

in 6 and 7, G eliminates h(α). Thus, S⇒∗ $$ in G. By the production constructed
in 5, G eliminates both nonterminals $. Therefore,

S′⇒∗ a1a2 . . .an implies S⇒∗ a1a2 . . .an .

On the other hand, let

S⇒∗ α$$β ⇒∗ a1a2 . . .an

be a derivation, where α ∈ {00,01,11}∗, β ∈ ({00,01}∪{1}T{1})∗, ai ∈ T , for i =
1, . . . ,n, and none of context-sensitive productions has been applied in S⇒∗ α$$β .

Notice that if a nonterminal occurs between the first and the second $, then the
nonterminal cannot be removed, so the derivation cannot generate a string of termi-
nals.

If a1a2 . . .an = ε , then β ∈ {00,01}∗, β does not contain 11 as a substring. There-
fore, productions constructed in 8 and 9 cannot be applied in the derivation. Thus,
neither can production 3 be applied, so α does not contain 11 as a substring, too. As
the other productions simulate the productions from G2, S′⇒∗ ε in G2.

If a1a2 . . .an 6= ε , then β = β11a11β2, where β1 ∈ {00,01}∗ and β2 ∈ ({00,01}∪
{1}T{1})∗. After deleting β1 by productions constructed in 6 and 7, the production
constructed in 8 or 9 has to be applied. Therefore, α = α211α1, where α1 = β R

1 and
α2 ∈ {0,1}∗. Thus,

S⇒∗ α$$β ⇒∗ α211$$1a11β2 .

We prove that α2 = ε and β2 ∈ ({1}T{1})∗ (by induction on |β2| ∈N0). At this point,
the only productions that can be applied are productions constructed in 8 and 9. By
applying the production constructed in 9, G makes

S⇒∗ α$$β ⇒∗ α211$$1a11β2⇒ α2a1β2 .

Therefore, α2a1β2 ∈ T ∗ if and only if α2 = β2 = ε . By applying the production
constructed in 8, G makes

S⇒∗ α$$β ⇒∗ α211$$1a11β2⇒ α211$a1$β2 .

Therefore, if β2 = 00β ′2, the prefix 00 can be removed only by the production con-
structed in 6. However, after using this production, the substring 11 attached to $
appears between the two $s, so it cannot be removed after that. The same is true for
β2 = 01β ′′2 . Thus, β2 = 1a21β3. Then, by induction,

S⇒∗ α$$β = 11γ
R$$γ1a111a21 . . .1an1 ,
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where γ ∈ {00,01}∗. Since h(A) = h(B) = 00, h(C) = 10, and h(D) = 01, we get

S′⇒∗ δ1δ2a1a2 . . .an⇒∗ a1a2 . . .an ,

where δ1 ∈ {A,C}∗, δ2 ∈ {B,D}∗, h(δ1) = γR, and h(δ2) = γ .
Hence, the theorem holds.

5.1.2 Propagating Scattered Context Grammars

Originally, in 1969 Greibach and Hopcroft introduced scattered context grammars
without ε-productions (see [GH69]). In these days, such scattered context grammars
are called propagating scattered context grammars. Although a lot of problems con-
cerning the closure properties of propagating scattered context grammars have been
solved since their introduction, there are still some problems open. It is not hard to
prove that all propagating scattered context grammars generate languages which are
context sensitive. The proof of this assertion is based on the so-called workspace
theorem (see, for example, Theorem III.10.1 in [Sal73]). One of the most famous
open problems concerning propagating scattered context grammars is the question
whether there is a context sensitive language which is not scattered context.

In this section, we give some nontrivial examples of languages generating by
propagating scattered context grammars.

First of all, recall that a construction (without a proof) of a scattered context
grammar generating the language

{a2n+1+n+1 : n≥ 1}

is presented in [ER79]. Based on this construction, a proof that the language

{a2n
: n≥ 0}

is a scattered context language is given in [Mas07c].

Definition 5.1.4. A scattered context grammar G = (N,T,P,S) is said to be a prop-
agating scattered context grammar if any production in P is of the form

(A1, . . . ,An)→ (x1, . . . ,xn) ,

for some n≥ 1, where Ai ∈ N and xi ∈V +, for all i = 1, . . . ,n.

We now give some nontrivial examples of languages generated by a propagating
scattered context grammar.

Theorem 5.1.5. For any integer k≥ 2, there is a propagating scattered context gram-
mar G with six nonterminals and eight productions such that

L(G) = {akn
: n≥ 0} .
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Proof. Define the following propagating scattered context grammar

G = ({S,A,A′,X ,Y,Z},{a},P,S) ,

where P contains the following productions:

1. (S)→ (a)
2. (S)→ (ak)
3. (S)→ (A′Ak−1XY )
4. (A′,A,X ,Y )→ (ak−1,A′,X ,AkY )
5. (A′,X ,Y )→ (ak−1,A′,Ak−1XY )
6. (A′,X ,Y )→ (Z,Z,ak−1)
7. (Z,A,Z)→ (Z,ak−1,Z)
8. (Z,Z)→ (a,ak−1)

Consider a string of the form

a∗A′AnXAmY ,

where m,n≥ 0. By production 6,

a∗A′AnXAmY ⇒ a∗ZAnZAmak−1 [6] .

Then, we can either finish the derivation by production 8 (if n = 0), or continue by
production 7 as long as possible, followed by production 8;

a∗ZAnZAmak−1⇒∗ a∗Zan(k−1)ZAmak−1⇒ a∗aan(k−1)aAmak−1 [7∗8] .

It is easy to see that

a∗aan(k−1)aAmak−1 ∈L (G) if and only if m = 0 .

Therefore, to apply production 6, the sentential form must be of the form a∗A′AnXY ,
for some n≥ 1 (from the previous and production 3).

If production 5 is applied to a∗A′AnXAmY ,

a∗A′AnXAmY ⇒ a∗ak−1AnA′AmAk−1XY [5] ,

then the derivation is blocked; indeed, A on the left-hand side of A′ cannot be re-
moved. Thus, if m≥ 1, the only possible derivation is to apply production 4 as long
as there is A between A′ and X .

From the previous follows that if the first production applied to

akn−kA′Akn−1XY

is production 4, then the derivation continues by production 4 as long as there is A
between A′ and X , followed by one application of production 5,
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akn−kA′Akn−1XY ⇒+ akn−ka(k−1)(kn−1)A′XAk(kn−1)Y [44∗]

= ak(n+1)−2k+1A′XAk(n+1)−kY

⇒ ak(n+1)−2k+1ak−1A′Ak(n+1)−kAk−1XY [5],

= ak(n+1)−kA′Ak(n+1)−1XY

where n≥ 1.
Now, the derivation can successfully rewrite all A’s to ak−1 by productions 6, 7,

and 8, i.e.

akn−kA′Akn−1XY ⇒∗ akn−kaa(k−1)(kn−1)ak−1ak−1 = akn+1
[67+8] ,

or continue by production 4. Then, it follows by induction.
Finally, we summarize all possible terminal derivations.

S ⇒ a [1]
S ⇒ ak [2]
S ⇒ A′Ak−1XY [3]
⇒∗ ak2−1A′Ak2−1XY [44∗5]
...
⇒∗ akn−1−kA′Akn−1−1XY [44∗5]
⇒∗ akn

[67+8]

Thus, any derivation generating a terminal string, w, is in one of the following three
forms:

S⇒∗ w [1] or S⇒∗ w [2] or S⇒∗ w [3(44∗5)∗67+8] .

Based on the previous theorem, the following theorem can be proved.

Theorem 5.1.6. For any integers k, l ≥ 2, there is a propagating scattered context
grammar G with twelve nonterminals and fourteen productions such that

L(G) = {alkn

: n≥ 0} .

Proof. Define the following propagating scattered context grammar

G = ({S,A,A′,A′′,B,C,X ,X2,X3,Y,Z,Z′},{a},P,S) ,

where P contains the following productions:

1. (S)→ (al)
2. (S)→

(
alk)

3. (S)→
(

alk2)
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4. (S)→ (A′′Al−1X2Bk2−3A′Ck2−1XY )
* first stage

5. (A′,C,X ,Y )→ (Bk−1,A′,X ,CkY )
6. (A′,X ,Y )→ (Bk−1,A′,Ck−1XY )
7. (A′,X ,Y )→ (Z,Z,Y )
8. (Z,C,Z,Y )→ (Z,Bk−1,Z,Y )
9. (Z,Z,Y )→ (B,Bk−1,X3)
* second stage

10. (A′′,A,X2,X3)→ (al−1,A′′,X2Al ,X3)
11. (A′′,X2,B,X3)→ (al−1,A′′,Al−1X2,X3)
12. (A′′,X2,X3)→ (Z′,Z′,X3)
13. (Z′,A,Z′,X3)→ (Z′,al−1,Z′,X3)
14. (Z′,Z′,X3)→ (a,al−1,al−1)

First, notice that if the production

(S)→ (A′′Al−1X2Bk2−3A′Ck2−1XY )

is applied, then none of the productions of the second stage is applicable; clearly,
there is no X3 in the derivation, and X3 does not appear in any sentential form of the
derivation all the time productions from the first stage are applicable. Notice also that
the productions of the first stage are very similar to the productions of the grammar
constructed in the proof of Theorem 5.1.5. Therefore, it is not hard to see that, by the
productions from the first stage,

Bkn−3A′Ckn−1XY ⇒∗ Bkn+1−2X3 ,

for n≥ 2. Thus, we have the following derivation;

S ⇒ A′′Al−1X2Bk2−3A′Ck2−1XY

⇒∗ A′′Al−1X2Bkn−2X3 ,

for n≥ 3. Consider a string of the form

a∗A′′ApX2AqBrX3 ,

where p,q,r ≥ 0. By production 12,

a∗A′′ApX2AqBrX3⇒ a∗Z′ApZ′AqBrX3 [12] .

Then, we can either finish the derivation by production 14 (if p = 0), or continue by
production 13 as long as possible, followed by production 14;

a∗Z′ApZ′AqBrX3 ⇒∗ a∗Z′ap(l−1)Z′AqBrX3 [(13)+]

⇒ a∗aap(l−1)al−1AqBral−1 [(14)] .

It is easy to see that
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a∗aap(l−1)al−1AqBral−1 ∈L (G) if and only if q = r = 0 .

Therefore, to apply production 12, the sentential form must be of the form

a∗A′′ApX2X3 ,

for some p≥ 1.
If production 11 is applied to a∗A′′ApX2AqBrX3,

a∗A′′ApX2AqBrX3⇒ a∗al−1ApA′′AqAl−1X2Br−1X3 [11] ,

then the derivation is blocked; indeed, A on the left-hand side of A′′ cannot be re-
moved. Thus, if r ≥ 1, then the only possible derivation is to apply production 10 as
long as there is A between A′′ and X2.

We prove that all sentential forms of a terminal derivation containing X3, i.e. of
the second stage, are of the form

alm−1−lA′′Alm−1−1X2Bkn−mX3 ,

for all m = 2, . . . ,kn, n≥ 3.
For m = 2, we have

A′′Al−1X2Bkn−2X3 ,

and this is the start sentential form of the second stage. For m = 2n, we have

alkn−1−lA′′Alkn−1−1X2X3 ,

and, as proved above,

alkn−1−lA′′Alkn−1−1X2X3⇒∗ alkn−1−laa(l−1)(lkn−1−1)al−1al−1 = alkn

.

Thus, assume that 2≤ m < kn. Then,

alm−1−lA′′Alm−1−1X2Bkn−mX3

⇒∗ alm−1−la(l−1)(lm−1−1)A′′X2Al(lm−1−1)Bkn−mX3 [10]
= alm−2l+1A′′X2Alm−lBkn−mX3

⇒ alm−2l+1al−1A′′Alm−lAl−1X2Bkn−m−1X3 [11]

= alm−lA′′Alm−1X2Bkn−(m+1)X3 .

Finally, we summarize all possible terminal derivations.

S ⇒ al [1]
S ⇒ alk

[2]

S ⇒ alk2
[3]

S ⇒∗ A′′Al−1X2Bkn−2X3 [4(55∗6)∗78+9]
⇒∗ alkn

[((10)+(11))∗(12)(13)+(14)] .
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Open Problem

Another interesting open problem (a subproblem of the most famous open problem
mentioned above) is whether there is a propagating scattered context grammar gen-
erating the set of all prime numbers, i.e. is there a propagating scattered context
grammar G such that

L(G) = {ap : p is a prime number}?

Complement

Finally, we can prove that if propagating scattered context grammars are closed under
complement, then they can generate the set of all prime numbers. To prove this,
we give a construction of a propagating scattered context grammar generating all
composite numbers. Before doing so, note that the question whether propagating
scattered context grammars are closed under complement or not is the next famous
open problem.

Theorem 5.1.7. There is a propagating scattered context grammar G such that

L(G) = {ak : k = mn,m,n≥ 2} .

Proof. Define the following propagating scattered context grammar

G = ({S,S1,S2,A,B,X ,Y,Z},{a},P,S) ,

where P contains the following productions:

1. (S)→ (a)
2. (S)→ (a4)
3. (S)→ (S1S2)
4. (S1)→ (S1A)
5. (S1)→ (XA)
6. (S2)→ (S2B)
7. (S2)→ (Y B)
8. (X ,A,Y )→ (a,X ,YA)
9. (X ,Y,B)→ (a2,X ,Y )

10. (X ,Y,B)→ (a2,X ,Z)
11. (X ,A,Z)→ (X ,a,Z)
12. (X ,Z)→ (a,a)

It is easy to see that
S⇒∗ XAn−2Y Bm−1

by productions 3, 4, 5, 6, 7, for some m≥ 2 and n≥ 3. Then,
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XAn−2Y Bm−1 ⇒∗ an−2XYAn−2Bm−1 [8+]
⇒ an−2a2XAn−2Y Bm−2 [9]
⇒∗ ananXAn−2Y Bm−3 [8+9]
⇒∗ an(m−2)an−2XYAn−2B [(8+9)∗8+]
⇒ an(m−1)XAn−2Z [10]
⇒∗ an(m−1)an [(11)∗(12)]
= anm .

The proof is left to the reader.

5.1.3 Multisequential Grammars

A multisequential grammar is a context-free grammar, where also terminal symbols
can be rewritten. In addition, these grammars have a mechanism that chooses sym-
bols of the current sentential form that are supposed to be rewritten. Such mecha-
nisms are called selectors. Then, during any derivation step, all chosen symbols are
rewritten.

Definition 5.1.8. A multisequential grammar, G, is a quintuple

G = (N,T,P,S,K) ,

where

• N is a nonterminal alphabet,
• T is a terminal alphabet such that N∩T = /0,
• S ∈ N is the start symbol,
• P is a finite set of productions of the form

a→ x ,

where a ∈V = N∪T and x ∈V ∗, and
• K is a finite set of selectors of the form

X1act(Y1)X2 . . .Xnact(Yn)Xn+1 ,

where n is a positive integer,
– Xi ∈ {Z∗ : Z ⊆V}, for i = 1, . . . ,n+1, and
– Yj ∈ {Z : Z ⊆V, Z 6= /0}, for j = 1, . . . ,n.

If x = u1a1u2a2u3 . . .unanun+1, y = u1x1u2x2u3 . . .unxnun+1, and K contains a selec-
tor

X1act(Y1)X2 . . .Xnact(Yn)Xn+1

satisfying ui ∈ Xi, for i = 1, . . . ,n+1, a j ∈Yj, and a j→ x j ∈ P, for j = 1, . . . ,n, then

x⇒ y

in G. As usual,⇒ is extended to⇒i, for i ∈ N0,⇒+, and⇒∗. The language gener-
ated by a multisequential grammar, G, is defined as

L(G) = {w ∈ T ∗ : S⇒∗ w} .
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In [Med97c], the following result is proved.

Theorem 5.1.9. Every recursively enumerable language is generated by a multise-
quential grammar with no more than six nonterminals.

Here, we improve this result. Specifically, we prove that no more than two non-
terminals are needed and, moreover, we give a limit to the number of selectors. First,
however, we prove the following auxiliary lemma.

Lemma 5.1.10. Every recursively enumerable language is generated by a multise-
quential grammar with no more than three nonterminals and two selectors.

Proof. Let L⊆ T ∗ be a recursively enumerable language and

G3 = ({S,A,B},T,P∪{ABBBA→ ε},S)

be a grammar in the third Geffert normal form such that L(G3) = L. Define the
multisequential grammar

G = ({S,A,B},T,P∪{A→ ε, B→ ε},S,K)

with K containing these two selectors:

1. {A,B}∗act(S)({A,B}∪T )∗,
2. {A,B}∗act(A)act(B)act(B)act(B)act(A)({A,B}∪T )∗.

Observe that L(G) = L(G3).

Now, based on the previous lemma, the main result of this part can be proved.

Theorem 5.1.11. Every recursively enumerable language is generated by a multise-
quential grammar with no more than two nonterminals and two selectors.

Proof. Consider G constructed in the proof of Lemma 5.1.10. Define the homomor-
phism

h : ({S,A,B}∪T )∗→ ({S,A}∪ T )∗

as h(b) = b, for b ∈ T , h(S) = S, h(A) = aAa, and h(B) = aAAa, where a ∈ T is a
terminal symbol. Define the multisequential grammar

G′ = ({S,A},T,{S→ h(α) : S→ α ∈ P}∪{A→ ε,a→ ε},S,K)

with K containing these two selectors:

1. {A,a}∗act(S)({A}∪T )∗,
2. {A,a}∗act(a)act(A)act(a)act(a)act(A)act(A)act(a)

act(a)act(A)act(A)act(a)act(a)act(A)act(A)act(a)
act(a)act(A)act(a)({A}∪T )∗.
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Observe that S→ α is a production in G if and only if S→ h(α) is a production in
G′. If

uABBBAv⇒ uv

in G, where u ∈ {A,B}∗ and v ∈ {A,B}∗T ∗, then

h(u)aAaaAAaaAAaaAAaaAah(v)⇒ h(uv)

in G′ (by selector 2), and vice versa.
Hence, the theorem holds.

5.1.4 Multicontinuous Grammars

A multicontinuous grammar is a multisequential grammar differing in the following
detail—the whole nonempty strings of symbols, not only one symbol, is chosen to
be rewritten. Then, in any derivation step, all these symbols are rewritten.

Definition 5.1.12. A multicontinuous grammar, G, is a quintuple

G = (N,T,P,S,K) ,

where

• N is a nonterminal alphabet,
• T is a terminal alphabet such that N∩T = /0,
• S ∈ N is the start symbol,
• P is a finite set of productions of the form

a→ x ,

where a ∈V = N∪T and x ∈V ∗, and
• K is a finite set of selectors of the form

X1act(Y1)X2 . . .Xnact(Yn)Xn+1 ,

where n is a positive integer,
– Xi ∈ {Z∗ : Z ⊆V}, for i = 1, . . . ,n+1, and
– Yj ∈ {Z+ : Z ⊆V, Z 6= /0}, for j = 1, . . . ,n.

For every v ∈ V +, where v = a1 . . .a|v| with ai ∈ V , for i = 1, . . . , |v|, define the lan-
guage

ContinuousRewriting(v)⊆V ∗

by this equivalence: for every z ∈ V ∗, z ∈ ContinuousRewriting(v) if and only if
ai→ xi ∈ P, for i = 1, . . . , |v|, and z = x1 . . .x|v|.

If x = u1y1u2y2u3 . . .unynun+1, y = u1z1u2z2u3 . . .unznun+1, and K contains a se-
lector

X1act(Y1)X2 . . .Xnact(Yn)Xn+1

such that ui ∈ Xi, for i = 1, . . . ,n+1, y j ∈ Yj, and
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z j ∈ContinuousRewriting(y j) ,

for j = 1, . . . ,n, then
x⇒ y

in G. As usual,⇒ is extended to⇒i, for i≥ 0,⇒+, and⇒∗. The language generated
by a multicontinuous grammar, G, is defined as

L(G) = {w ∈ T ∗ : S⇒∗ w} .

In [Med98a], the following result is proved.

Theorem 5.1.13. Every recursively enumerable language is generated by a multi-
continuous grammar with no more than six nonterminals.

We improve this result in the following way. Again, we give a limit to the number
of selectors.

Theorem 5.1.14. Every recursively enumerable language is generated by a multi-
continuous grammar with no more than three nonterminals and two selectors.

Proof. Let L⊆ T ∗ be a recursively enumerable language. Let

G3 = ({S,A,B},T,P∪{ABBBA→ ε},S)

be a grammar in the third Geffert normal form such that L(G3) = L. Define the
homomorphism

h : ({S,A,B}∪T )∗→ ({S,(,)}∪T )∗

as h(a) = a, for a∈ T , h(S) = S, h(A) = (), and h(B) = (b), where b∈ T is a terminal
symbol. Define the multicontinuous grammar

G = ({S,(,)},T,{S→ h(α) : S→ α ∈ P}∪{(→ ε,)→ ε,b→ ε},S,K)

with K containing these two selectors:

1. {(,),b}∗act(S+)({(,)}∪T )∗,
2. {(,),b}∗act((+)act()+)act((+)act(b+)act()+)

act((+)act(b+)act()+)act((+)act(b+)act()+)
act((+)act()+)({(,)}∪T )∗.

At the beginning of any derivation, only selector 1 is applicable. After eliminating S,
the other selector is applicable. Moreover, as there is no more than one substring of
the form

h(ABBBA) = ()(b)(b)(b)()

in each sentential form (see [Gef88a]), selector 2 is applicable only on no more than
one substring. As there is no occurrence of substrings (( or )) in any sentential form,
this theorem holds.
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5.2 Context-Conditional Grammars

A context-conditional grammar is an ordinary context-free grammar, where a set
of permitting and a set of forbidding contexts are associated with each production.
Then, a production is applicable if and only if it is applicable as a context-free pro-
duction and each permitting context and no forbidding context associated with this
production is a substring of the current sentential form.

Definition 5.2.1. A context-conditional grammar, G, is a quadruple

G = (N,T,P,S) ,

where

• N is a nonterminal alphabet,
• T is a terminal alphabet such that N∩T = /0,
• S ∈ N is the start symbol, and
• P is a finite set of productions of the form

(X → α,Per,For) ,

where X ∈N, α ∈ (N∪T )∗, and Per, For⊆ (N∪T )+ are finite sets. If Per∪For 6=
/0, then the production is said to be conditional.

G has degree (i, j) if for all productions (X → α,Per,For) ∈ P,

max(Per)4 ≤ i

and
max(For)≤ j .

G has index k if

max{|Per|+ |For| : (X → α,Per,For) ∈ P} ≤ k .

For x1,x2 ∈ (N∪T )∗, x1Xx2 directly derives x1αx2 according to the production (X→
α,Per,For) ∈ P, denoted by x1Xx2⇒ x1αx2, if

Per⊆ sub(x)

and
For∩ sub(x) = /0 .

As usual,⇒ is extended to⇒i, for i ∈N0,⇒+, and⇒∗. The language generated by
a context-conditional grammar, G, is defined as

L(G) = {w ∈ T ∗ : S⇒∗ w} .
4 See Definition 2.2.10 on page 7.



i
i

“masopust-phdthesis-fitmono” — 2008/1/25 — 12:08 — page 58 — #66 i
i

i
i

i
i

58 5 Descriptional Complexity

In [Mv05], a proof that context-conditional grammars generate the whole family
of recursively enumerable languages is given. However, descriptional complexity of
context-conditional grammars has not been studied so far. Next, a result concerning
this topic follows.

Theorem 5.2.2. Every recursively enumerable language is generated by a context-
conditional grammar of degree (2,1) and index two with no more than six conditional
productions and seven nonterminals.

Proof. Let L be a recursively enumerable language. Then, there is a grammar

G1 = ({S,A,B,C},T,P∪{ABC→ ε},S)

in the first Geffert normal form such that L = L(G1). Construct the grammar

G = ({S,A,B,C,A′,B′,C′},T,P′∪P′′,S) ,

where
P′ = {(X → α, /0, /0) : X → α ∈ P} ,

and P′′ contains the following six conditional productions:

1. (A→ A′, /0,{A′,C′}),
2. (B→ B′,{A′},{B′}),
3. (C→C′,{A′B′},{C′}),
4. (A′→ ε,{B′C′}, /0),
5. (B′→ ε,{C′},{A′}),
6. (C′→ ε, /0,{A′,B′}).

To prove that L(G1)⊆ L(G), consider a derivation

S⇒∗ wABCw′v⇒ ww′v

in G1 by productions from P and the only one production ABC→ ε , where w,w′ ∈
{A,B,C}∗ and v ∈ T ∗. Then, S⇒∗ wABCw′v in G by productions from P′. By pro-
ductions 1, 2, 3, 4, 5, and 6,

wABCw′v⇒ wA′BCw′v

⇒ wA′B′Cw′v

⇒ wA′B′C′w′v

⇒ wB′C′w′v

⇒ wC′w′v

⇒ ww′v.

The inclusion follows by induction.
To prove that L(G1)⊇ L(G), consider a terminal derivation. We prove that, after

eliminating S, in each six consecutive steps, G can do nothing else than to remove
a substring ABC. To prove it, notice first that to remove A′ or B′, i.e. A or B, C′ has
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to be in the sentential form (see productions 4 and 5). However, to obtain C′ to the
sentential form, production 3 has to be applied. Then, A′B′ has to be a substring of a
former sentential form. Thus, productions 1 and 2 had to be applied before and in this
order. It is also easy to see, according to the forbidding contexts of productions 1, 2,
and 3, that there cannot be more than one occurrence of nonterminals A′, B′, and C′ in
any sentential form. Therefore, according to the permitting contexts of productions
3 and 4, A′B′C′ is a substring of the current sentential form, and, moreover, there
cannot be a terminal between any two nonterminals. The derivation is of the form
S⇒∗ w1w2w3 in G by productions from P′, where w1 ∈ {A,AB}∗, w2 ∈ {BC,C}∗,
and w3 ∈ T ∗, and w1w2w3 ⇒∗ w3. Then, S⇒∗ w1w2w3 in G1 by productions from
P. We prove that w1w2w3⇒∗ w3 in G1.

For w1w2 = ε , the proof is done. For w1w2 6= ε , w1w2 = wABCw′, where
w ∈ {A,AB}∗ and w′ ∈ {BC,C}∗. Thus, at the beginning, only production 1, then
2, and then 3 is applicable. Then, only production 4 is applicable, and, after that,
only production 5 is applicable. Finally, production 6 can be applied;

wABCw′w3 ⇒3 wA′B′C′w′w3

⇒ wB′C′w′w3

⇒ wC′w′w3

⇒ ww′w3.

Thus, if S⇒∗ w1w2w3 ⇒∗ w3 in G, where w1 ∈ {A,AB}∗, w2 ∈ {BC,C}∗, and
w3 ∈ T ∗, then S⇒∗ w1w2w3⇒∗ w3 in G1.

To complete this section, note that it is proved (see [May72], [DP89], and [Sal73]
for a complete proof) that every recursively enumerable language is generated by a
context-conditional grammar of degree (1,1). However, in this case, the number of
nonterminals and conditional productions is not limited.

Note that context-conditional grammars of degree (1,0), (0,1), and (1,1), orig-
inally introduced by van der Walt in [vdW70], are known as random context gram-
mars (or permitting grammars), forbidding grammars, and random context gram-
mars with appearance checking, respectively. It is also known that random context
grammars are as powerful as type 0 grammars, and that neither permitting nor for-
bidding grammars are as powerful as type 0 grammars (they do not even generate
all recursive languages).5 Finally, the relation between language families generated
by these two types of grammars is not known. For all these results in more details
see [BF96] (or [RS97, pages 136 and 137] for an overview).

5.2.1 Context-Conditional Grammars with Linear and
5 In [Mv05], authors mention that the family of languages generated by forbidding grammars

is strictly included in the family of context-sensitive languages. However, the proof shown
there is not correct. Nevertheless, this is true for forbidding grammars without erasing
productions, i.e. without productions of the form A→ ε .
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Regular Productions

This section proves that context-conditional grammars having only linear (regular)
productions6 characterize exactly the family of all linear (regular) languages. Thus,
this section proves that linear productions do not increase the generative power of
such grammars, whereas context-free productions do.

Theorem 5.2.3. Context-conditional grammars having only linear productions are
as powerful as linear grammars.

Proof. Any linear grammar7 can be seen as a context-conditional grammar with
empty permitting and forbidding contexts.

To prove the other direction, let G = (N,T,P,S) be a context-conditional gram-
mar with linear productions. Without loss of generality, we can assume that S does
not occur on the right-hand side of any production. Set

PER =
⋃

(X→α,Per,For)∈P

Per , FOR =
⋃

(X→α,Per,For)∈P

For .

We can assume that S 6∈ PER∪FOR because S occurs in a sentential form only at
the very beginning of the derivation and never more. If, moreover, S ∈ For, for some
(S→ α,Per,For) ∈ P, then this production is not applicable and can be removed
from P without modifying the generated language. Analogously for S∈Per, for some
(X → α,Per,For) ∈ P, X 6= S.

Let m denote the length of the longest string from PER∪FOR, and let

head(a1a2 . . .ak) =
{

a1a2 . . .am for m≤ k
a1a2 . . .ak otherwise,

and

tail(a1a2 . . .ak) =
{

ak−m+1ak−m+2 . . .ak for m≤ k
a1a2 . . .ak otherwise.

Construct the following linear grammar Ḡ = (N̄,T, P̄, [S, /0, /0,ε,ε]), where

N̄ = {[X ,P,F,u,v] : X ∈ N,P⊆ PER,F ⊆ FOR,

u,v ∈ T ∗, |u|, |v| ≤ m} ,
and P̄ is constructed as follows.

1. For all productions (X → aY,{u1, . . . ,uk},{v1, . . . ,vl}), add

[X ,P,F,u,v]→ a[Y,P′,F ′, tail(ua),v]

into P̄ if u1, . . . ,uk ∈ P, v1, . . . ,vl 6∈ F , and

P′ = {w ∈ P : X 6∈ sub(w)}∪ (PER∩ sub(uaY v)) ,
F ′ = {w ∈ F : X 6∈ sub(w)}∪ (FOR∩ sub(uaY v)) ;

6 A context-free production A→ α is linear if α contains no more than one occurrence of
nonterminal symbols, i.e., α ∈ T ∗NT ∗∪{ε}.

7 A context-free grammar with only linear productions.
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2. For all productions (X → Y b,{u1, . . . ,uk},{v1, . . . ,vl}), add

[X ,P,F,u,v]→ [Y,P′,F ′,u,head(bv)]b

into P̄ if u1, . . . ,uk ∈ P, v1, . . . ,vl 6∈ F , and

P′ = {w ∈ P : X 6∈ sub(w)}∪ (PER∩ sub(uY bv)) ,
F ′ = {w ∈ F : X 6∈ sub(w)}∪ (FOR∩ sub(uY bv)) ;

3. For all productions (X → Y,{u1, . . . ,uk},{v1, . . . ,vl}), add

[X ,P,F,u,v]→ [Y,P′,F ′,u,v]

into P̄ if u1, . . . ,uk ∈ P, v1, . . . ,vl 6∈ F , and

P′ = {w ∈ P : X 6∈ sub(w)}∪ (PER∩ sub(uY v)) ,
F ′ = {w ∈ F : X 6∈ sub(w)}∪ (FOR∩ sub(uY v)) ;

4. For all productions (X → ε,{u1, . . . ,uk},{v1, . . . ,vl}), add

[X ,P,F,u,v]→ ε

into P̄ if u1, . . . ,uk ∈ P and v1, . . . ,vl 6∈ F .

In the rest of this proof, we prove that [X ,P,F,u,v] says that the current sentential
form in G contains X as its nonterminal, P is the set of all elements of permitting
(PER) and F of all forbidding (FOR) contexts occurring in the current sentential
form, and u and v are substrings of length no more than m; u is the left context of X
and v is the right context.

Clearly, [S, /0, /0,ε,ε] satisfies this condition. Let

w1[X ,P,F,u,v]w2⇒ w1a[Y,P′,F ′, tail(ua),v]w2

be a derivation step in Ḡ, i.e. u = tail(w1) and v = head(w2). Let P = PER ∩
sub(w1Xw2) and F = FOR∩ sub(w1Xw2). It is not hard to see that this derivation
step is possible if and only if

w1Xw2⇒ w1aY w2

in G. We prove that
P′ = PER∩ sub(w1aY w2) .

Clearly, P′ ⊆ PER∩ sub(w1aY w2).
To prove the other inclusion, assume that w ∈ PER∩ sub(w1aY w2). Consider

that it is possible that X = Y . If w ∈ P and X 6∈ sub(w), then w ∈ P′. If w ∈ P and
X ∈ sub(w), i.e. X = Y , then w ∈ sub(uaY v) and, therefore, w ∈ P′. Finally, assume
that w 6∈ P. Then, |w| ≤ m and

w ∈ sub(tail(w1)aY head(w2)) = sub(uaY v) .
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Thus, w ∈ P′ if and only if w ∈ PER∩ sub(w1aY w2). Analogously for other types of
productions, and also for the proof of F ′ = FOR∩ sub(w1aY w2). These parts of the
proof are left to the reader.

Because the previous holds for [S, /0, /0,ε,ε] ⇒ γ , i.e. /0 = PER∩ sub(S), /0 =
FOR∩ sub(S), and S is a sentential form in G, the proof follows by induction to the
length of the derivation.

The following corollary is an immediate consequence of the previous theorem.

Corollary 5.2.4. Context-conditional grammars having only linear productions are
as powerful as linear grammars.

Proof. In this case, only regular productions are used in the construction.

5.2.2 Simple Context-Conditional Grammars

Consider a context-conditional grammar. If for each its production, either the permit-
ting or the forbidding context is empty, then the grammar is called simple context-
conditional. Formal definition follows.

Definition 5.2.5. Let G = (N,T,P,S) be a context-conditional grammar. If

(X → α,Per,For) ∈ P

implies that
/0 ∈ {Per,For} ,

then G is said to be a simple context-conditional grammar.

We can easily prove the following theorem.

Theorem 5.2.6. Every recursively enumerable language is generated by a simple
context-conditional grammar of degree (2,1) with no more than seven conditional
productions and eight nonterminals.

Proof. Let L be a recursively enumerable language. Then, there is a grammar

G1 = ({S,A,B,C},T,P∪{ABC→ ε},S)

in the first Geffert normal form such that L = L(G1). Construct the grammar

G = ({S,A,B,C,A′,B′,C′,B′′},T,P′∪P′′,S) ,

where
P′ = {(X → α, /0, /0) : X → α ∈ P} ,

and P′′ contains the following seven conditional productions:

1. (A→ A′, /0,{A′,B′′}),
2. (B→ B′, /0,{B′,B′′}),
3. (C→C′, /0,{C′,B′′}),
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4. (B′→ B′′,{A′B′,B′C′}, /0),
5. (A′→ ε,{B′′}, /0),
6. (C′→ ε,{B′′}, /0),
7. (B′′→ ε, /0,{A′,C′}).

To prove that L(G1) ⊆ L(G), consider a derivation S⇒∗ wABCw′v⇒ ww′v in
G1 by productions from P and the only one production ABC → ε , where w,w′ ∈
{A,B,C}∗ and v ∈ T ∗. Then, S⇒∗ wABCw′v in G by productions from P′. By pro-
ductions 1, 2, 3, 4, 5, 6, and 7,

wABCw′v⇒ wA′BCw′v

⇒ wA′B′Cw′v

⇒ wA′B′C′w′v

⇒ wA′B′′C′w′v

⇒ wB′′C′w′v

⇒ wB′′w′v

⇒ ww′v.

The inclusion follows by induction.
To prove that L(G1)⊇ L(G), consider a terminal derivation. Notice that to elim-

inate a nonterminal, there must be B′′ in the derivation. From production 4 and the
observation that there is no more than one A′, B′, C′ in the derivation (see produc-
tions 1, 2, 3), there cannot be a terminal between any two nonterminals. Therefore,
the derivation is of the form S ⇒∗ w1w2w3 in G by productions from P′, where
w1 ∈ {A,AB}∗, w2 ∈ {BC,C}∗, and w3 ∈ T ∗, and w1w2w3⇒∗ w3. Note that before
S is eliminated, there is no occurrence of the substring ABC in the derivation. Then,
S⇒∗ w1w2w3 in G1 by productions from P. We prove that w1w2w3⇒∗ w3 in G1.

For w1w2 = ε , the proof is done. For w1w2 6= ε , there is B in w1w2; otherwise, B′′

cannot be obtained and no nonterminal can be eliminated. To obtain B′′, production 4
is applied. Therefore, w1w2 = wABCw′, where w ∈ {A,AB}∗ and w′ ∈ {BC,C}∗;
otherwise, the conditions of production 4 are not met. Thus, at the beginning, only
productions 1, 2, and 3 are applicable. Then, only production 4 is applicable, and,
after that, only productions 5 and 6 are applicable. Finally, only production 7 is
applicable;

wABCw′w3⇒3 wA′B′C′w′w3⇒ wA′B′′C′w′w3⇒2 wB′′w′w3⇒ ww′w3 .

Thus, if S⇒∗ w1w2w3 ⇒∗ w3 in G, where w1 ∈ {A,AB}∗, w2 ∈ {BC,C}∗, and
w3 ∈ T ∗, then S⇒∗ w1w2w3⇒∗ w3 in G1.

5.2.3 Generalized Forbidding Grammars

A generalized forbidding grammar is a context-conditional grammar, where the
permitting context of any production is empty. These grammars are introduced
in [Med90a]. (A few modifications of these grammars can be found in [CV92,
CVM93, EKR94, Med90b].)
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Definition 5.2.7. Let G = (N,T,P,S) be a context-conditional grammar. If

(X → α,Per,For) ∈ P

implies that
Per = /0 ,

then G is said to be a generalized forbidding grammar.

As all permitting contexts are empty, we simplify the notation as follows.
Notation 2. As far as generalized forbidding grammars are concerned, we omit the
symbol /0 from the notation of productions and, thus, write (X → α,For) instead of
(X → α, /0,For).
Notation 3. G is said to have degree i if G has degree (k, i) as a context-conditional
grammar, for some k.

The last known result is the following theorem proved in [Mv03].

Theorem 5.2.8. Every recursively enumerable language is generated by a gener-
alized forbidding grammar of degree two with no more than thirteen conditional
productions and fifteen nonterminals.

Now, we prove the main results of this section. First, however, we prove the
following auxiliary lemma.

Lemma 5.2.9. Let L∈RE, L = L(G1), G1 is a grammar in the second Geffert normal
form. Then, there is a grammar

G = ({S,0,1,$},T,P∪{0$0→ $,1$1→ $,$→ ε},S) ,

with P containing only context-free productions of the form

S→ h(u)Sa if S→ uSa in G1,
S→ h(u)Sh(v) if S→ uSv in G1,
S→ h(u)$h(v) if S→ uv in G1,

where h : {A,B,C,D}∗→{0,1}∗ is a homomorphism defined as

h(A) = h(B) = 0 and h(C) = h(D) = 1 ,

such that L(G) = L(G1).

Proof. Any terminal derivation in G1 is, after the application of S→ uv, of the form

{A,C}∗{B,D}∗T ∗ .

From this, any terminal derivation in G is, after generating $, of the form

h({A,C}∗)$h({B,D}∗)T ∗ .

It is easy to see that if the production AB→ ε or CD→ ε is applied in G1, then
the production 0$0→ $ or 1$1→ $ is applied in G, respectively, and vice versa.
Moreover, the last production applied in G in any terminal derivation is $→ ε .
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Theorem 5.2.10. Every recursively enumerable language is generated by a gen-
eralized forbidding grammar of degree two and index six with no more than ten
conditional productions and nine nonterminals.

Proof. Let L be a recursively enumerable language. Then, there is a grammar

G = ({S,0,1,$},T,P∪{0$0→ $,1$1→ $,$→ ε},S)

such that L = L(G) and P contains productions of the form shown in Lemma 5.2.9.
Construct the grammar

G′ = ({S′,Z,S,0,1,0′,1′,$,#},T,P′∪P′′,S′) ,

where P′ contains productions of the form

(S′→ ZSZ, /0),
(S→ uSZaZ, /0) if S→ uSa ∈ P,
(S→ uSv, /0) if S→ uSv ∈ P,
(S→ u$v, /0) if S→ uv ∈ P,

and P′′ contains following ten conditional productions:

1. (0→ 0′,{0′,1′,#}),
2. (1→ 1′,{0′,1′,#}),
3. (0→ 0′1′,{1′,#}),
4. (1→ 1′0′,{0′,#}),
5. ($→ #,{0$,1$,Z$,$0,$1,$Z}),
6. (0′→ ε,{$,S}),
7. (1′→ ε,{$,S}),
8. (#→ $,{0′,1′}),
9. (Z→ ε,{$,#,S}),

10. ($→ ε,{0,1,0′,1′}),
To prove that L(G) ⊆ L(G′), consider a derivation S⇒∗ w$wRv in G using only

productions from P, where w ∈ {0,1}∗ and v ∈ T ∗. This can be derived in G′ by
productions from P′ as S′⇒∗ Zw$wRZv′, where h(v′) = v for a homomorphism h :
(T ∪{Z})∗→ T ∗ defined as h(a) = a, for a ∈ T , and h(Z) = ε . If w = ε , then

Z$Zv′⇒ ZZv′⇒∗ v ,

by productions 10 and 9. If w = w′0, then

Zw′0$0w′RZv′ ⇒ Zw′0′$0w′RZv′

⇒ Zw′0′$0′1′w′RZv′

⇒ Zw′0′#0′1′w′RZv′

⇒ Zw′#0′1′w′RZv′

⇒ Zw′#1′w′RZv′

⇒ Zw′#w′RZv′

⇒ Zw′$w′RZv′
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by productions 1, 3, 5, 6, 6, 7, and 8. The case of w = w′1 is analogous. The inclusion
follows by induction.

To prove that L(G)⊇ L(G′), consider a terminal derivation in G′

S′⇒∗ Zw1$w2Zw3 ,

by productions from P′, and

Zw1$w2Zw3⇒∗ w ,

where w1,w2 ∈ {0,1}∗ and w ∈ T ∗. We prove that w3 ∈ (T ∪{Z})∗.
Assume that Z0 or Z1 is in sub(Zw3). Then, to eliminate this 0 or 1, production 6

or 7 must be applied. To apply production 6 or 7, production 5 must be applied
before. Then, however, there is 0, 1, or Z next to $; indeed, there cannot be more
than two 0′s or 1′s in the derivation (there is no more than either 0′ and 0′1′, or 1′

and 1′0′). Thus, w3 ∈ (T ∪{Z})∗ and w = h(w3). Then,

S⇒∗ w1$w2h(w3)

in G by productions from P. We prove that

w1$w2h(w3)⇒∗ h(w3) .

Assume that w1 = w2 = ε . Then, the only applicable production in G′ is pro-
duction 10. After production 10, only production 9 is applicable. Thus, Z$Zw3 ⇒
ZZw3⇒∗ h(w3).

Assume that ε ∈ {w1,w2} and w1 6= w2. Then,

Zw1$w2Zw3 ∈ {Z$w2Zw3,Zw1$Zw3} .

In both cases, neither 0 nor 1 can be eliminated (see production 5).
By induction on the length of w1, we prove that w1 = wR

2 . The basic step has
already been proved. Assume that

Zw1$w2Zw3 = Zw′10$xw′2Zw3 ,

where x ∈ {0,1}. Then, only productions 1, 2, 3, 4 can be applied. Notice that pro-
duction 1 or 2 is applied before production 3 or 4; otherwise, if production 3 or 4 is
applied, then neither production 1 nor 2 is applicable. Moreover, if production 1 is
applied, then only production 3 is applicable, and, similarly, if production 2 is ap-
plied, then only production 4 is applicable. According to production 5, 0$ is rewritten
by production 1 or 3. Therefore, 0 is rewritten by production 1 and x is rewritten by
production 3, or vice versa. Thus, x = 0 and

Zw′10$0w′2Zw3 ⇒2 Zw′10′$0′1′w′2Zw3 or Zw′10′1′$0′w′2Zw3.

Then, only production 5 is applicable;

⇒ Zw′10′#0′1′w′2Zw3 or Zw′10′1′#0′w′2Zw3
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and only productions 6 and 7 are applicable;

⇒3 Zw′1#w′2Zw3

and only production 8 is applicable;

⇒ Zw′1$w′2Zw3.

The proof for Zw1$w2Zw3 = Zw′11$xw′2Zw3, where x ∈ {0,1}, is analogous. By the
induction hypothesis, w1 = wR

2 .
Thus, if S′⇒∗ Zw1$wR

1 Zw3⇒∗ h(w3) in G′, where w1 ∈ {0,1}∗ and w3 ∈ (T ∪
{Z})∗, then S⇒∗ w1$wR

1 h(w3)⇒∗ h(w3) in G.

By a modification of the grammar from the proof of Theorem 5.2.10, the index
can be decreased.

Theorem 5.2.11. Every recursively enumerable language is generated by a gener-
alized forbidding grammar of degree two and index four with no more than eleven
conditional productions and ten nonterminals.

Proof. Let L be a recursively enumerable language. There is a grammar

G = ({S,0,1,$},T,P∪{0$0→ $,1$1→ $,$→ ε},S)

such that L = L(G) and P contains productions of the form shown in Lemma 5.2.9.
Construct the grammar

G′ = ({S′,Z,S,0,1,0′,1′,$,#,@},T,P′∪P′′,S′) ,

where P′ contains productions of the form

(S′→ ZSZ, /0),
(S→ uSZaZ, /0) if S→ uSa ∈ P,
(S→ uSv, /0) if S→ uSv ∈ P,
(S→ u$v, /0) if S→ uv ∈ P,

and P′′ contains following eleven conditional productions:

1. (0→ 0′,{0′,1′,@}),
2. (1→ 1′,{0′,1′,@}),
3. ($→ #,{0$,1$,Z$}),
4. (0→ 0′1′,{0′1′,1′,@}),
5. (1→ 1′0′,{1′0′,0′,@}),
6. (#→@,{#0,#1,#Z}),
7. (0′→ ε,{$,#,S}),
8. (1′→ ε,{$,#,S}),
9. (@→ $,{0′,1′}),

10. (Z→ ε,{$,#,@,S}),
11. ($→ ε,{0,1}),
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To prove that L(G) ⊆ L(G′), consider a derivation S⇒∗ w$wRv in G using only
productions from P, where w ∈ {0,1}∗ and v ∈ T ∗. This can be derived in G′ by
productions from P′ as S′⇒∗ Zw$wRZv′, where h(v′) = v for a homomorphism h :
(T ∪{Z})∗→ T ∗ defined as h(a) = a, for a ∈ T , and h(Z) = ε . If w = ε , then

Z$Zv′⇒ ZZv′⇒∗ v ,

by productions 11 and 10. If w = w′0, then

Zw′0$0w′RZv′ ⇒ Zw′0′$0w′RZv′

⇒ Zw′0′#0w′RZv′

⇒ Zw′0′#0′1′w′RZv′

⇒ Zw′0′@0′1′w′RZv′

⇒ Zw′@0′1′w′RZv′

⇒ Zw′@1′w′RZv′

⇒ Zw′@w′RZv′

⇒ Zw′$w′RZv′

by productions 1, 3, 4, 6, 7, 7, 8, and 9. The case of w = w′1 is analogous. The
inclusion follows by induction. Hence, if S⇒∗ v in G, v ∈ T ∗, then S′⇒∗ v in G′.

To prove that L(G)⊇ L(G′), consider a terminal derivation in G′

S′⇒∗ Zw1$w2Zw3 ,

by productions from P′, and

Zw1$w2Zw3⇒∗ w ,

where w1,w2 ∈ {0,1}∗ and w ∈ T ∗. We prove that w3 ∈ (T ∪{Z})∗.
Assume that Z0 or Z1 is in sub(Zw3). Then, to eliminate this 0 or 1, production 7

or 8 is applied to this 0 or 1. To apply production 7 or 8, production 3 or 6 is applied
before. However, there is 0, 1, or Z next to $ or #; indeed, there cannot be more than
two 0′s or 1′s in the derivation—a contradiction; production 3 or 6 cannot be applied.
Thus, w3 ∈ (T ∪{Z})∗ and w = h(w3). Then,

S⇒∗ w1$w2h(w3)

in G by productions from P. We prove that

w1$w2h(w3)⇒∗ h(w3) .

Assume that w1 = w2 = ε . Then, the only applicable production is production 11
followed by production 10. Clearly, $h(w3)⇒ h(w3) in G.

Assume that ε ∈ {w1,w2} and w1 6= w2. Then,

Zw1$w2Zw3 ∈ {Z$w2Zw3,Zw1$Zw3} .
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In both cases, neither 0 nor 1 can be eliminated.
By induction on the length of w1, we prove that w1 = wR

2 . The basic step has
already been proved. Assume that

Zw1$w2Zw3 = Zw′10$xw′2Zw3 ,

where x ∈ {0,1}. Then, only productions 1, 2, 4, 5 are applicable. Notice that pro-
duction 1 (2) has to be applied before 4 (5); otherwise, if production 4 (5) is applied,
then production 1 (2) is not applicable. Moreover, if production 1 is applied, then
only production 4 is applicable, and if production 2 is applied, then only produc-
tion 5 is applicable. According to production 3, 0$ is rewritten by production 1 or 4.
Therefore, 0 is rewritten by production 1 and x is rewritten by production 4, or vice
versa. Thus, x = 0 and

Zw′10$0w′2Zw3 ⇒2 Zw′10′$0′1′w′2Zw3 or Zw′10′1′$0′w′2Zw3
or Zw′10′#0w′2Zw3 (by 1 and 3).

Then, only production 3 or 4 is applicable;

⇒ Zw′10′#0′1′w′2Zw3 or Zw′10′1′#0′w′2Zw3

and only production 6 is applicable;

⇒ Zw′10′@0′1′w′2Zw3 or Zw′10′1′@0′w′2Zw3

and only productions 7 and 8 are applicable;

⇒3 Zw′1@w′2Zw3

and only production 9 is applicable;

⇒3 Zw′1$w′2Zw3.

The proof for Zw1$w2Zw3 = Zw′11$xw′2Zw3, where x ∈ {0,1}, is analogous. By the
induction hypothesis, w1 = wR

2 .
Thus, if S′⇒∗ Zw1$wR

1 Zw3⇒∗ h(w3) in G′, where w1 ∈ {0,1}∗ and w3 ∈ (T ∪
{Z})∗, then S⇒∗ w1$wR

1 h(w3)⇒∗ h(w3) in G.

In the following two theorems, we decrease the number of nonterminals and the
number of conditional productions disregarding the index.

Theorem 5.2.12. Every recursively enumerable language is generated by a gener-
alized forbidding grammar of degree two and index nine with no more than eight
conditional productions and ten nonterminals.

Proof. Let L be a recursively enumerable language. Then, there is a grammar

G1 = ({S,A,B,C},T,P∪{ABC→ ε},S)

in the first Geffert normal form such that L = L(G1). Construct the grammar

G = ({S,S′,Z,A,B,C,A′,B′,C′,#},T,P′∪P′′,S) ,

where P′ contains productions of the form
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(S→ ZS′Z, /0),
(S′→ uS′ZaZ, /0) if S→ uSa ∈ P,
(S′→ uS′v, /0) if S→ uSv ∈ P,
(S′→ uv, /0) if S→ uv ∈ P,

and P′′ contains the following eight conditional productions:

1. (A→ #A′,{#,S′}),
2. (B→ B′,{B′,#,S′}),
3. (C→C′,{C′,#,S′}),
4. (A′→ ε,{A′}{A,B,C,C′,Z}),
5. (B′→ ε,{B′}{A,B,C,Z}∪{A,B,C,C′,Z}{B′}),
6. (C′→ ε,{A′,B′}∪{A,B,C,Z}{C′}),
7. (#→ ε,{A′,B′,C′}),
8. (Z→ ε,{S′,A,A′,B,B′,C,C′}).

To prove that L(G1) ⊆ L(G), consider a derivation S⇒∗ wABCw′v⇒ ww′v in
G1 by productions from P and the only one application of the production ABC→ ε ,
where w,w′ ∈ {A,B,C}∗ and v ∈ T ∗. Then, S⇒∗ ZwABCw′Zv′ in G by productions
from P′, where v′ ∈ (T ∪{Z})∗ is such that h(v′) = v, for a homomorphism h : (T ∪
{Z})∗→ T ∗ defined as h(a) = a, for a ∈ T , and h(Z) = ε . By productions 3, 2, 1, 4,
5, 6, and 7,

ZwABCw′Zv′ ⇒ ZwABC′w′Zv′

⇒ ZwAB′C′w′Zv′

⇒ Zw#A′B′C′w′Zv′

⇒ Zw#B′C′w′Zv′

⇒ Zw#C′w′Zv′

⇒ Zw#w′Zv′

⇒ Zww′Zv′.

The inclusion follows by induction and, eventually, by production 8.
To prove that L(G1)⊇ L(G), observe that if there is a string of the form Z{B′,C′}

as a substring of a sentential form, then neither of productions 5 and 6 is applicable
to the rightmost nonterminal of this string—there is Z before the nonterminal. Thus,
we can assume that

S⇒∗ Zw1w2Zw3

in G, by productions from P′, and that

Zw1w2Zw3⇒∗ h(w3) ,

where w1 ∈ {A,AB}∗, w2 ∈ {BC,C}∗, and w3 ∈ (T ∪{Z})∗. Notice that before S and
S′ are eliminated, there is no occurrence of ABC in the sentential form (see [Gef88a]),
and, moreover, no production from P′′ can be applied. Then, S⇒∗ w1w2h(w3) in G1
by productions from P. We prove that



i
i

“masopust-phdthesis-fitmono” — 2008/1/25 — 12:08 — page 71 — #79 i
i

i
i

i
i

5.2 Context-Conditional Grammars 71

w1w2h(w3)⇒∗ h(w3) .

By induction on the length of w1w2, we prove that w1w2 = w′1ABCw′2, for some
w′1 ∈ {A,AB}∗ and w′2 ∈ {BC,C}∗, or w1w2 = ε . In any derivation step, there is no
more than one A′, B′, C′, and no X ′, for X ∈ {A,B,C}, is generated while there is #
in the sentential form (see productions 1, 2, 3). Moreover, # is eliminated after all
primed nonterminals are eliminated (see production 7). We prove that A, B, and C
are in sub(w1w2), for w1w2 6= ε .

1. A∈ sub(w1w2): to eliminate A, A has to be rewritten to A′. Then, B′ has to follow
A′ (by production 4) and C′ has to follow B′ (by production 5).

2. B ∈ sub(w1w2): to eliminate B, B has to be rewritten to B′. Then, A′ or # has to
be before B′ and C′ has to follow B′ (by production 5).

3. C ∈ sub(w1w2): to eliminate C, C has to be rewritten to C′. Then, # has to be
before C′ (by production 6)—that is, A ∈ sub(w1w2); otherwise, this case is ana-
logical to 1.

In all above cases, we have ABC ∈ sub(w1w2). Thus, w1w2 = w′1ABCw′2, for some
w′1 ∈ {A,AB}∗ and w′2 ∈ {BC,C}∗.

We prove that while ABC is eliminated, no other nonterminal is eliminated, and
then # is removed.

First, only productions 1, 2, and 3 are applicable.
(i) If production 1 is applied, then productions 2 and 3 are not applicable because

there is # in the sentential form. Also, production 4 is not applicable because A′ is
followed by A, B, C, or Z. Thus, the derivation is blocked.

(ii) Assume that production 2 is applied first. Then, there is B′ in the sentential
form. Notice that production 5 is not applicable because B′ is followed by A, B, C, or
Z. Thus, only productions 1 and 3 are applicable. To apply production 5, # or A′ has
to be before B′ and C′ has to follow B′. If production 1 is applied, then production 3
is not applicable—C′ cannot be generated. Moreover, if there is #A′B′{A,B,C,Z}
as a substring of the sentential form, then A′ can be eliminated (by production 4).
However, no other production is applicable. Thus, the sequence of productions in the
derivation is 2, 3, and 1.

(iii) Assume that production 3 is applied first. Then, there is C′ in the sentential
form. Notice that production 6 is not applicable because A, B, C, or Z is before
C′. To apply production 6, # has to be before C′. Thus, only productions 1 and 2
are applicable. If production 1 is applied, then production 2 is not applicable. To
eliminate A′, A′ has to be followed by B′ (see production 4)—a contradiction; there
is no B′ in the sentential form. Therefore, production 2 had to be applied before
production 1. Thus, the sequence of productions in the derivation is 3, 2, and 1.

After the sequence of productions 2, 3, 1, or 3, 2, 1, productions 4 and 5 are
applicable if and only if #A′B′C′ is a substring of the sentential form (see productions
4 and 5). Notice that no other productions are applicable. Thus,

w′1ABCw′2h(w3)⇒2 w′1AB′C′w′2h(w3)⇒ w′1#A′B′C′w′2h(w3) .

After the application of productions 4 and 5 (in this order, otherwise A′ cannot be
eliminated),
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w′1#A′B′C′w′2h(w3)⇒ w′1#B′C′w′2h(w3)⇒ w′1#C′w′2h(w3) ,

only production 6 is applicable,

w′1#C′w′2h(w3)⇒ w′1#w′2h(w3) .

If w′1w′2 6= ε , then only production 7 is applicable because there is no A′, B′, C′ in the
sentential form. If w′1w′2 = ε , then also production 8 is applicable. However, it is easy
to see that it does not matter whether some Zs are eliminated before # is removed.
Then,

w′1#w′2h(w3)⇒+ w′1w′2h(w3) .

As a result, by the induction hypothesis,

w′1ABCw′2h(w3)⇒∗ w′1w′2h(w3)⇒∗ h(w3) .

Thus, if S⇒∗ Zw1w2Zw3⇒∗ h(w3) in G, where w1 ∈ {A,AB}∗, w2 ∈ {BC,C}∗,
and w3 ∈ (T ∪{Z})∗, then S⇒∗ w1w2h(w3)⇒∗ h(w3) in G1. Hence, the other inclu-
sion holds.

If we allow the index to have no limit, then the number of nonterminals can be
decreased. To prove this, we first need to modify Lemma 5.2.9. More precisely, only
the homomorphism h is modified.

Lemma 5.2.13. Let L ∈ RE, L = L(G1), G1 is a grammar in the second Geffert
normal form. Then, there is a grammar

G = ({S,0,1,$},T,P∪{0$0→ $,1$1→ $,$→ ε},S)

with P containing only context-free productions of the form

S→ h(u)Sa if S→ uSa in G1,
S→ h(u)Sh(v) if S→ uSv in G1,
S→ h(u)$h(v) if S→ uv in G1,

where h : {A,B,C,D}∗→{0,1}∗ is a homomorphism defined as

h(A) = h(B) = 00, h(C) = 01, and h(D) = 10 ,

such that L(G) = L(G1).

Now, we can prove the following theorem.

Theorem 5.2.14. Every recursively enumerable language is generated by a general-
ized forbidding grammar of degree two and unlimited index with no more than nine
conditional productions and eight nonterminals.

Proof. Let L be a recursively enumerable language. Then, there is a grammar

G = ({S,0,1,$},T,P∪{0$0→ $,1$1→ $,$→ ε},S)
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such that L = L(G) and P contains productions of the form shown in Lemma 5.2.13.
Construct the grammar

G′ = ({S′,S,0,1,0′,1′,$,#},T,P′∪P′′,S′) ,

where P′ contains productions of the form

(S′→ 111S11, /0),
(S→ uS11a, /0) if S→ uSa ∈ P,
(S→ uSv, /0) if S→ uSv ∈ P,
(S→ u$v, /0) if S→ uv ∈ P,

and P′′ contains following nine conditional productions:

1. (0→ 0′,{0′,1′,#}),
2. (1→ 1′,{0′,1′,#}),
3. (0→ 0′1′,{1′,#}),
4. (1→ 1′0′,{0′,#}),
5. ($→ #,{0$,1$,$0,$1}∪{$}T ),
6. (0′→ ε,{$,S}),
7. (1′→ ε,{$,S}),
8. (#→ $,{0′,1′}),
9. ($→ ε,{0,0′}),

To prove that L(G) ⊆ L(G′), consider a derivation S⇒∗ w$wRv in G using only
productions from P, where w ∈ {00,01}∗ and v ∈ T ∗. This can be derived in G′ by
productions from P′ as S′⇒∗ 111w$wR11v′, where v′ ∈ (T{11})∗ and h(v′) = v for
a homomorphism h : (T ∪{1})∗→ T ∗ defined as h(a) = a, for a ∈ T , and h(1) = ε .
If w = ε , then

111$11v′⇒ 11111v′⇒∗ v ,

by productions 9, and repeating productions 2 and 7. If w = w′0, then

111w′0$0w′R11v′ ⇒ 111w′0′$0w′R11v′

⇒ 111w′0′$0′1′w′R11v′

⇒ 111w′0′#0′1′w′R11v′

⇒ 111w′#0′1′w′R11v′

⇒ 111w′#1′w′R11v′

⇒ 111w′#w′R11v′

⇒ 111w′$w′R11v′

by productions 1, 3, 5, 6, 6, 7, and 8. The case of w = w′1 is analogous. The inclusion
follows by induction.

To prove that L(G)⊇ L(G′), consider a terminal derivation in G′

S′⇒∗ 111w1$w211w3
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by productions from P′, and

111w1$w211w3⇒∗ w ,

where w1 ∈ {00,01}∗, w2 ∈ {00,10}∗, and w ∈ T ∗.
Assume that ε ∈ {w1,w2} and w1 6= w2. Then,

111w1$w211w3 ∈ {111$w211w3,111w1$11w3} .

First, assume that
111$w211w3 = 111$xw′211w3 ,

where x ∈ {00,10}. As in the proof of Theorem 5.2.10, only productions 1, 2, 3,
and 4 can be applied. Moreover, production 1 (or 2) is applied before production 3
(or 4), and if production 1 is applied, then only production 3 is applicable, and,
similarly, if production 2 is applied, then only production 4 is applicable. According
to production 5, 1$ is rewritten by production 2 or 4. Therefore, 1 is rewritten by
production 2 and x is rewritten by production 4, or vice versa. Thus, x = 10 and

111$10w′211w3⇒7 11$0w′211w3 .

Similarly, assume that 111w1$11w3 = 111w′1x$11w3, x∈ {00,01}. Then, x = 01 and

111w′101$11w3⇒∗ 111w′10$1w3 .

In both cases, the derivation is blocked.
Assume that w1 = w2 = ε , i.e. S′⇒∗ 111$11w3, where w3 = aw′3, for some a∈ T ,

or w3 = ε . Then,
111$11w3⇒∗ α ,

where
α ∈ {111$11w3,11$1w3,1$aw′3,1$} .

In all cases, to remove $, production 9 is applied. However, production 9 is applicable
if and only if there is no 0 in w3. Clearly, $w⇒ w in G.

Analogously to the proof of Theorem 5.2.10, by induction on the length of w1,
we can prove that w1 = wR

2 .
Thus, we have proved that 0 6∈ sub(w3), i.e. w = h(w3), and, moreover, if

S′⇒∗ 111w1$wR
1 11w3⇒∗ h(w3)

in G′, where w1 ∈ {00,01}∗, then

S⇒∗ w1$wR
1 h(w3)⇒∗ h(w3)

in G.
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5.2.4 Generalized Permitting Grammars

A generalized permitting grammar is a context-conditional grammar, where the for-
bidding context of any production is empty.

Definition 5.2.15. Let G = (N,T,P,S) be a context-conditional grammar. If

(X → α,Per,For) ∈ P

implies that
For = /0 ,

then G is said to be a generalized permitting grammar.

As all forbidding contexts are empty, we simplify the notation as follows.
Notation 4. As far as generalized permitting grammars are concerned, we omit the
symbol /0 from the notation of productions and, thus, write (X → α,Per) instead of
(X → α,Per, /0).
Notation 5. G is said to have degree i if G has degree (i,k) as a context-conditional
grammar, for some k.

Open Problem

The question whether generalized permitting grammars characterize the whole fam-
ily of recursively enumerable languages or not is a long-standing open problem.

5.2.5 Semi-Conditional Grammars

A semi-conditional grammar is a context-conditional grammar, where both permit-
ting and forbidding contexts contain no more than one element. These grammars are
introduced and studied in [P8̆5].

Definition 5.2.16. A semi-conditional grammar, G, is a quadruple

G = (N,T,P,S) ,

where

• N is a nonterminal alphabet,
• T is a terminal alphabet such that N∩T = /0,
• S ∈ N is the start symbol, and
• P is a finite set of productions of the form

(X → α,u,v)

with X ∈ N, α ∈ (N ∪ T )∗, and u,v ∈ (N ∪ T )+ ∪ {0}, where 0 6∈ N ∪ T is a
special symbol. If u 6= 0 or v 6= 0, then the production (X → α,u,v) ∈ P is said
to be conditional.
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G has degree (i, j) if for all productions (X → α,u,v) ∈ P,

u 6= 0 implies |u| ≤ i

and
v 6= 0 implies |v| ≤ j .

For x1,x2 ∈ (N∪T )∗, x1Xx2 directly derives x1αx2 according to the production (X→
α,u,v) ∈ P, denoted by x1Xx2⇒ x1αx2, if

u 6= 0 implies that u ∈ sub(x)

and
v 6= 0 implies that v 6∈ sub(x) .

As usual,⇒ is extended to⇒i, for i ≥ 0,⇒+, and⇒∗. The language generated by
a semi-conditional grammar, G, is defined as

L(G) = {w ∈ T ∗ : S⇒∗ w} .

We now prove the main result concerning descriptional complexity of semi-
conditional grammars.

Theorem 5.2.17. Every recursively enumerable language is generated by a semi-
conditional grammar of degree (2,1) with no more than seven conditional produc-
tions and eight nonterminals.

Proof. Let L be a recursively enumerable language. There is a grammar

G = ({S,A,B,C},T,P∪{ABC→ ε},S)

in the first Geffert normal form such that L = L (G). Construct the grammar

G′ = ({S,A,B,C,A′,B′,C′,$},T,P′∪P′′,S) ,

where
P′ = {(X → α,0,0) : X → α ∈ P} ,

and P′′ contains following seven conditional productions:

1. (A→ $A′,0,$),
2. (B→ B′,A′,B′),
3. (C→C′$,A′B′,C′),
4. (B′→ ε,B′C′,0),
5. (C′→ ε,A′C′,0),
6. (A′→ ε,A′$,0),
7. ($→ ε,0,A′).
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To prove that L (G)⊆L (G′), consider a derivation

S⇒∗ wABCw′v⇒ ww′v

in G by productions from P with only one application of the production ABC→ ε ,
where w,w′ ∈ {A,B,C}∗ and v ∈ T ∗. Then,

S⇒∗ wABCw′v

in G′ by productions from P′. Moreover, by productions 1, 2, 3, 4, 5, 6, 7, 7, we get

wABCw′v⇒ w$A′BCw′v

⇒ w$A′B′Cw′v

⇒ w$A′B′C′$w′v

⇒ w$A′C′$w′v

⇒ w$A′$w′v

⇒ w$$w′v

⇒ w$w′v

⇒ ww′v.

The inclusion follows by induction.
To prove that L (G)⊇L (G′), consider a terminal derivation. Let X ∈ {A,B,C}

be in a sentential form of this derivation. To eliminate X , there are following three
possibilities:

1. If X = A, then there must be C and B (by productions 6 and 3) in the derivation;
2. If X = B, then there must be C and A (by productions 4 and 3) in the derivation;
3. If X = C, then there must be A and B (by productions 5 and 3) in the derivation.

In all above cases, there are A, B, and C in the derivation. By productions 1, 2, 3,
and 7, there cannot be more than one A′, B′, and C′ in any sentential form of this
terminal derivation. Moreover, by productions 3 and 4, A′B′C′ is a substring of a
sentential form of this terminal derivation, and there is no terminal symbol between
any two nonterminals; otherwise, there will be a situation in which (at least) one of
productions 3 and 4 will not be applicable. Thus, any first part of a terminal derivation
in G′ is of the form

S⇒∗ w1ABCw2w ⇒3 w1$A′B′C′$w2w (5.1)

by productions from P′ and productions 1, 2, and 3, where w1 ∈ {A,B}∗, w2 ∈
{B,C}∗, and w ∈ T ∗. Next, only production 4 is applicable. Thus,

⇒ w1$A′C′$w2w .

Besides a possible application of production 2, only production 5 is applicable. Thus,

⇒+ w′1$A′$w′2w,
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where w′1 ∈ {A,B,B′}∗, w′2 ∈ {B,B′,C}∗. Besides a possible application of produc-
tion 2, only production 6 is applicable. Thus,

⇒+ w′′1$$w′′2w,

where w′′1 ∈ {A,B,B′}∗, w′′2 ∈ {B,B′,C}∗. Finally, only production 7 is applicable,
i.e.,

⇒2 w′′1w′′2w .

Thus, by productions 1, 2, 3, or 1, 3, if production 2 has already been applied, we get

⇒∗ uvw .

Here,
uvw ∈ {u1$A′B′C′$u2w : u1 ∈ {A,B}∗,u2 ∈ {B,C}∗}

or uv = ε .
Thus, the substring ABC and only this substring was eliminated during the previ-

ous derivation. By induction (see (5.1)), the inclusion holds. This derivation can be
performed in G with an application of the production ABC→ ε , too.

Note that it is well-known that every recursively enumerable language is gen-
erated by a semi-conditional grammar of degree (1,1) (see Theorems 6 and 11(b)
in [May72]). In this case, however, no limit of the number of nonterminals or condi-
tional productions is known.

5.2.6 Simple Semi-Conditional Grammars

A simple semi-conditional grammar is a semi-conditional grammar, where for each
production, either the permitting or the forbidding context does not contain any ele-
ment. These grammars are introduced in [GM94].

Definition 5.2.18. Let G = (N,T,P,S) be a semi-conditional grammar. If

(X → α,u,v) ∈ P

implies that
0 ∈ {u,v} ,

then G is said to be a simple semi-conditional grammar.

The last known result concerning descriptional complexity of simple semi-
conditional grammars is the content of the following theorem proved in [Vas05].

Theorem 5.2.19. Every recursively enumerable language is generated by a simple
semi-conditional grammar of degree (2,1) with no more than ten conditional pro-
ductions and twelve nonterminals.

We improve this result as follows.
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Theorem 5.2.20. Every recursively enumerable language is generated by a simple
semi-conditional grammar of degree (2,1) with no more than nine conditional pro-
ductions and ten nonterminals.

Proof. Let L be a recursively enumerable language. Then, there is a grammar

G1 = ({S,A,B,C},T,P∪{ABC→ ε},S)

in the first Geffert normal form such that L = L(G1). Construct the grammar

G = ({S,A,B,C,A′,B′,C′,$,B′′,C′′},T,P′∪P′′,S) ,

where
P′ = {(S→ α,0,0) : S→ α ∈ P}

and P′′ contains the following nine conditional productions:

1. (A→ A′,0,A′),
2. (B→ B′,0,B′),
3. (C→C′,0,C′),
4. (B′→ B′′,A′B′,0),
5. (C′→C′′,B′′C′,0),
6. (B′′→ ε,B′′C′′,0),
7. (A′→ $,A′C′′,0),
8. (C′′→ ε,$,0),
9. ($→ ε,0,C′′).

To prove that L(G1)⊆ L(G), consider a derivation S⇒∗ wABCw′v⇒ww′v in G1
by productions from P with only one application of the production ABC→ ε , where
w,w′ ∈ {A,B,C}∗ and v ∈ T ∗. Then, S⇒∗ wABCw′v in G by productions from P. By
productions 3, 2, 1, 4, 5, 6, 7, 8, and 9,

wABCw′v⇒ wABC′w′v

⇒ wAB′C′w′v

⇒ wA′B′C′w′v

⇒ wA′B′′C′w′v

⇒ wA′B′′C′′w′v

⇒ wA′C′′w′v

⇒ w$C′′w′v

⇒ w$w′v

⇒ ww′v.

The inclusion follows by induction.
To prove that L(G1)⊇ L(G), consider a terminal derivation. Let X ∈ {A,B,C} be

in a sentential form. To eliminate X , there are following three possibilities:
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1. if X = A, then there has to be C (by production 7) and B (by production 5) in the
sentential form;

2. if X = B, then there has to be A (by production 4) and C (by production 6) in the
sentential form;

3. if X = C, then there has to be B (by production 5) and A (by production 8) in the
sentential form.

In all above cases, there are A, B, and C in the sentential form. By productions 1,
2, and 3, there can be no more than one A′, B′, and C′ in the sentential form. By
productions 4 and 5, A′ is before B′ and C′ follows this B′. We prove that in any
terminal derivation, there is no terminal symbol between any two nonterminals. More
precisely, there is no substring of the form T{BC,C}. Assume that aB, for some
a ∈ T , is a substring of the sentential form. Then, B is rewritten to B′ and B′ cannot
be rewritten to B′′ because A′ is before aB′. Similarly, if there is aC in the sentential
form, for some a ∈ T , then C is rewritten to C′ and aC′ cannot be rewritten to aC′′

because there is never B′′ followed by C′. Thus, any terminal derivation in G is of the
form

S ⇒∗ w1A′w2B′w3C′w4w (5.2)

by productions from P and productions 1, 2, 3, and

⇒∗ w,

where w1 ∈ {A,B}∗, w2,w3 ∈ {A,B,C,S}∗, w4 ∈ {B,C}∗, and w ∈ T ∗. We prove that
S 6∈ sub(w2w3). To rewrite B′ (by production 4), w2 = ε . Thus,

w1A′B′w3C′w4w ⇒ w1A′B′′w3C′w4w (5.3)

and, also, production 2 is applicable. However, to rewrite C′ (by production 5), w3 =
ε . Thus,

⇒+ w1A′B′′C′′w4w,

where w1 ∈ {A,B,B′}∗, w4 ∈ {B,B′,C}∗. Thus, we have that A′B′C′ is a substring of
w1A′w2B′w3C′w4w, and A′B′C′ was obtained from ABC.

Next, we prove that no other nonterminal is eliminated while ABC is eliminated.
Besides a possible application of productions 2 and 3, only production 6 is applica-
ble. Thus,

⇒+ w1A′C′′w4w,

where w1 ∈ {A,B,B′}∗, w4 ∈ {B,B′,C,C′}∗. Besides a possible application of pro-
ductions 2 and 3, only production 7 is applicable. Thus,

⇒+ w1$C′′w4w,

where w1 ∈ {A,B,B′}∗, w4 ∈ {B,B′,C,C′}∗. Besides a possible application of pro-
ductions 1, 2, 3, and 4, only production 8 is applicable. Thus,
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⇒+ w1$w4w,

where w1 ∈ {A,A′,A′B′′,B,B′}∗, w4 ∈ {B,B′,C,C′}∗. Besides a possible application
of productions 1, 2, 3, and 4, only production 9 is applicable. Thus,

⇒+ w1w4w,

where w1 ∈ {A,A′,A′B′′,B,B′}∗, w4 ∈ {B,B′,C,C′}∗. Thus,

⇒∗ uvw

by productions 1, 2, and 3, if they are applicable. Then,

uvw ∈ {u1A′B′C′u4w : u1 ∈ {A,B}∗,u4 ∈ {B,C}∗}

∪{v1A′B′′C′v4w : v1 ∈ {A,B,B′}∗,v4 ∈ {B,B′,C}∗}

or uv = ε .
Thus, the string ABC, and only the string, was eliminated. By induction (see

(5.2) and (5.3)), the inclusion holds. This derivation can be performed in G1 with an
application of the production ABC→ ε , too.

In [Mv05], the question what is the generative power of simple semi-conditional
grammars of degree (1,1) is formulated as an open problem. Recently, we have
proved that simple semi-conditional grammars of degree (1,1) characterize the
whole family of recursively enumerable languages (see [MMb]).

Theorem 5.2.21. Simple semi-conditional grammars of degree (1,1) characterize
the family of all recursively enumerable languages.
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Conclusion

This monograph discusses the study of formal languages and automata. Its main con-
tribution consists in the following results proved in this monograph and published (or
submitted) in [Mas06, Mas07b, MM07a, MM07c, MMa, MMb, MM07b, MM07d].

(I) The first part of this monograph, Chapter 4, introduces and studies two vari-
ants of self-regulating finite automata, which have a close relation to some parallel
grammars, and which with respect to the number of turns made during their com-
putations define an infinite proper hierarchy of language families in the family of
context-sensitive languages.

In the conclusion of the chapter, self-regulating pushdown automata are men-
tioned and studied. A proof that the hierarchy of language families accepted by n-
turn all-move self-regulating pushdown automata, for n ∈ N0, collapses on n = 1
is given. In that case, it is shown that one-turn all-move self-regulating pushdown
automata possess the power of Turing machines, whereas it is easy to see that zero-
turn all-move (and, in the same way, first-move) self-regulating pushdown automata
possess exactly the power of pushdown automata. However, as far as first-move self-
regulating pushdown automata are concerned, the question whether the hierarchy of
language families accepted by n-turn first-move self-regulating pushdown automata,
for n ∈ N0, collapses as well or not and what is the power of k-turn first-move self-
regulating pushdown automata, for some k ∈ N, is an open problem.

More specifically, based on the number of turns, Chapter 4 of this monograph
proves that

1. n-turn first-move self-regulating finite automata give rise to an infinite proper
hierarchy of language families coinciding with the hierarchy resulting from (n+
1)-parallel right linear grammars;

2. n-turn all-move self-regulating finite automata give rise to an infinite proper hier-
archy of language families coinciding with the hierarchy resulting from (n+1)-
right linear simple matrix grammars;

3. all-move self-regulating pushdown automata do not give rise to any infinite hier-
archy analogical to hierarchies resulting from the self-regulating finite automata.
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Moreover, it is shown that while zero-turn all-move self-regulating pushdown
automata define the family of context-free languages, one-turn all-move self-
regulating pushdown automata define the family of recursively enumerable lan-
guages.

Although this monograph has solved the main problems concerning self-regu-
lating finite and pushdown automata, there still remain some problems open. Perhaps
the most important open problems are included in 1 through 3 given next.

1. What is the language family accepted by n-turn first-move self-regulating push-
down automata, when n ∈ N?

2. By analogy with standard deterministic finite and pushdown automata, introduce
the deterministic versions of self-regulating finite and pushdown automata. What
is their power?

3. Discuss the closure properties under other language operations, such as the re-
versal.

(II) The second part of this monograph, Chapter 5, studies descriptional com-
plexity of partially parallel grammars and grammars regulated by context conditions,
which are regulated context-free grammars. Results concerning descriptional com-
plexity of these grammars are supplemented and improved in this monograph. It is
shown that very limited number of nonterminals and special (conditional) produc-
tions is needed.

First, recall the known results that every recursively enumerable language is gen-
erated

(1) by a scattered context grammar with no more than five nonterminals and two
non-context-free productions;

(2) by a multisequential grammar with no more than six nonterminals;
(3) by a multicontinuous grammar with no more than six nonterminals;
(4) by a context-conditional grammar (without any limit to the number of condi-

tional productions and nonterminals);
(5) by a simple context-conditional grammar (without any limit to the number of

conditional productions and nonterminals);
(6) by a generalized forbidding grammar of degree two with no more than thirteen

conditional productions and fifteen nonterminals;
(7) by a semi-conditional grammar (without any limit to the number of conditional

productions and nonterminals); and
(8) by a simple semi-conditional grammar of degree (2,1) with no more than ten

conditional productions and twelve nonterminals.

This monograph improves the previous results and proves that every recursively
enumerable language is generated

(A) by a scattered context grammar with no more than four non-context-free pro-
ductions and four nonterminals;

(B) by a multisequential grammar with no more than two selectors and two nonter-
minals;
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(C) by a multicontinuous grammar with no more than two selectors and three non-
terminals;

(D) by a context-conditional grammar of degree (2,1) with no more than six condi-
tional productions and seven nonterminals;

(E) by a simple context-conditional grammar of degree (2,1) with no more than
seven conditional productions and eight nonterminals;

(F) by a generalized forbidding grammar of degree two and index six with no more
than ten conditional productions and nine nonterminals;

(G) by a generalized forbidding grammar of degree two and index four with no more
than eleven conditional productions and ten nonterminals;

(H) by a generalized forbidding grammar of degree two and index nine with no more
than eight conditional productions and ten nonterminals;

(I) by a generalized forbidding grammar of degree two and unlimited index with no
more than nine conditional productions and eight nonterminals;

(J) by a semi-conditional grammar of degree (2,1) with no more than seven condi-
tional productions and eight nonterminals; and

(K) by a simple semi-conditional grammar of degree (2,1) with no more than nine
conditional productions and ten nonterminals.

However, the question whether these results achieved in this monograph can be
established for fewer nonterminals or conditionals productions with the same (or
even less) degree is open.
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Context-sensitive, 43

Pushdown automaton, 12
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[MK00] A. Meduna and D. Kolář. Regulated pushdown automata. Acta Cybernetica,
14:653–664, 2000.
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