
n-Right-Linear #-Rewriting Systems

Zbyněk Křivka1, Alexander Meduna1, and Jaromı́r Smrček1

Department of Information Systems
Faculty of Information Technology, Brno University of Technology

Božetěchova 1, Brno 612 66, Czech Republic
krivka@fit.vutbr.cz

Abstract. The present paper discusses #-rewriting systems, which rep-
resent simple language-defining devices that combine both automata and
grammars. Indeed, like automata, they use finitely many states with-
out any nonterminals; on the other hand, like grammars, they generate
languages. The paper introduces n-right-linear #-rewriting systems and
characterize the infinite hierarchy of language families defined by m-
parallel n-right-linear simple matrix grammars. However, it also places
some trivial restrictions on rewriting in these systems and demonstrates
that under these restrictions, they generate only the family of right-
linear languages. In its conclusion, this paper suggests some variants of
#-rewriting systems.

1 Introduction

As one of its important topics, the descriptional complexity of rewriting systems
investigates how a restriction placed on the rewriting process affects the language
family defined by the systems (see Chapter 4 in [1] and Chapter 3 in [6]). In the
present paper, we continue with this vivid trend of the descriptional complexity
in terms of the recently introduced #-rewriting systems (see [3]). That is, we
place a restriction on the number of rewriting positions during the process that
yields the strings and demonstrate that this restriction give rise to an infinite
hierarchy of language families.

We consider the #-rewriting systems of finite index (see [2], [3]), which can
always rewrite any string at no more than k positions, for a positive integer k.
Then, as their special cases, we introduce and study n-right-linear #-rewriting
systems as the central topic of this paper. As their name indicates, these systems
are underlain by rules that are similar to the right-linear grammatical rules.
These systems characterize the infinite hierarchy of language families defined by
m-parallel n-right-linear simple matrix grammars; however, under some trivial
restrictions, they generate only the family of right-linear languages.

Regarding the applications, the #-rewriting systems discussed in this paper
can be used to analyze and classify various texts into the achieved infinite hierar-
chy. Based on a classification of this kind, we can detect and remove undesirable
pieces of information from the texts and, there by avoid its distribution.

2 Preliminaries

This paper assumes that the reader is familiar with formal language theory (see
[4], [6]). For an alphabet V , V ∗ represents the free monoid generated by V
under the operation of concatenation. The identity of V ∗ is denoted by ε. Set
V + = V ∗ − {ε}; algebraically, V + is thus the free semigroup generated by V
under the operation of concatenation. For w ∈ V ∗, |w| denotes the length of
w, and for W ⊆ V , occur(w,W) denotes the number of occurrences of symbols
from W in w. For i = 1, 2, . . . , |w|, sym(w, i) denotes the i-th symbol of w; for
instance, sym(abcd, 3) = c. For every i ≥ 0, suffix (w, i) is w’s suffix of length i if
|w| ≥ i, and suffix (w, i) = w if i > |w|. suffixes (w) = {suffix (w, j) | 0 ≤ j ≤ |w|}.

A right-linear grammar is a quadruple, G = (V, T, P, S), where V is a total
alphabet, T ⊆ V is an alphabet of terminals, S ∈ (V − T) is the start symbol,
and P is a finite set of rules of the form q:A → v, where A ∈ (V − T), v ∈
T ∗(V −T)∪T ∗ and q is an unique label of this rule. If q:A → v ∈ P , x, y ∈ V ∗,
G makes a derivation step from xAy to xvy according to q:A → v, symbolically
written as xAy ⇒ xvy [q] or, simply, xAy ⇒ xvy. In the standard manner, we
define ⇒m, where m ≥ 0, ⇒+, and ⇒∗. To express that G makes x ⇒m y,
where x, y ∈ V ∗, by using a sequence of rules q1, q2, . . . , qm, we symbolically
write x ⇒m y [q1q2 . . . qm]. The language of G, L(G), is defined as L(G) = {w ∈
T ∗ | S ⇒∗ w}. A language, L, is right-linear if and only if L = L(G), where
G is a right-linear grammar. Let L(RLIN) denotes the family of right-linear
languages.

For p ∈ P , rhs(p) and lhs(p) denotes the right-hand side and the left-hand
side of rule p, respectively, lab(p) denotes the label of rule p, and for P ⊆ P ,
lab(P) denotes the set of all labels of rules from P . Instead of a rule, we frequently
simply write its label in what follows for brevity.

For m,n ≥ 1, an m-parallel n-right-linear simple matrix grammar (m-Pn-
G, see [5]) is an (mn + 3)-tuple G = (N11, . . . , N1n, . . . , Nm1, . . . , Nmn, T, S, P)
where Nij , 1 ≤ i ≤ m, 1 ≤ j ≤ n are mutually disjoint nonterminal alphabets, T
is a terminal alphabet, S /∈ N∪T is the start symbol, where N = N11∪. . .∪Nmn,
and P is a finite set of matrix rules.

A matrix rule can be in one of the following three forms:

(i) [S → X11 . . . Xmn], Xij ∈ Nij , 1 ≤ i ≤ m, 1 ≤ j ≤ n,
(ii) [Xi1 → αi1, . . . , Xin → αin], Xij ∈ Nij , αij ∈ T ∗, 1 ≤ j ≤ n, for

some i, 1 ≤ i ≤ m, and
(iii) [Xi1 → αi1Yi1, . . . , Xin → αinYin] Xij , Yij ∈ Nij , αij ∈ T ∗, 1 ≤

j ≤ n, for some i, 1 ≤ i ≤ m.

The derivation step for m-Pn-G is defined as follows:
For x, y ∈ (N ∪ T ∪ {S})∗ and m-Pn-G G, x ⇒ y if and only if either x = S
and [S → y] ∈ P , or x = y11X11 . . . ymnXmn, y = y11x11 . . . ymnxmn, where
yij ∈ T ∗, Xij ∈ Nij , 1 ≤ i ≤ m, 1 ≤ j ≤ n, and [Xi1 → xi1, . . . , Xin → xin] ∈ P ,
1 ≤ i ≤ m.

If x, y ∈ (N ∪ T ∪ {S})∗ and m ≥ 0, then x ⇒m y if and only if there exists
a sequence x0 ⇒ x1 ⇒ . . . ⇒ xm, x0 = x, xm = y. Then we say x ⇒+ y if and

only if there exists m > 0 such that x ⇒m y, and x ⇒∗ y if and only if either
x = y or x ⇒+ y.

Alternatively, we define the transitive closure⇒+, and the reflexive transitive
closure ⇒∗, of ⇒ in the usual way.

The language generated by an m-Pn-G, G, is denoted L(G) and defined as
L(G) = {x | S ⇒+ x, x ∈ T ∗}. A language L ⊆ T ∗ is an m-parallel n-right-linear
simple matrix language (m-Pn-L) if and only if there exists a m-Pn-G G such
that L = L(G). The family of m-Pn-L is denoted by Rm

[n].

3 Definitions

Let I denote the set of all positive integers and let n ∈ I.
A n-right-linear #-rewriting system (n-RLIN#RS) is a quadruple H = (Q,

Σ, s, R), where Q is a finite set of states, Σ is an alphabet containing # called
a bounder, Q ∩ Σ = ∅, s ∈ Q is a start state, R ⊆ Q × I × {#} × Q × ((Σ −
{#})∗# ∪ (Σ − {#})∗) is a finite relation whose members are called rules, and
n denotes the number of #s in the initial configuration.

A rule (p, i,#, q, x) ∈ R, where i ∈ I, q, p ∈ Q and x ∈ α# or x ∈ α, where
α ∈ (Σ − {#})∗, is usually written as r: p i# → q x hereafter, where r is its
unique label.

A configuration of H is a pair from Q × Σ∗. Let χ denote the set of all
configurations of H. Let pu#v, quxv ∈ χ be two configurations, p, q ∈ Q, u, v ∈
Σ∗, i ∈ I and occur(u, #) = i − 1. Then, H makes a computational step from
pu#v to quxv by using r: p i# → q x, symbolically written pu#v i⇒ quxv [r] in
H or pu#v ⇒ quxv [r] in H when position of the rewritten # symbol is not
relevant or simply pu#v ⇒ quxv when the applied rule is irrelevant.

In the standard manner, we extend ⇒ to ⇒m and j⇒ to j⇒m, for m ≥ 0,
j > 0; then, based on ⇒m and j⇒m, we define ⇒+, ⇒∗, j⇒+, and j⇒∗ in the
standard way. Let ⇒m, ⇒+, and ⇒∗ denote m-step computation, non-trivial
computation, and computation, respectively.

The language generated by the n-RLIN#RS H, L(H), is defined as

L(H) = {w | s#n ⇒∗ qw, q ∈ Q, w ∈ (Σ − {#})∗}.

Let k be a positive integer and σ be a initial configuration of a #-rewriting
system H. H is of index k if for every configuration x ∈ χ, σ ⇒∗ qy = x implies
occur(y, #) ≤ k. Notice that H of index k cannot derive a string containing
more than k #s. Furthermore, notice that a k-RLIN#RS H is always of index
k.

Let k be a positive integer. L(k-RLIN#RS) denotes the family of languages
generated by k-right-linear #-rewriting systems.

A computational step is #-erasing if # is rewritten with a string of terminals
or empty string during this step.

Let d be an n-step computation in H, for some n ≥ 0. By di and tdi, we
denote the ith computational step in d and the ith computational step rewriting
the tth #, respectively. t is called the degree of step di. The computation d is

successful if d describes a computation from the initial configuration to a final
configuration qw with w ∈ (Σ − {#})∗.

Example 1. 3-RLIN#RS H = ({s, p, q, r, t}, {a, b, c, #}, s, R), where R contains

1: s 1# → p a#
2: p 2# → q b#
3: q 3# → s c#
4: s 1# → r a
5: r 1# → t b
6: t 1# → t c

Obviously, L(M) = {anbncn | n ≥ 1}. For instance, H computes aabbcc by
6-step computation d: s### ⇒ pa### [1] ⇒ qa#b## [2] ⇒ sa#b#c# [3] ⇒
raab#c# [4] ⇒ taabbc# [5] ⇒ taabbcc [6], where d = 1d1 2d2 3d3 1d4 1d5 1d6.

4 Results

We demonstrate thatRm
[n] ⊂ L(mn-RLIN#RS) = R1

[mn] and that L(n-RLIN#RS)
with simple restriction placed on rewriting is equal to the family of right-linear
languages.

Throughout this section, we only describe the construction parts of the
proofs, leaving the rigorous verification of these constructions to the reader.

Lemma 1. For every m,n ≥ 1, Rm
[n] ⊆ L(mn-RLIN#RS).

Proof. Let G = (N11, . . . , Nmn, T, S, P) be an m-parallel n-right-linear simple
matrix grammar and let M1, . . . ,Mm be mutually disjoint matrix-rule sets, where
for every 1 ≤ i ≤ m, Mi = {µ: [Xi1 → αi1Yi1, . . . , Xin → αinYin] | µ ∈ P ,
Xij , Yij ∈ Nij , αij ∈ T ∗, 1 ≤ j ≤ n} ∪ {µ: [Xi1 → αi1, . . . , Xin → αin] | µ ∈ P ,
Xij ∈ Nij , αij ∈ T ∗, 1 ≤ j ≤ n} such that P−{σ: [S → X11 . . . Xmn] | σ ∈ P} =⋃
1≤i≤m

Mi.

Construction. We construct mn-right-linear #-rewriting system, H = (Q, Σ,
s, R), Σ = T ∪ {#}, by performing following steps:

1. Q = {s} ∪ {〈η, µ, l〉 | η ∈ suffixes (X11 . . . Xmn), Xij ∈ Nij for all 1 ≤ i ≤ m,
1 ≤ j ≤ n, µ ∈ Mk, 1 ≤ k ≤ m, 1 ≤ l ≤ n}, where s is a new symbol for the
start state;

2. R =
(i) {s 1# → 〈X11 . . . Xmn, µ1, 1〉 #

| µ1 ∈ M1, X11 . . . Xmn = rhs (σ), σ: [S → X11 . . . Xmn] ∈ P}
(ii) ∪ {〈Y11 . . . Yij−1Xij . . . Xmn, µi, j〉 (i−1)·n+j# →

〈Y11 . . . YijXij+1 . . . Xmn, µi, j + 1〉αij#
| µi: [Xi1 → αi1Yi1, . . . , Xin → αinYin] ∈ Mi,
1 ≤ i ≤ m, 1 ≤ j < n}

(iii) ∪ {〈Y11 . . . Yin−1Xin . . . Xmn, µi, n〉 i·n# →
〈Y11 . . . YinX(i+1)1 . . . Xmn, µi+1, 1〉αin#
| 1 ≤ i < m, µi+1 ∈ Mi+1, µi: [Xi1 → αi1Yi1, . . . , Xin →

αinYin] ∈ Mi}
(iv) ∪ {〈Y11 . . . Ymn−1Xmn, µm, n〉m·n# → 〈Y11 . . . Ymn, µ1, 1〉 αmn#

| µ1 ∈ M1, µm: [Xm1 → αm1Ym1, . . ., Xmn → αmnYmn] ∈ Mm}
(v) ∪ {〈Xij . . . Xmn, µi, j〉 1# → 〈Xij+1 . . . Xmn, µi, j + 1〉 αij

| µi: [Xi1 → αi1, . . . , Xin → αin] ∈ Mi, 1 ≤ i ≤ m, 1 ≤ j < n}
(vi) ∪ {〈Xin . . . Xmn, µi, n〉 1# → 〈X(i+1)1 . . . Xmn, µi+1, 1〉 αin

| 1 ≤ i < m, µi+1 ∈ Mi+1, µi: [Xi1 → αi1, . . . , Xin → αin] ∈ Mi}
(vii) ∪ {〈Xmn, µm, n〉 1# → 〈ε, µm, n〉 αmn

| µm: [Xm1 → αm1, . . . , Xmn → αmn] ∈ Mm}.

Basic Idea. H simulates each derivation step in G using the states to hold
necessary information about each step. Instead of parallelism, the rules from G
are divided into the sets of matrices, Mi. Each state from Q contains a string
of nonterminals, a matrix label µi, and a rule-index indicating next rule to be
applied. The last rule in Mi changes the state of H so a matrix from Mi+1 can
be used. Tthe last rule of a matrix from Mm changes the state of H so it can
apply the first rule of a matrix from the very first M1.

The rules from P of the form Xij → αijYij change nonterminals and the
rules of the form Xij → αij remove those nonterminals in the string stored in
the first component of the state. When there are no nonterminals left, the system
can make no more steps and the computation ends. ut

Lemma 2. For every n ≥ 1, L(n-RLIN#RS) ⊆ R1
[n].

Proof. Let H = (Q,Σ, s,R) be an n-right-linear #-rewriting system.
Construction. We construct an m-parallel n-right-linear simple matrix gram-
mar G = (N11, . . . , Nmn, T, S, P) with m = 1 by performing the following steps:

1. T = Σ − {#}
2. N1i = {〈i, j, q〉 | q ∈ Q, 1 ≤ j ≤ i} ∪ {Xi} for every 1 ≤ i ≤ n, where Xi is a

new nonterminal.
3. Add S → 〈1, 1, s〉〈2, 2, s〉 . . . 〈n, n, s〉 to P .
4. For every rule r: p j# → q α# ∈ R add [η1, . . . , ηi−1, 〈i, j, p〉 → α〈i, j, q〉, ηi+1,

. . . , ηn] into P , where for every k ∈ {1, . . . , n} − {i} and 1 ≤ k′ ≤ k, ηk is of
the form 〈k, k′, p〉 → 〈k, k′, q〉 or Xk → Xk.

5. For every rule r: p j# → q α ∈ R add [η1, . . . , ηi−1, 〈i, j, p〉 → αXi, ηi+1, . . .,
ηn] into P , where
for every 1 ≤ k < i and 1 ≤ k′ ≤ k, ηk is of form 〈k, k′, p〉 → 〈k, k′, q〉 or
Xk → Xk and
for every i < l ≤ n and 1 ≤ l′ ≤ n, ηl is of form 〈l, l′, p〉 → 〈l, l′ − 1, q〉 or
Xl → Xl.

6. Add [X1 → ε, X2 → ε, . . . ,Xn → ε] to P .

Basic Idea. G simulates each computational step in H as follows. Every non-
terminal has three components. To make the nonterminal alphabets N1i, . . .,
N1n disjoint, the first component contains the nonterminal-alphabet-index. The
second component represents the position of the corresponding bounder in the
H’s current configuration. The third component consists of information about
the states of H.

In addition, the auxiliary nonterminals X1, . . ., Xn that do not hold any
information about states or #s are introduced. They allow us to have all matrices
of the same size n as required by the definition of m-Pn-G.

R’s rules of the form p j# → q α# change the state-related information inside
of all nonterminals except for those of form Xi. R’s rules of the form p j# →
q α do the same job appart from rewriting a nonterminal 〈i, j, p〉 into Xi and
reindexing nonterminals following the rewritten one. This simulates removing of
a #.

When all nonterminals are of the form Xi, the rule [X1 → ε, X2 → ε, . . .,
Xn → ε] removes all nonterminals from the sentential form. ut

Theorem 1. For every m,n ≥ 1 such that m+n > 1, Rm
[n] ⊂ L(mn-RLIN#RS) =

R1
[mn].

Proof. Recall that Rmn
[1] ⊂ Rm

[n] ⊂ R1
[mn], for every m + n > 1 (see Theorem 10

in [5]). Thus, Theorem 1 follows from Rm
[n] ⊂ R1

[mn], Lemmas 1 and 2.

Corollary 1. For every n ≥ 1, L(n-RLIN#RS) ⊂ L(n + 1-RLIN#RS).

Proof. Recall that Rm
[n] ⊂ Rm

[n+1], for every m,n ≥ 1 (see Theorem 8 in [5]).
Since Theorem 1 proves L(n-RLIN#RS) = R1

[n], the corollary holds.

Before we present Theorem 2, we give an insight into the implication it
contains to make it easier to understand. To illustrate the denotation of a com-
putational step by udi, we write udi⇒ . The implication restricts every successful

computation in a #-rewriting system. Let d: s#n = p0w0
u1d1⇒ p1w1

u2d2⇒ . . .
ui

di⇒

piwi
ui+1di+1
⇒ . . .

uj
dj

⇒ pjwj

uj+1dj+1
⇒ . . .

u|d|d|d|
⇒ p|d|w|d| be a successful computa-

tion, where 1 ≤ i ≤ j ≤ |d|, u = ui, v = uj , and wd ∈ (Σ − {#})∗.
If u = v in udi and vdj then there are allowed only two cases:

(a) all computational steps between udi and vdj , denoted by zdk for all i ≤ k ≤
j, rewrite just zth bounder and nothing else, so z = u = v;

(b) there can be only one exception in (a) such that ldh, i < h < j, is #-erasing
computational step.

Theorem 2. Let every successful computation d in an n-right-linear #-rewriting
system H, n ≥ 1, satisfy this implication: if 1 ≤ i ≤ j ≤ |d| and u = v in udi and
vdj, then either z = u in zdk for all i ≤ k ≤ j or dh is #-erasing for some h ∈
{i + 1, . . . , j − 1}. Then, L(H) is right-linear.

Proof. Let H = (Q,Σ, s,R) be a n-right-linear #-rewriting system satisfying
the preceding implication, for some n ≥ 1.
Construction. We transform H to an equivalent right-linear grammar G =
(V, T, P, S) by performing the following procedure:

For every 1 ≤ i ≤ n, p, q ∈ Q, construct auxiliary sets
p
qRi = {r | r ∈ alph(ρ), ρ ∈ R∗, pγ i⇒∗ qδ [ρ], occur(γ, #) = occur(δ,#)} and
p
qR̄i = {p i# → q α ∈ R | α ∈ (Σ − {#})∗}. Then, Z =

⋃
i≥1,p,q∈Q

{p
qRi, p

qR̄i}.

1. T = Σ − {#},
2. V = N ∪ T ∪ {S}, where S is a new symbol and N contains nonterminals

introduced by the following construction of P ,
3. P =

⋃
1≤l≤5

Pl, where sets P1 through P5 are constructed in the following way:

(i) initialization: P1 = {S → 〈#n, i, s〉 | 1 ≤ i ≤ n};
(ii) preparation: P2 = {〈∇1η1∇η2 . . .∇iηi∇i+1ηi+1 . . .∇nηn, i, p〉 →

〈∇1η1∇η2 . . .∇iηi
p
qRi′∇i+1ηi+1 . . .∇nηn, j, q〉

| p
qRi′ 6= ∅, 1 ≤ j ≤ n, ηt ∈ Z∗, ∇t ∈ {#, #̄} for 1 ≤ t ≤ n, ∇i 6= #̄,
i′ = occur(∇1η1 . . .∇i,#)}

∪ {〈∇1η1 . . .∇i−1ηi−1∇iηi∇i+1 . . .∇nηn, i, p〉 →
〈∇1η1 . . .∇i−1ηi−1#̄ηi

p
qR̄i′∇i+1ηi+1 . . .∇nηn, j, q〉

| p
qR̄i′ 6= ∅, 1 ≤ j ≤ n, ηt ∈ Z∗, ∇t ∈ {#, #̄} for 1 ≤ t ≤ n, ∇i 6= #̄,
i′ = occur(∇1η1 . . .∇i,#)};

(iii) latch:
P3 = {〈γ, i, p〉 → 〈γ, q〉 | p, q ∈ Q, # 6∈ alph(γ), A → 〈γ, i, p〉 ∈ P2};

(iv) simulation of G’s derivation step (ηt ∈ Z∗ for every 1 ≤ t ≤ n):
P4 = {〈#̄p

qRi′ηi . . . #̄ηn, p′〉 → α〈#̄p
qRi′ηi . . . #̄ηn, q′〉

| p′ i′# → q′ α# ∈ p
qRi′ , α ∈ (Σ − {#})∗, 1 ≤ i ≤ n, p

qRi′ ∈ Z}
∪ {〈#̄p

qRi′ηi . . . #̄ηn, p′〉 → α〈#̄ηi . . . #̄ηn, q〉
| p′ i′# → q α# ∈ p

qRi′ , α ∈ (Σ − {#})∗, 1 ≤ i ≤ n, p
qRi′ ∈ Z}

∪ {〈#̄p
qR̄i′#̄ηi+1 . . . #̄ηn, p〉 → α〈#̄ηi+1#̄ηn, q′〉

| p i′# → q α ∈ p
qR̄i′ , α ∈ (Σ − {#})∗, 1 ≤ i ≤ n, p

qR̄i′ ∈ Z};
(v) finalization: P5 = {〈ε, p〉 → ε | p ∈ Q}.

The conversion of a right-linear grammar, G, to an n-right-linear #-rewriting
system, H, is simple and left to the reader.

Basic Idea. Every p
qRi represents a set of rules which can make a computation

of degree i leading from state p to q in H. In every sentential from in G, there is
only one occurrence of a nonterminal which is composed of three components:

(1) γ—the finite prescription string for the driven simulation, γ ∈ (#Z∗)+;
(2) i—the position of the occurrence of active # in H’s current configuration;
(3) p—the currently simulated state of H.

There are non-deterministically generated prescription substrings behind ev-
ery corresponding bounder in H’s configuration in the preparation phase. These
substrings ηt are of the form Z∗.

In the third step, the nonterminal’s second component is removed in G to
ensure to ensure that the rules of P2 cannot be used anymore.

By rules constructed in the fourth step, the generation of terminals is done
with correspondence to the γ-prescription string. Each completed p

qRi is removed
from γ until γ is the empty string. Then, the only nonterminal in the sentential
form of G is rewritten to the empty string by a rule from P5 and a string of
terminals is reached.

5 Conclusion

The present paper has discussed simple language-defining devices that represent
a combination of both automata and grammars. These devices characterize some
well-known infinite hierarchies of formal language families in a very natural way.
Consequently, they are obviously closely related to some classical results about
formal languages, on which they shed light in an alternative way. Therefore,
this paper suggests their further investigation in the future. Specifically, this
investigation should pay a special attention to the following open problem areas:

Determinism. This paper has discussed a general version of n-right-linear
#-rewriting systems, which work non-deterministically. Undoubtedly, the future
investigation of these systems should study their deterministic versions, which
can make no more than one computational step from any configuration because
these deterministic versions are crucial in practice.

Infinite Index. Consider #-rewriting systems that are not of finite index.
What is the language family defined by them.

Acknowledgement. This work was supported by the Czech Ministry of Educa-
tion, Youth and Sports grant MŠMT 2C06008 Virtual Laboratory of Micropro-
cessor Technology Application, MŠMT FRVŠ grant 673/2007/G1, and the Czech
Ministry of Education under the Research Plan No. MSM 0021630528.

References

1. J.Dassow, G.Păun, Regulated Rewriting in Formal Language Theory. Springer,
New York, 1989, 308 p., ISBN 0-38751-414-7.

2. Z.Křivka, A.Meduna, Generalized #-Rewriting Systems of Finite Index. In: Infor-
mation Systems and Formal Models (Proceedings of 2nd International Workshop
on Formal Models (WFM’07)), 2007, pp. 197-204, ISBN 978-807248-006-7.

3. Z.Křivka, A.Meduna, R. Schönecker, Generation of Languages by Rewriting Sys-
tems that Resemble Automata. In: International Journal of Foundations of Com-
puter Science Vol. 17, No. 5, 2006, pp. 1223-1229.

4. A.Meduna, Automata and Languages: Theory and Applications. Springer, London,
2000, 916 p., ISBN 1-85233-074-0.

5. D.Wood, m-Parallel n-Right Linear Simple Matrix Languages. In: Utilitas Math-
ematica Vol. 8, 1975, pp. 3-28.

6. G.Rozenberg, A. Salomaa (eds.), Handbook of Formal Languages: Linear Modeling,
Volume 2. Springer, Berlin, 1997, 873 p., ISBN 3-540-60420-0.

