EVOLUTIONARY DESIGNED BRANCH PREDICTORS

Karel Slany and Véaclav Dvak

Faculty of Information Technology, Brno University of Teallogy
Bozet'chova 2, 612 66 Brno, Czech Republic
Phone: +420 54114-1176 Fax: +420 54114-1270
slany@fit.vutbr.cz, dvorak@fit.vutbr.cz

Branch prediction techniques are commonly used for spgedjincode execution. Modern microprocessors use predictor
based on a set of finite automata predictors. This paper shbaisfinite automata branch predictors can be created by
using evolutionary algorithms. These evolved predict@agehbetter performance in predicting the code executionghwh
they have been trained for, than a standard 2-bit countedioter.

1 INTRODUCTION

Branch prediction is a technique for speeding-up code dix@ton modern microprocessors. When a branch in-
struction enters the execution pipeline of the processamsttuction which are following this conditional jump imsction
have to wait until this condition is evaluated and the cdrbeanch of the executed code is chosen. This causes a problem
on modern processor designs with long pipelines becaudatarety long time is needed for emptying and reloading the
pipeline.

Several techniques have been invented which can minimeevéiting in the pipeline. One of them is speculative
code execution. Branch directions are statically or dyicaityi predicted in order to maintain code execution and kbep
pipeline filled. Speculative execution is used to reduceithe when the pipeline is waiting.

Imagine that the processor is executing code when a vasrityayd conditional jump instructions is taken, respec-
tively not taken. A static prediction which predicts jumpsspectively no jumps, is of great advantage. In more génera
cases a dynamic prediction can do a better job. It uses a marplicated type of prediction where the predictor can adapt
itself to the behaviour of the executed code in order to aghlietter prediction accuracy.

This paper shows that evolutionary techniques can be usgaddictor training thus adapting it to the executed code
on the fly, during code execution, in order to increase itégoerance.

2 BRANCH PREDICTION

Modern processors used in PC architecture computers daasetprediction techniques, but detailed information
is not offered by its manufacturers. However most of the Uwadch predictors use the schema on the picture (1).

branch instruction BRANCH predicted instruction
—_— —_—
(program counter) PREDICTOR (program address)

branch outcomes

Figure 1: Simple scheme of a branch predictor.

Intels Pentium (P5) used a four-state saturated counteh &ate determined whether to take a conditional jump or
not. The current state of the predictor changes in deperdehether in the executed code was a jump taken or not. Its
structure is shown in the picture (2).

In further processor-designs of the Pentium family (PentMMX, Pentium Pro, Pentium 11, .. .) was this one-level
prediction system improved by adding a four-bit shift régis This register is used as a simple jump history buffercivhi
gives a history of 16 patterns, that are used for addresstogibank of 2-bit sate counter, which are similar to te ptedi
on the picture (2). The advantage of this mechanism is tltainiearn a repetitive patterns occurring in the executedd,co
therefore giving better performance than a simple onetesign.



jumpi+) ->>

<<-nojumpl(-)

Figure 2: 2-bit counter used as a branch predictor. Zerdsistates represent predicted no jumps. Ones stand focfaedi
jumps.

3 EVOLUTION OF BRANCH PREDICTORS

The branch prediction system described in this paper usgst@nal algorithms for creating a one-level state predic
tor that can suit best for the currently executed code. Tlegtma that the predictors are adapted on the fly by a evoluyiona
core running simultaneously with the code execution. Thelerbredictor design was implemented in software and tested
on different executed codes.

The design of the system consists of a programme executibpmoievolutionary core and a prediction unit. The
design is described on the picture (3).

PROGRAMME branch data PREDICTION
—_
EXECUTION -—— UNIT
prediction
branch d& A’edicmf
EVOLUTIONARY

CORE

Figure 3: Structure of the evolutionary driven predictigstem.

The programme execution unit sends information whetheditiomal jumps were taken, in that case it sends H
the branch instruction was not taken it sends @he core block runs the evolution of the predictors andemt®e currently

best design into the prediction unit. The prediction unésuthe last predictor it has become to predict branch instruc
behavior.

3.1 CALCUALTING FITNESSFUNCTION

The predictorP (1) is described by the finite set of it stat@sthe finite input alphabet = {0, 1} which represents
input and output alphabédd,is no jump,1 represents jump. The set of edgéslefine mapping? x ¥ — Q. There also
exists a mappin@ : Q — X which represents the meaning of the current stateg;An Q) initial state can be also defined.

P = {Q527T5Daqi} (1)
Each predictor is represented by its chromosos6hi2) which is a string

C - (i’i)[d07jt0)nto]o[dlajt17nt1]l . [d7z—17jtn_17ntn_1]n—1 (2)
0<i;<n,n=1Q|,dn €%, jt, €Q,nt,, €Q,0<m<n



where as mentioned is the index of the initial state and the triplét,., j:,,, n:,,|m describes then-th state from the set
Q. Thej,, is the target index of a state of the transition which is takémen a jump in the code is made, and the predictor

has to change its state. When there was no jump and a changgeohas to be made, then the taget is described by index
ny,,. 1he description of the state is given 8y;.

nejump(-}

s H,,nuw\

Jumpl] >
<<= jumpi+)

jumpi+)

Figure 4: Structure of a predictor with the chromosoiftg[o, 3, 2](0, 2, 1][1, 1, 0][1, 3, 2]

The history of branch data is stored in a buffér(3) which holds the last branch states,

H = hohihg ... hg_ohi_1 3)
hm €3,0<m <k

where agaird stands for a not taken jump ands a taken jump.
Let there be functiompdate(z) which gives0 when the prediction was false afdvhen the prediction was true.

This function holds an internal number statevhich is before the function is used for the first time initiad tog;. Each
time the function is called it compares the predicted witthe current branch data, and updates its internal indesn The
fithess functionf (4) can be described as

k—1

f =" update(h;) (4)

=0
where0 < f < k. Higher values of the fitness function stand for better mtedi If the valuse is equal tb then the
predictor can predict data in storedfhwith 100% accuracy.

3.2 EVOLUTION SETTINGS

The function of the system was simulated on branch dataradadddy running warious programs. In order to keep
the evolution as fast as possible and to reduce the compuightoad, the used branch data were sampled before the run of
the predictor system. The speed in which the sampled damisgred into the system wa80 samples per one generation

cycle. The data were send in aloop. Each time the end of thpledrdata was reached the data were send intéitbaffer
from the beginning.

The algorithm can be described in pseudocode as:

do {
i ssue sanpl e burst;
generate new popul ati on;
eval uate new popul ati on;
if (new population fittest _fitness > old_population_fittest _fitness)
send new_popul ation_fittest_chronosone to prediction unit;
} until (maxi mum nunber of generations is reached);

Thegener at e new popul at i on command executes this steps. The fittest member of the ¢papnlation is
copied into new generation. Two chromosomes from the ctup@pulation are selected an the rest of the entire new pepula
tion is generated. Each time during the generation cyclemalsicrossover of the parrental chromosomes is performeéd an



mutation operator is applied on both offsprings. Then bdtbpoings are validated. This is done because of the muttatio
operator, which can produce invalid chromosome code. Ihaalid code is found it is randomly modified in order to fix
it. Both offspings are moved into new population. Mutati@n@reform changes in all places of the chromosome. The
validation operation changes the valuesigf state description parameters so that the ratio betweserd1 marked states

is kept near.

4 EXPERIMENTS

All experiments were run on sampled branch data data of tiggheabout 000000 samples. The length of the buffer
H holding past branch data which were used for predictoritrgiwas set td 0000 samples. Mutation probability was set
to 3%. The population size varied. Larger population weeslder predictors which had more states. As further mentione
elitism was used to keep the best evolved member in populafioe experiments were run féd00 generations.

Number of precdictor statess Population size
4 6
3 6
5 10

Table 1: The population sizes in dependency on the evolvedigior sizes.

The5-state predictors do not have as high good prediction ratteesisand4 state predictors.

The predictor was simulated on branch data obratined framing these programmes: compilation wigtc, com-
pression withhz2, compression witlyzip and runningava.

During the simulation of the system, predictor data sentiégorediction unit were saved. Especially when training
larger predictors a behavour was observed when no majooieprent was made. But in those cases a set of two or three
predictor designs altered themselves in the predictionand no other predictor was evolved.

The best evolved predictors were compared with a stand&iti@unter scheme which is on the picture (2). The
predictors were tested in predicting the bahaviou of theleshmbogramme and their correct prediction counts were coatpa
as a ratio. The results are in the table (2).

Programme| Ratio evolved predictor : 4-state predictpr
gcc 1
bz2 2.45
gzip 2.58
java 1

Table 2: Comparing the best evolved predictor designs wititistate predisctor used in Pentium processors.

Some of the evolved 4-state predictor designs are showr ipithure (5). In many cases some states of the predictor
are unaviable thus reducin the design to less states.

5 DISCUSSION

Predictors evolved during the code execution have beereprto/have at least the same performance as a standard
4-state saturated counter predictor. In some cases theeelptedictors have significantly better performance irciige
code execution. This can be a great advantage. Howevelygtens has a great disadvantage which lies in its complexity.
This system is painfully slow in comparison with other briapcediction systems.

6 CONCLUSION

In this paper a system for creation evolutionary designediptors was desribed. Evolutionary algorithm was used
to design predictors and to adapt them to the changing behafithe executed code. The use of evolution has proven
functional. However the main disadvantage of thi systernsispeed.



gce

jump(+) nojump(-)

]
< jumpl+)

0

(+1duwnf->>
<< [-Jdwnfou
(-jdnfou ->>

jlampi+)

. nojump(-)
gzip

jumpi+)

jump(+]

bz2

nojurnp(-]
jumpli+] >

jump(+)

java

<<-jumpl+)

nojumpi-)

Ump(+] -ss

<<-jump(+)

Figure 5: Structure of evolved 4-state predictors.

ACKNOWLEDGEMENTS

This work was supported by the Grant Agency of the Czech Repuibder No. 102/ 07/085Design and hardware
implementation of a patent-invention machmend the Research intention No. MSM 0021630528 — Securiigr@rd

Research in In formation Technology.

REFERENCES



