
EVOLUTIONARY DESIGNED BRANCH PREDICTORS

Karel Slaný and Václav Dvǒrák

Faculty of Information Technology, Brno University of Technology
Božetˇchova 2, 612 66 Brno, Czech Republic

Phone: +420 54114-1176 Fax: +420 54114-1270
slany@fit.vutbr.cz, dvorak@fit.vutbr.cz

Branch prediction techniques are commonly used for speeding-up code execution. Modern microprocessors use predictors
based on a set of finite automata predictors. This paper showsthat finite automata branch predictors can be created by
using evolutionary algorithms. These evolved predictors have better performance in predicting the code execution, which
they have been trained for, than a standard 2-bit counter predictor.

1 INTRODUCTION

Branch prediction is a technique for speeding-up code execution on modern microprocessors. When a branch in-
struction enters the execution pipeline of the processor all instruction which are following this conditional jump instruction
have to wait until this condition is evaluated and the correct branch of the executed code is chosen. This causes a problem
on modern processor designs with long pipelines because a relatively long time is needed for emptying and reloading the
pipeline.

Several techniques have been invented which can minimize the waiting in the pipeline. One of them is speculative
code execution. Branch directions are statically or dynamically predicted in order to maintain code execution and keepthe
pipeline filled. Speculative execution is used to reduce thetime when the pipeline is waiting.

Imagine that the processor is executing code when a vast majority of conditional jump instructions is taken, respec-
tively not taken. A static prediction which predicts jumps,respectively no jumps, is of great advantage. In more general
cases a dynamic prediction can do a better job. It uses a more complicated type of prediction where the predictor can adapt
itself to the behaviour of the executed code in order to achieve better prediction accuracy.

This paper shows that evolutionary techniques can be used for predictor training thus adapting it to the executed code
on the fly, during code execution, in order to increase its performance.

2 BRANCH PREDICTION

Modern processors used in PC architecture computers do use branch prediction techniques, but detailed information
is not offered by its manufacturers. However most of the usedbranch predictors use the schema on the picture (1).

branch instruction

(program counter)

branch outcomes

predicted instruction

(program address)

BRANCH

PREDICTOR

Figure 1: Simple scheme of a branch predictor.

Intels Pentium (P5) used a four-state saturated counter. Each state determined whether to take a conditional jump or
not. The current state of the predictor changes in dependency whether in the executed code was a jump taken or not. Its
structure is shown in the picture (2).

In further processor-designs of the Pentium family (Pentium MMX, Pentium Pro, Pentium II, . . .) was this one-level
prediction system improved by adding a four-bit shift register. This register is used as a simple jump history buffer which
gives a history of 16 patterns, that are used for addressing into a bank of 2-bit sate counter, which are similar to te predictor
on the picture (2). The advantage of this mechanism is that itcan learn a repetitive patterns occurring in the executed code,
therefore giving better performance than a simple one-level design.

Figure 2: 2-bit counter used as a branch predictor. Zeros in the states represent predicted no jumps. Ones stand for predicted
jumps.

3 EVOLUTION OF BRANCH PREDICTORS

The branch prediction system described in this paper uses evolutional algorithms for creating a one-level state predic-
tor that can suit best for the currently executed code. That means that the predictors are adapted on the fly by a evolutionary
core running simultaneously with the code execution. The whole predictor design was implemented in software and tested
on different executed codes.

The design of the system consists of a programme execution unit an evolutionary core and a prediction unit. The
design is described on the picture (3).

branch data

PROGRAMME

EXECUTION

EVOLUTIONARY

CORE

PREDICTION

UNIT

best predictor

branch data

prediction

Figure 3: Structure of the evolutionary driven prediction system.

The programme execution unit sends information whether conditional jumps were taken, in that case it sends a1. If
the branch instruction was not taken it sends a0. The core block runs the evolution of the predictors and passes the currently
best design into the prediction unit. The prediction unit uses the last predictor it has become to predict branch instruction
behavior.

3.1 CALCUALTING FITNESS FUNCTION

The predictorP (1) is described by the finite set of it statesQ, the finite input alphabetΣ = {0, 1} which represents
input and output alphabet,0 is no jump,1 represents jump. The set of edgesT define mappingQ × Σ → Q. There also
exists a mappingD : Q → Σ which represents the meaning of the current state. Anqi ∈ Q initial state can be also defined.

P = {Q, Σ, T, D, qi} (1)

Each predictor is represented by its chromososomeC (2) which is a string

C = (ii)[d0, jt0 , nt0]0[d1, jt1 , nt1]1 . . . [dn−1, jtn−1
, ntn−1

]n−1

0 ≤ ii < n, n = |Q|, dm ∈ Σ, jtm
∈ Q, ntm

∈ Q, 0 ≤ m < n
(2)

where as mentionedii is the index of the initial state and the triplet[dm, jtm
, ntm

]m describes them-th state from the set
Q. Thejtm

is the target index of a state of the transition which is taken, when a jump in the code is made, and the predictor
has to change its state. When there was no jump and a change of state has to be made, then the taget is described by index
ntm

. The description of the state is given bydm.

Figure 4: Structure of a predictor with the chromosome:(0)[0, 3, 2][0, 2, 1][1, 1, 0][1, 3, 2]

The history of branch data is stored in a bufferH (3) which holds the lastk branch states,

H = h0h1h2 . . . hk−2hk−1

hm ∈ Σ, 0 ≤ m < k
(3)

where again0 stands for a not taken jump and1 is a taken jump.
Let there be functionupdate(x) which gives0 when the prediction was false and1 when the prediction was true.

This function holds an internal number stateq which is before the function is used for the first time initialized toqi. Each
time the function is called it compares the predicted withx, the current branch data, and updates its internal index. Then the
fitness functionf (4) can be described as

f =

k−1∑

i=0

update(hi) (4)

where0 ≤ f ≤ k. Higher values of the fitness function stand for better predictor. If the valuse is equal tok then the
predictor can predict data in stored inH with 100% accuracy.

3.2 EVOLUTION SETTINGS

The function of the system was simulated on branch data obtained by running warious programs. In order to keep
the evolution as fast as possible and to reduce the computational load, the used branch data were sampled before the run of
the predictor system. The speed in which the sampled data were issued into the system was100 samples per one generation
cycle. The data were send in a loop. Each time the end of the sampled data was reached the data were send into theH buffer
from the beginning.

The algorithm can be described in pseudocode as:

do {
issue sample burst;
generate new population;
evaluate new population;
if (new_population_fittest_fitness > old_population_fittest_fitness)

send new_population_fittest_chromosome to prediction unit;
} until (maximum number of generations is reached);

Thegenerate new population command executes this steps. The fittest member of the current population is
copied into new generation. Two chromosomes from the current population are selected an the rest of the entire new popula-
tion is generated. Each time during the generation cycle a simple crossover of the parrental chromosomes is performed and

mutation operator is applied on both offsprings. Then both offsprings are validated. This is done because of the mutation
operator, which can produce invalid chromosome code. If an invalid code is found it is randomly modified in order to fix
it. Both offspings are moved into new population. Mutation can preform changes in all places of the chromosome. The
validation operation changes the values ofdm state description parameters so that the ratio between0 and1 marked states
is kept near1.

4 EXPERIMENTS

All experiments were run on sampled branch data data of the length about1000000 samples. The length of the buffer
H holding past branch data which were used for predictor training was set to10000 samples. Mutation probability was set
to 3%. The population size varied. Larger population were used for predictors which had more states. As further mentioned
elitism was used to keep the best evolved member in population. The experiments were run for4000 generations.

Number of precdictor states Population size
4 6
3 6
5 10

Table 1: The population sizes in dependency on the evolved predictor sizes.

The5-state predictors do not have as high good prediction rate asthe3 and4 state predictors.
The predictor was simulated on branch data obratined from running these programmes: compilation withgcc, com-

pression withbz2, compression withgzip and runningjava.
During the simulation of the system, predictor data send to the prediction unit were saved. Especially when training

larger predictors a behavour was observed when no major improvement was made. But in those cases a set of two or three
predictor designs altered themselves in the prediction unit and no other predictor was evolved.

The best evolved predictors were compared with a standard 2-bit counter scheme which is on the picture (2). The
predictors were tested in predicting the bahaviou of the whole programme and their correct prediction counts were compared
as a ratio. The results are in the table (2).

Programme Ratio evolved predictor : 4-state predictor
gcc 1
bz2 2.45
gzip 2.58
java 1

Table 2: Comparing the best evolved predictor designs wit the 4-state predisctor used in Pentium processors.

Some of the evolved 4-state predictor designs are shown in the picture (5). In many cases some states of the predictor
are unaviable thus reducin the design to less states.

5 DISCUSSION

Predictors evolved during the code execution have been proven to have at least the same performance as a standard
4-state saturated counter predictor. In some cases the evolved predictors have significantly better performance in specific
code execution. This can be a great advantage. However this system has a great disadvantage which lies in its complexity.
This system is painfully slow in comparison with other branch prediction systems.

6 CONCLUSION

In this paper a system for creation evolutionary designed predictors was desribed. Evolutionary algorithm was used
to design predictors and to adapt them to the changing behavior of the executed code. The use of evolution has proven
functional. However the main disadvantage of thi system is its speed.

gcc bz2

gzip java

Figure 5: Structure of evolved 4-state predictors.

ACKNOWLEDGEMENTS

This work was supported by the Grant Agency of the Czech Republic under No. 102/ 07/0850Design and hardware
implementation of a patent-invention machinea nd the Research intention No. MSM 0021630528 – Security-Oriented
Research in In formation Technology.

REFERENCES

