
On Testability Analysis Driven Generation
of Synthetic Register-Transfer Level Benchmark Circuits

Josef Strnadel1, Tomáš Pečenka1, Lukáš Sekanina1

1Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic
strnadel@fit.vutbr.cz, pecenka@fit.vutbr.cz, sekanina@fit.vutbr.cz

Abstract. Use of benchmark designs has become an important part of a process of
designing complex systems. However, existing register-transfer level benchmark suites
are not sufficient for evaluation of new architectures and tools; synthetic benchmark
circuits are an alternative. In the paper, it is demonstrated how evolutionary techniques
can be used to generate synthetic benchmarks covering a wide scale of testability
properties. The generation process is driven by a register-transfer level testability analysis
method and generated benchmarks are stored in synthesizable VHDL source-code.
Results gained by proposed method together with future research trends are discussed at
the end of the paper.

Keywords. Register-transfer level, synthetic benchmark circuit, testability analysis,
evolutionary algorithm

I. Introduction

One of the most difficult tasks CAD users face is the evaluation and comparison of different
tools and algorithms. The efficiency of critical algorithms must be measured and compared to
understand both tool behavior and progress over time. The evaluation and comparison of new
technologies, architectures and electronic design automation (EDA) tools can be done using so-called
benchmark circuits (benchmarks). A benchmark set (suite) is a set of benchmarks that (in the ideal
case) is representative for the circuit space, or at least that part at which particular EDA tool is aimed.
The type of description of a benchmark and its level of abstraction depend on the application. E.g., the
evaluation of high-level synthesis algorithms requires high-level behavioral circuit descriptions, while
routing algorithms can only be tested with low-level physical descriptions. Many initiatives dealing
with benchmarks exist. Benchmark suites for following areas are available in [2]: gate-level test
generation (ISCAS8x), high-level synthesis (HLSynth89, HLSynth9x), logic synthesis (LGSynth89,
LGSynth9x), physical implementation (LayoutSynth9x, PDWorkshop9x etc.), circuit simulation
(CircuitSim90), partitioning (Partitioning93) etc. However–existing benchmark suites are insufficient,
since they usually consist of too few and too small circuits and they usually are not very representative
for all circuit classes, e.g., for diagnostics purposes. Also, because of the proprietary nature of
industrial circuits, it is almost impossible to compile sufficiently large benchmark sets of sufficiently
large real-circuits. Recently, the generation of synthetic benchmarks is seen as a viable alternative–see,
e.g., [4, 5, 7]. Major advantage of synthetic benchmarks is they provide full control over important
characteristics, such as size, topological, diagnostic or functional parameters of particular circuit. For
each circuit class, different parameters are important in general.

II. Problem Definition and Our Research Goals

As mentioned above, the “benchmark set construction” problem is to compile sufficiently large
sets of sufficiently large benchmarks with desired properties. Our research has been focused on
solving the problem in the area of register-transfer level (RTL) circuits.

Our main research goal in the area was to use our previously developed structural-analysis based RTL
testability analysis method for finding the worst testable RTL design from given RTL design state-
space. Our hypothesis is the worst testable design is the design that is highly suitable to be
included in a “RTL diagnosis benchmark set”. Thus, our goal was to develop an efficient method
that would be able to explore the state-space and to find proper candidates to be included in the set.

III. Proposed Benchmark Generation Method

During our research, novel method utilizing an evolutionary genetic algorithm (GA) to create RTL
benchmarks automatically according to user-specified requirements was developed. To be able to
compare quality of two different solutions from a diagnostics point of view, a fitness function was
developed. It evaluates particular solution by a real number according to its RTL testability results.

A. Inputs of the Method
As an input of proposed method, the user is supposed to specify following data: number of circuit
primary inputs and outputs, number and type of in-circuit components, testability requirements
(controllable and observable nodes ratios: sets with various diagnostics parameters could be needed; in
our case, both ratios should be set to their worst values, e.g., to 0.0) and GA parameters. Following
XML code is an example of a user-entered data stored in an input file:

<circuit>

<testability con_ratio="0.0" obs_ratio="0.0"/>
<evolution population="30" replacement="1.0" crossover="0.0" mutation="1.0" steps="10"/>

 <primary inputs="24" outputs="16"/>
 <comp type="SUB_A" width="8" quantity="20"/>
 <comp type ="ADD_B" width="16" quantity="11"/>
 <comp type ="MUL_A" width="8,16" quantity="8"/>
 <comp type ="MUX_2" width="8" quantity="13"/>
</circuit>

B. Circuit Representation
Each circuit is seen as a graph represented by an integer array (see Fig 1). GA operates over such
arrays. In the representation, registers are not taken into account; they are post-inserted into the circuit
structure before the testability analysis and synthesis are started. Each input and output belonging to
the circuit structure is assigned a unique number. Because a component input can be connected to at
most one output, the circuit can be represented by means of an array, in which the index is the input
number and the value identifies the output connected to the input. Primary inputs are treated as outputs
and primary outputs are treated as inputs of a component connected to a test-bench circuit.

0
1

2

0
1

2
3

4

5

5
3

4

6

7

primary
outputs

primary inputs

Inputs of components and primary outputs: 0 1 2 3 4 5 6 7 (index)
Outputs of components and primary inputs: 0 1 1 2 3 4 5 4 (value)

Fig 1 Circuit encoding in a chromosome Fig 2 Illustration of used approaches to mutation

C. Principle of the Method
Evolutionary algorithms have become a successful design method. User has to specify requirements
posed on desired-solution properties (circuit structure properties in our case) in the fitness function.
Then, the evolutionary algorithm tries to meet the requirements by means of components that are
available beforehand and using a population-based search (e.g., [1, 3]). However, no approach is
known for evolutionary design of benchmark circuits. In our approach, simple GA operating with the
representation introduced in the previous section was utilized. Initial population consisting of P
individuals (candidate circuits) is generated randomly. New populations are formed using roulette
wheel selection and mutation operator, n weakest individuals are replaced by mutated parents. Elitism
is used and evolution runs for a given number of generations. The fittest individual is considered as
the result and it is transformed to VHDL. During the evolution, only inter-connections are mutated.
Used mutation principles can be summarized as follows (for illustration, see Fig 2): the input of a
component on which the mutation operator will be applied is randomly selected. If the output
connected to the input is connected to other input(s), then the selected input is reconnected to a
randomly selected output of other component or to a primary input (see Fig 2a). In case an output of a
component would become disconnected after the mutation, the output must be connected to a
randomly selected input as illustrated in Fig 2b. The mutation respects the circuit data-path width. To
be able to compare individuals belonging to P, fitness function is used that assigns a numeric value to
each individual within P. Alike the mutation the fitness function is a crucial part of a GA since it
substantially affects quality of evolved solutions (RTL benchmarks in our case). The fitness function
(see formula 1), which has to be maximized here, combines three objectives x1, x2 and x3. x1 (x2)
characterize interconnectivity (variability) of in-circuit components, x3 is calculated using tool based
on method [6] and reflects the result of comparing circuit testability with user testability requirements
posed on resulting circuit. Experimentally found weight system c1=0,3, c2=0,2 and c3=0,5 is used.

 332211 cxcxcxfitness ++= (1)

IV. Experimental Results

We have performed hundreds runs of proposed GA in order to find suitable parameters of the
algorithm. We arranged a set of experiments to evaluate the proposed approach. From all experiments,
let us mention results only of two of them in the next.

Experimenting with evolvability of generated circuits: the objective of this task was to observe how
the average fitness value (gained from 20 (30) runs) increases during the evolution, i.e. how the best
solution is evolved during time. This experiment was performed for a small circuit (12 in-circuit
components, 20 runs) and a large circuit (250 in-circuit components, 30 runs).

0,88

0,9

0,92

0,94

0,96

0,98

1

0 50 100 150 200

Generation

Fi
tn

es
s

0,85
0,86
0,87
0,88
0,89
0,9
0,91
0,92
0,93
0,94
0,95

0 10 20 30 40 50

Generation

Fi
tn

es
s

(a) (b)

Fig 3 Evolution of a 12-component circuit (a) and a 250-component (b) circuit

Experimenting with meeting user requirements: the objective of this task was to check how
observability and controllability of evolved benchmarks differ from values required by the user. The
same experimental setup as in the previous section was used.

-1

-0,5

0

0,5

1

0 5 10 15 20

Circuits

D
iff

er
en

ce
 [%

]

Controlability

Observability

-10

-5

0

5

10

15

0 10 20 30
Circuits

D
iff

er
en

ce
 [%

]

Controlability

Observability

(a) (b)

Fig 4 The differences of required and obtained controllability and observability values
for 20 evolved 12-component circuits (a) and 30 evolved 250-component circuits (b)

V. Conclusions

In the area of RTL benchmark circuits, there is a long-term need for larger sets of more complex
benchmark circuits having desired diagnostics, structural and other properties. In our research we have
verified that a set of RTL benchmark circuits can be evolved in an efficient way on basis of GA using
testability analysis results for fitness calculation. Proposed benchmark generation method takes into
account user-selected number of inputs and outputs, amount of in-circuit components of chosen types
and testability requirements posed on a final circuit design; the function performed by the circuit is not
considered yet. For the nearest future, we intend to develop and implement a method, which will
evolve benchmark circuits fulfilling required function and still having desired testability properties. It
is expected that the process of generating benchmark circuits in this direction will be significantly
more complicated. We shall not also neglect the possibility of integrating proposed algorithms into
existing design systems and thus offer the possibility of developing components fulfilling the required
function and providing guaranteed and predefined testability properties. It is believed that utilizing
evolutionary approaches will offer completely new solution to this problem. The work related to the
paper was financially supported by the Grant Agency of the Czech Republic (GACR) under contract
number GA102/05/P193 "Optimizing Methods in Digital Systems Diagnosis".

References

[1] Bentley, P.: Evolutionary Design by Computers. Morgan Kaufmann Publishers, San Francisco,
1999, 446 p., ISBN 1-55860-605-X.

[2] Computer-Aided dgDesign fdgBenchmarking fdgLaboratory [2005]. D dAccessible dsfdfsfrom
http://www.cbl.ncsu.edu/benchmarks/

[3] Garvie, M., Thompson, A.: Evolution of Self-diagnosing Hardware. In: Proceedings of the 5th
Int. Conf. on Evolvable Systems: From Biology to Hardware, Trondheim, 2003, pp. 238—248.

[4] Hutton, M. D., Rose, J. S., Corneil D.: Automatic Generation of Syntetic Sequential Benchmark
Circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol.
21, No. 8, 2002, pp. 928—940.

[5] Kundarewich, P. D., Rose, J.: Synthetic circuit generation using clustering and iteration. In:
Proceedings of the 2003 ACM/SIGDA eleventh international symposium on Field programmable
gate arrays, California, 2003, pp. 245—245.

[6] Strnadel, J.: Testability Analysis and Improvements of Register-Transfer Level Digital Circuits.
PhD thesis. Brno University of Technology, 150 p., 2004.

[7] Verplaetse, P., Stroobandt, D., Van Campenhout, J.: Synthetic Benchmark Circuits for Timing-
driven Physical Design Applications. In: Proceedings of the International Conference on VLSI,
Las Vegas, 2002, pp. 31—37.

http://www.cbl.ncsu.edu/benchmarks/

