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Abstract
Network traffic monitoring for security threat detection and network performance management is challenging due to the
encryption of most communications. This article addresses the problem of identifying network applications associated with
Transport Layer Security (TLS) connections. The evaluation of three primary approaches to classifying TLS-encrypted traffic
was carried out: fingerprinting methods, Server Name Indication (SNI)–based identification, and machine learning–based
classifiers. Each method has its own strengths and limitations: fingerprinting relies on a regularly updated database of known
hashes, SNI is vulnerable to obfuscation or missing information, and AI techniques such as machine learning require sufficient
labeled training data. A comparison of these methods highlights the challenges of identifying individual applications, as the
TLS properties are significantly shared between applications. Nevertheless, even when identifying a collection of candidate
applications, a valuable insight into network monitoring can be gained, and this can be achieved with high accuracy by all
the methods considered. To facilitate further research in this area, a novel publicly available dataset of TLS communications
has been created, with the communications annotated for popular desktop and mobile applications. Furthermore, the results
of three different approaches to refine TLS traffic classification based on a combination of basic classifiers and context are
presented. Finally, practical use cases are proposed, and future research directions are identified to further improve application
identification methods.

Keywords TLS fingerprinting · JA4 · Encrypted traffic · Application identification · Machine learning

1 Introduction

Identifying and classifying network applications encrypted
by Transport Layer Security (TLS) has become an increas-
ingly challenging in modern networks. The widespread
adoption of encryption protocols such as TLS has led to
a significant proportion of network traffic being encrypted,
rendering conventional monitoring tools less effective. As a
result, network administrators struggle to gain visibility into
network activity, making it difficult to detect security threats,
enforce policies, and optimize network performance.

The complexity of identifying applications in TLS com-
munications is due to several factors. First, encryption does
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not allow for content inspection previously used for appli-
cation identification. Second, the new version of TLS uses
encryption to protect parameters previously used for appli-
cation identification, such as Server Name Indication (SNI)
and certificates. To address these issues, several methods of
classifying TLS traffic have been proposed:

• TLS fingerprinting relies on unique patterns in encrypted
data tomatch connectionswith known application behav-
ior. However, TLS fingerprinting often struggles with
new or updated applications, where the patterns can be
significantly different.

• Server Name Identification uses the server name avail-
able in the TLS handshake to identify the communicating
application. However, the new proposal considers the use
of Encrypted Server Name Indication (ESNI) to increase
user privacy. ESNI keeps the SNI secret by encrypting
the SNI part of the client’s hello message.

• Machine learning classification uses statistical mod-
els trained on various features of TLS traffic, such as
negotiated security parameters, to predict the associated
application. ML-based methods can adapt to new and
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changing traffic patterns, but require significant training
data and computational resources.

The ultimate goal of these techniques is to accurately
identify a network application associated with each TLS
connection. Due to inherent challenges, it is not always pos-
sible to identify every single application. In such cases, an
acceptable solution is to provide a (ranked) list of possible
applications associated with the connection, allowing net-
work administrators to make informed decisions based on
likely candidates.

1.1 Contribution

This article is an extended version of our original work pub-
lished at the CSNet conference [1], which was selected for
journal publication. In response to the invitation, this version
includes new content, with notable enhancements in both
methodology and presentation. The main addition is a novel
multi-level classification approach that combines the outputs
of individual classifiers into an ensemblemodel. This ensem-
ble improves overall performance by aggregating predictions
to produce more accurate and robust results. Furthermore,
several sections of the original paper have been revised and
refined for improved clarity and completeness.

The key contributions of this extended work are as fol-
lows: (i) the introduction of a novel, annotated dataset
of TLS communications collected from widely used desk-
top and mobile applications, designed to support further
research on encrypted traffic classification; (ii) a comprehen-
sive comparison of three distinct approaches for identifying
encrypted application traffic—TLS fingerprinting, machine
learning-based classification, andSNImatching—alongwith
an evaluation of their respective accuracy, coverage, and
practicality for deployment; (iii) an analysis of the chal-
lenges inTLSapplicationdetection, particularly those arising
from shared TLS properties across different applications,
which hinder precise classification; and (iv) a discussion of
real-world use cases and future directions to enhance the per-
formance and applicability of these techniques.

1.2 Structure of the paper

This article is structured as follows: Sect. 2 presents related
work, providing an overview of previous studies dealingwith
the identification of encrypted traffic. Section3 describes
the principles of TLS encryption, explaining the key fea-
tures of the TLS handshake and how they are used for
TLS fingerprinting. Section5 describes the experimental
setup, including the process of creating new datasets and
the methodology used to evaluate the different identification
methods. Section6 discusses the experiments and results,
providing a comprehensive analysis and addressing practical

considerations. Section7 suggests how the individual meth-
ods can be combined to achieve better accuracy and presents
the experimental results. Section8 presents the main obser-
vations from our experiments and reflects on deployment
issues. The final section summarizes the article with con-
cluding remarks and suggestions for future research.

2 Related work

Classification of encrypted traffic and the identification
of network applications have been researched since the
widespread adoption of encrypted communication protocols.
This section gives an overview of the major work on iden-
tification methods, primarily TLS fingerprinting, machine
learning, and neural networks, which have received signifi-
cant attention recently.

The use of TLS fingerprints for malware detection in
encrypted traffic was addressed byAnderson et al. in [2]. The
authors extracted the cipher suites, the TLS extensions, and
the length of the client’s public key from theTLSclient/server
hello records. In addition to the TLS information (TLS), they
observed the flow statistics (META), the sequence of packet
lengths and inter-arrival times (SPLT), the byte distribution
(BD), and the server certificate if it is self-signed (SS). By
combining these data features on a large dataset of malicious
and legitimate TLS flows, they were able to achieve 99.6%
accuracy in classifying malware. When using TLS attributes
alone, the accuracy ranged from 63 to 100%. Unfortunately,
the proposedmethodwas applied to private datasets, limiting
comparison with other approaches. The TLS attributes were
only obtained from the client hello, which is different from
our approach.

Machine learning detection of encrypted malware com-
munications was also investigated by De Lucia and Cotton
[3]. The authors applied a support vector machine (SVM)
and a convolutional neural network (CNN) to the streams
extracted from captured TLS connections. As features, they
used record size, type, and direction. Their results show high
accuracy, but they do not discuss important issues such as
similarity of TLS features and overlap of malware families.
In contrast to their approach,we focus on identifying network
applications in encrypted traffic rather thanmalware families.

The application of machine learning and deep learning to
the identification of encrypted traffic was also explored by
Barut et al. [4]. The authors combined flow metadata (port
numbers, payload size, bytes transferred) with TLS features
to classify encrypted application traffic. They used random
forest and k-NN classifiers to select the features. However,
the best RF classifier selected the source port number as the
most important feature, which is a value randomly generated
by the operating system. Therefore, its use for classifica-
tion is questionable. For TLS features, both statistical data
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(the number of cipher suites, extensions, key lengths, etc.)
and pre-processed lists of cipher suites with extensions were
used. To use the CNN classifier, the authors transformed
the input data to overcome the bias due to the imbalance
of the dataset. Their conclusion showed the importance of
TLS cipher suites for application identification, which is a
part of TLS fingerprints.

In [5], Anderson and McGrew examined the evolution
of TLS usage in applications over time. They tracked the
use of different versions of TLS, cipher suites, and exten-
sions and collected session data such as associated processes,
destination IP addresses, and ports. They clustered similar
fingerprints using the Levenshtein distance. Although their
work focused on general TLS trends, our aim was to address
application identification.

Fingerprint overlap was discussed by Anderson and
McGrew in [6]. They extended TLS fingerprinting to include
destination address, port, and SNI so that their fingerprints
were more accurate using the destination context. This was
similar to server fingerprinting: JA3S and JA4S hashes. We
also use the server attributes along with the SNI values. The
authors measured the similarity between fingerprints using
the Levenshtein distance and added weights to the attributes
based on the information gain ratio. Rather than identifying
family of applications as in [6], our work attempts to identify
individual applications where possible. In the case of shared
fingerprints, we compute the most likely one or present a set
of matching applications.

Our article extends the previous work of Matousek et al.
[7], which investigated the reliability of TLS fingerprints for
mobile application identification. We add JA4 fingerprints
with ML techniques and SNI matching to highlight their
advantages and limitations.

Another popular direction for identifying encrypted traf-
fic is AI techniques such as deep learning, which uses CNN

[8, 9] or RNN classifiers [10]. Unlike TLS fingerprinting or
machine learning, deep learning approaches work with the
full payload, i.e., they encode incoming packet payloads into
vectors or images that are then used for training and testing.
Although the authors claim to achieve high levels of accu-
racy, they ignore many important issues related to the nature
of the encrypted data. First, they treat the input data as unin-
terpreted, without distinguishing between a packet header
and a payload. This has a significant impact on the stability
of themodel, as encrypted traffic typically has a different pay-
load distribution depending on the negotiated algorithm, e.g.,
HTTPS transmissions between the same hosts would have
different characteristics if a different encryption algorithm
were chosen. In addition, different applications transmit dif-
ferent amounts of data, e.g., an encrypted file transfer has
much more data than an encrypted email. This omission
results in an unbalanced training dataset that needs to be
artificially normalized. Another problem with modeling full
packet payloads is the huge amount of processing data. For
example, the popular ISCX dataset contains 21 GB of data
(including payload), but only 2436 TLS connections. There-
fore, storing and processing the full payload is not feasible for
real-world networks, making the TLS-based methods more
preferable for practical use.

3 TLS encryption

Transport Layer Security (TLS) [11, 12] is a protocol defined
on top of the transport layer that provides encryption, data
integrity, and authentication for application protocols. Typi-
cally, TLS is implemented on top of TCP. After establishing
a TCP connection, the TLS client and the server perform
a TLS handshake in which they negotiate security parame-
ters to establish a secure TLS channel; see Fig. 1. The TLS

Fig. 1 TLS handshake version
1.2 and 1.3
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handshake is an essential part of the TLS fingerprint, specifi-
cally the client hello and server hello packets, which contain
a list of cipher suites, extensions, and other parameters sup-
ported by the client and the server. TLS defines a large
number of possible parameter values. Their combinations
represent a distinctive feature of the client or server that is
used for application fingerprinting. The TLS handshake data
is sent unencrypted. Once the TLS handshake is complete,
the subsequent packets between the client and the server are
encrypted.

We mentioned above that TLS is typically implemented
over TCP. This is true, but TLS can also be implemented over
UDP when it is part of the QUIC protocol [13, 14]. QUIC
(Quick UDP Internet Connection) is a connection-oriented
client–server protocol originally developed by Google. It
implements its own handshake to negotiate cryptographic
and transport parameters before establishing a connection.
QUIC integrates the TLS handshake into the CRYPTO
frames. It only supports TLS version 1.3 and higher. Thus,
extracted TLS parameters can also be used to create TLS
fingerprints for applications encapsulated by QUIC.

3.1 TLS attributes

To identify encrypted applications, there are three sources
of features for classification models: (a) TLS attributes
extracted from TLS headers during the TLS handshake that
form so called JA3 and JA4 fingerprints,1 (b) metadata about
the TLS flow (e.g., number of bytes and packets transmitted,
duration; see, e.g., [15]), and (c) the full packet payload.

TLSfingerprints are hashes created fromTLSClientHello
or Server Hello messages. Client fingerprints are JA3 and
JA4, while server fingerprints are JA3S and JA4S. Each
hash comprises different TLS attributes (see Table 1). These
attributes are concatenated into one string, which is then
hashed using MD5 or SHA-1 functions.

Because both TLS fingerprinting and machine learning
approaches use TLS attributes obtained from the TLS proto-
col [11, 12], a brief description of these attributes is provided
below.

• Version of the TLS handshake protocol.
• A list of cipher suites includes possible combinations
of key exchange methods, authentication, encryption,
and data integrity algorithms. Valid combinations are
standardized by IANA.2 The current IANA cipher suite
list contains 351 different combinations. The list of
cipher suites may contain random GREASE values [16]
for client or server compatibility testing. These values

1 See https://blog.foxio.io/ja4+-network-fingerprinting
2 See IANA TLS Parameters.

Table 1 TLS attributes used in JA3 and JA4 fingerprints

TLS Attribute JA3 JA3S JA4 JA4S

TLS/QUIC protocol x x

Handshake version x x x x

Cipher suites x x x x

Extensions x x x x

Supported groups x

EC format x

SNI

ALPN x x

Supported versions x x

Signature algorithms x

introduce instability into TLS fingerprinting and are
therefore excluded from the fingerprint calculation.

• A list of extensions defines additional TLS features. There
are about 63 different extensions.

• Supported groups (SG). This TLS extension specifies the
named groups that the client supports for key exchange.
They are ordered from most to least preferred.

• Elliptic curve point format (EC format) describes the enc-
oding supported by the client for transmitting EC values.

• Server Name Indication (SNI) specifies a domain name
of the server that the client is contacting [17]. The SNI
is not part of the TLS fingerprint, but plays an impor-
tant role in annotating the requested service. However,
it is only useful for application identification when the
client is contacting a fixed service, such as a weather
forecast server. In the case of Web browsers, the SNI
value changes with each new Web server requested.

• Application Layer Protocol Negotiation (ALPN). When
multiple application protocols are supported by a single
server, the client and the server must negotiate an appli-
cation protocol to be used for each connection [18].

• Supported version is a list of TLS versions supported by
the client, ordered by preference [12].

• Signature algorithm is a list of supported hash algorithms
used for signatures.

Table 1 shows which TLS attributes are shared by dif-
ferent types of TLS fingerprints. The TLS cipher suites are
ordered for JA4/S fingerprints, while JA3/S fingerprints keep
the original order. This plays an important role for application
identification.

3.2 Properties of TLS attributes

We have analyzed the importance of the TLS attributes
using entropy, which represents the degree of uncertainty
of the value in the full range of possible values. This means
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Table 2 Entropy of TLS
features in the MDA/ISCX
datasets

TLS attribute Uniqueness Emptiness (%) Entropy
MDA ISCX MDA ISCX MDA ISCX

TLS version 1 3 0 0 0 0.09

Client cipher suites (unsrt) 35 22 0 0 0.48 0.81

Client cipher suites (srt) 31 24 0 0 0.41 0.81

Client extensions (unsrt) 8202 28 0 0 0.73 0.79

Client extensions (srt) 59 23 0 0 0.57 0.79

EC format 2 3 1.78 6.09 0.22 0.46

SNI 731 116 0.03 22.56 0.86 0.70

ALPN 10 7 7.94 59.1 0.3 0.70

Client supported versions 48 1 10.08 100 0.83 0

Signature algorithms 17 8 0 1.7 0.45 0.68

Server cipher suites 11 22 0 0 0.62 0.71

Server extensions (unsrt) 53 40 0 0 0.52 0.58

Server supported versions 3 1 22.64 100 0.59 0

that attributes with higher entropy contribute more to the
uniqueness of the fingerprint and help to better identify the
application. Low entropy means that many TLS connections
share the same attribute value, in which case the attribute
does not contribute much to distinguishing applications.

The entropy of the attribute X is computed as the sum of
the weighted probabilities of the occurrences of its unique
values, i.e., H(x) = −∑

x∈X p(x). logn p(x) where x is a
unique value of the attribute X , p(x) is its probability and n
is the number of unique values of attribute X .

Table 2 contains the entropy of TLS attributes in theMDA
and ISCX datasets (see Sect. 4.4). TheMDA dataset contains
21,301 TLS connections. After filtering out incomplete con-
nections and connections to analytics and advertising servers,
we obtained 16,427 connections from 77 different applica-
tions. The table shows the number of unique values for the
attribute, the percentage of connections containing an empty
value for the attribute, and the entropy. For comparison, we
have also included values from the ISCX dataset with 1494
TLS connections and 16 applications.

As expected, the most important TLS attributes for finger-
printing are SNI, client extensions and server cipher suites for
the MDA dataset, and client cipher suites, client extensions,
and server cipher suites for the ISCX dataset.

We can see a difference between the MDA dataset created
in 2024 and the ISCX dataset created in 2016. The numbers
differ due to the removal of obsolete cipher suites and the
addition of new extensions. In addition, no server- or client-
supported versions were found in the ISCX.

The client-supported versions show a high entropy, but
there are about 10%of TLS connectionswith the empty value
for the MDA. The TLS version also contains only one value
for the MDA, and no values in the ISCX datasets, making it
useless for application detection.

As shown in the table, the entropy of TLS attributes
changes over time. For example, themore important attributes
in the older ISCX dataset are the client cipher suites and
client extensions, while the new TLS versions captured in
the MDA dataset contain more unique values in the SNI and
client-supported version attributes.

4 Test environment

Our test environment included an Android emulator for
mobile applications and a Windows-based virtual sandbox
for desktop applications. Both tools captured network com-
munications in PCAP files and annotated connections based
on application processes. We focused on Android and Win-
dows applications due to their market dominance, although
applications from other environments can be similarly ana-
lyzed.

4.1 Emulatingmobile apps

To generate TLS fingerprints for mobile applications, we
developed a tool3 that emulates app behavior using the
Android Virtual Device (AVD). The tool automatically
downloads the APK file of the target application, installs it
on a virtual Android device, and initiates its execution using
the ADB shell and the monkey command to simulate user
interaction. During this emulation, the application typically
establishes several connections to its backend servers. These
connections are captured using tshark, and the resulting
TLS traffic is parsed to extract client and server hello mes-
sages. From these messages, we generate JA3/S, JA4/S, and

3 See https://hashapp.netology.sk [Sept 2024].
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JA4X fingerprints, which are then stored in the fingerprint
database. Moreover, the communication is capture into pcap
files. This method was used to capture communication of 35
selected applications (see Appendix A).

4.2 SandboxingWindows apps

TLS connections from desktop applications were captured
by executing each application in a sandboxedWindows envi-
ronment. All network traffic from the host was recorded, and
application-specific connectionswere isolated bymonitoring
open sockets associatedwith running processes. Thismethod
enabled automatic labeling of each TLS connection with the
corresponding process name. Using this approach, we con-
structed a dataset of TLS communications from 42 popular
Windows applications, all of which are installable via the
winget package manager (see Appendix B).

We also found that many desktop applications available
in the Microsoft Store, such as Instagram, TikTok, Pinter-
est, and Facebook, are deployed as Progressive Web Apps
(PWAs). PWAs are web applications that provide an app-
like experience and can be installed on a device to run in
a dedicated window without the traditional browser inter-
face. Because PWAs run inside the web browser process, it
is impossible to identify them by their process name. As a
result, we focus exclusively on nativeWindows applications.
Analysis of PWA-based applications has been reserved for
future work.

4.3 ISCX2016 dataset

For an objective comparison, we used the publicly available
dataset ISCXVPN20164 created by the Canadian Institute
for Cybersecurity. The dataset contains annotated samples of
network application communications such as web browser,
email, chat, streaming, file transfer (see [19]). The full
dataset contains 21 GB of captured communications, cov-
ering 2436 TLS connections from 16 different applications
(see Appendix C).

4 See https://www.unb.ca/cic/datasets/vpn.html [Sep 2024].

Table 3 Statistics of the MDA and ISCX2016 datasets

Mobile MDA Desktop MDA ISCX2016

Total TLS connections 6227 15,074 2436

Complete connections 6133 15,047 2422

Filtered connections 4142 12,285 1494

Train part 3095 8144 1063

Test part 1047 4141 431

Number of apps 35 42 16

Table 4 Efficiency of different TLS fingerprints in the MDA dataset

Fingerprint type Total Uniqueness Covered
apps

Efficiency

JA3 8208 99.5% 67.5% 1.02

JA4 111 54.1% 41.6% 3.36

JA3S 77 44.2% 20.8% 4.53

JA4S 97 48.5% 27.3% 4.06

JA3+JA3S 8330 99.2% 80.5% 1.02

JA4+JA4S 264 66.7% 70.1% 2.16

JA3+JA4+JA3S+JA4S 8349 99.2% 84.4% 1.02

SNI 728 88.0% 89.6% 1.27

4.4 MDA dataset

TheMobile DesktopApplications (MDA) dataset is an anno-
tated dataset created by our research team by emulating a
mobile application and executing selected desktop appli-
cations in the Windows sandbox as described above. The
dataset contains mostly the encrypted traffic5 of communi-
cations in the form of PCAP files from mobile and desktop
applications.

5 Test environment

Table 3 shows the number of TLS connections from MDA
mobile and desktop applications compared to ISCX2016.
Both datasets were cleaned by removing incomplete connec-
tions and filtering out advertising and tracking traffic. We
have also computed basic statistics for the MDA dataset.
Table 4 provides selected properties of individual finger-
prints, their combinations, and the SNI value for mobile and
desktop application connections. These properties evaluate
different types of fingerprints and their combinations. We
provide the total number of distinct values, the percentage of
unique fingerprints, the percentage of applications covered
by unique fingerprints, and the efficiency of the fingerprint.

The efficiency E expresses the average number of applica-
tions sharing the same fingerprint. It is calculated as follows:
let i = 1 . . . n be the number of unique fingerprints and the
function f (i) maps each fingerprint to an application. For
example, if a fingerprint is assigned to two different appli-
cations, f (i) = 2. Then, the efficiency E of the fingerprint
type is calculated as follows:

E =
∑n

i=1 f (i)

n
(1)

5 See https://github.com/matousp/tls-fingerprinting [2024].
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Table 4 shows that we found 8208 different JA3 finger-
prints, of which 99.5% were unique, that is, used by only
one application. The rest of the fingerprints were shared by
multiple applications. However, JA3 fingerprints only cover
67.5% of the applications, and the rest of the applications
do not have unique fingerprints. Although all features con-
taining JA3 fingerprints are imbalanced, we did not apply
any transformations to them because the fingerprints-based
classification methods we used (Sect. 6.1) are not affected by
imbalanced features. The efficiency of 1.02 means that on
average, one fingerprint is used for 1.02 applications. Thus,
the optimal fingerprint has a coverage of 100% and an effi-
ciency of 1. From this point of view, the combinations of
fingerprints or SNI value are more promising for application
identification, so we focused on them in our experiments.

5.1 Evaluationmethodology

Due to the number of shared fingerprints, as shown inTable 4,
it is not easy to assign a specific application to each observed
TLS connection. On the other hand, it is helpful for network
monitoring to assign a small set of candidate applications. To
address the issue of shared fingerprints, we use two different
classification approaches:

• Probabilistic classification: Assigns each TLS connec-
tion to a single application—the one deemed most likely
by the classifier.

• Set-based classification: Associates each TLS connec-
tion with a set of potential applications, based on the
selected classification approach. The classification is
considered correct if the true application is included in
the resulting set.

Regardless of the specific classificationmethod—whether
it is fingerprinting or a machine learning approach based on
a collection of binary classifiers (each trained to recognize
a single application)—the output for each TLS connection
may include zero, one, or multiple predicted applications.

To compare the performance of different classification
methods, we use the overall accuracy, expressed as the
percentage of connections falling into one of the following
categories:

• OK : the application correctly identified
• Error: the application misclassified
• Unknown: the application not recognized by any classi-
fier

These categories are interpreted slightly differently depen-
ding on the classification approach:

In probabilistic classification, each test instance is eval-
uated by classifiers that assign probability scores to all
possible applications. The application with the highest score
is selected as the predicted result. The classification is con-
sidered OK if this predicted application matches the true
label, Error if the prediction is incorrect, and Unknown if
none of the classifiers assigns a valid score, indicating that
the application is not recognized.

In set-based classification, all classifiers are applied to
each test instance to produce a set of matched applications.
The result is classified asOK if the true application appears in
the set, Error if the set contains only incorrect applications,
and Unknown if no classifiers match the instance at all.

6 Experiments

We have performed experiments using different identifica-
tion methods. All experiments follow the same processing
steps as shown in Fig. 2. The input is the labeled dataset
with TLS communication, which is filtered in the first step to
remove known connections to public ad servers. The filtered
dataset is divided into a training part and a test part. The train-
ing part is used to trainML-based detectors and tomapfinger-
prints and SNIs to applications. Once the models are created,
they are applied to the test data. While more statistically
robust evaluation methods, such as repeated experiments
with multiple random train/test splits, exist, we deliberately
chose this fixed split approach to reflect a realistic deploy-
ment scenario. In practice, models are typically trained on
historical data and then applied to classify current or future
traffic. This setupmirrors real-world usagemore closely than
randomized cross-validation, making the evaluation more
representative of practical performance expectations. Dur-
ing the evaluation, two types of classification (probabilistic
and set-based) are considered as described in Section 5.1.

Fig. 2 The processing pipeline
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Table 5 Accuracy of TLS connection classification with different classification types

Mobile apps Windows apps All ISCX2016
Classification type OK Unknown Error OK Unknown Error OK Unknown Error OK Unknown Error

Probabilistic classification

JA3+JA3S 47.6% 13.7% 38.8% 30.4% 61.9% 7.7% 32.3% 52.2% 15.6% 79.4% 6.5% 14.4%

JA4+JA4S 54.4% 1.8% 43.7% 56.8% 0.4% 42.7% 54.0% 0.7% 43.4% 80.0% 6.3% 13.7%

JA3+JA3S+JA4+JA4S 49.2% 13.7% 37.2% 30.4% 61.9% 7.7% 32.6% 52.5% 15.2% 79.4% 6.3% 14.4%

ML-based 46.0% 28.6% 25.4% 47.0% 0.8% 52.2% 44.7% 4.3% 51.1% 77.4% 1.1% 21.4%

SNI 86.3% 5.9% 7.8% 75.0% 1.5% 23.5% 76.6% 1.9% 21.5% 85.9% 5.7% 8.4%

Set-based classification

JA3+JA3S 79.9% 13.7% 6.5% 37.4% 61.9% 0.7% 46.0% 52.2% 1.9% 86.5% 6.3% 7.2%

JA4+JA4S 90.9% 1.8% 7.3% 98.7% 0.4% 0.9% 97.1% 0.7% 2.2% 86.5% 6.3% 7.2%

JA3+JA3S+JA4+JA4S 78.8% 13.7% 6.6% 37.4% 61.9% 0.7% 45.9% 52.2% 1.9% 86.5% 6.3% 7.2%

ML-based 67.3% 13.6% 19.1% 97.5% 0.2% 2.3% 91.9% 1.4% 6.7% 87.7% 2.5% 9.8%

SNI 88.3% 5.9% 5.8% 98.2% 1.5% 0.3% 96.2% 1.9% 1.9% 91.3% 5.7% 3.0%

6.1 Fingerprints classifiers

Our experiments evaluate the performance of different com-
binations of fingerprints for application identification. We
compare the original version of the fingerprints (JA3+JA3S)
with the newer version (JA4+JA4S). We also test the com-
bination of all four fingerprints (JA3+JA3S+JA4+JA4S) (see
Table 5).

We use a dictionary-based exact match method for clas-
sification. We created a dictionary of fingerprints from the
training set and applied it to find the most likely application
or a set of applications for each TLS connection in the test
set. The fingerprints not seen in the training set were marked
Unknown.

The experiments yielded some unexpected results. Altho-
ugh the basic properties described in Table 4 show a very
high uniqueness and percentage of applications covered for
the JA3 + JA3S combinations, its accuracy for connection
classification is the lowest (see Table 5) (both probabilistic
and set-based methods). This is more obvious for Windows
applications, where JA3 fingerprints tend to be more unique
due to the different order of the TLS client extensions. This
high degree of uniqueness leads to a high percentage of
unseen Unknown fingerprints in the test set. In this situa-
tion, the JA4 fingerprints work better because they use the
client extensions differently.

In general, JA4 + J4S fingerprints perform better, but tend
to form a larger cluster of associated applications, on average,
three more applications than in the case of JA3 (see Table 6).
The performance of the combination of all four fingerprints is
comparable to the JA3 + J3S fingerprints, as the included JA3
fingerprints significantly increase the percentage of unseen
fingerprints.

6.2 SNI classifier

For SNI classification, we use the same dictionary-based and
exactmatchmethodas forfingerprinting.Unsurprisingly, this
classifier achieves the best accuracy for most of our datasets.
It is slightly outperformed by the set-based classifier, but at
the cost of a higher average number of applications assigned
to each connection.

6.3 ML-based classifiers

To facilitate comparison with fingerprinting methods, we
also trained ML-based binary classifiers for application
identification. A separate classifier was trained for each
application, with the primary goal of evaluating whether
ML algorithms could achieve greater accuracy in identify-
ing applications. We deliberately did not perform advanced
feature engineering or use flowmetadata, relying only on the
information available in the TLS handshakes. This allowed
us to directly compare the accuracy of the ML-based detec-
tors with JA3/JA4 fingerprinting.

Thedatasetwas divided into training and test parts, follow-
ing the same methodology used for fingerprinting to ensure

Table 6 Average number of predicted applications for one fingerprint
(set-based classification)

Fingerprint type Mobile Desktop All ISCX2016

JA3+JA3S 5.46 2.27 3.85 2.09

JA4+JA4S 5.77 5.03 6.71 2.09

JA3+JA4+JA3S+JA4S 5.29 2.26 3.78 2.09

ML-based 1.79 3.22 3.55 1.57

SNI 1.17 2.12 2.00 1.77
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Table 7 Features used for
ML-based binary classifiers

No Feature Description

F1 TlsVersion The version of the TLS protocol used during the connection

F2 TlsClientCipherSuites An array of the cipher suites supported by the client

F3 TlsClientExtensionsSet An ordered array of TLS extensions supported by the client

F4 TlsClientSupportedGroups An array of supported elliptic curve groups by the client

F5 TlsClientAlpns An array of ALPN protocols supported by the client

F6 TlsClientSupportedVersions An array of TLS protocol versions supported by the client

F7 TlsClientSignatureAlgorithms An array of signature algorithms supported by the client

F8 TlsServerExtensions An array of TLS extensions accepted by the server

F9 TlsServerCipherSuite The cipher suite selected by the server

comparable conditions across methods. Specifically, two-
thirds of the captured TLS handshakes were used as training
data, with the remaining one-third reserved for testing. All
applications present in the test set were also included in the
training set. This split reflects a realistic scenario wheremod-
els are trained on historical data and then applied to classify
future traffic; therefore, cross-validation techniques such as
k-fold are not employed. For fingerprinting, repeating the
experiment yields identical results due to the determinis-
tic nature of the method. In contrast, for machine learning
approaches, the reported results represent the best perfor-
mance achieved after hyperparameter tuning. This procedure
was applied consistently across all datasets.

6.3.1 Features and encoding

The input features represented categorical data,6 which
required appropriate encoding. We used a one-hot encod-
ing, which, while potentially generating a large number
of columns, avoids introducing unintended relationships
betweenvalues. The input features are listed inTable 7. String
values were encoded directly using one-hot encoding. Lists
of stringswere converted into a single string by concatenating
the individual values in their original order. The combined
string was then one-hot encoded. In the case of extension
types, these were first converted to an ordered list and then
concatenated into a single string using the same encoding
process as for lists. We chose this approach after analyzing
the dataset and finding that ordering the information kept the
number of different values manageable without losing much
information. We also remove the GREASE values from the
list before encoding.

Encoding categorical data results inmany booleancolumns.
Table 8 shows the size of the boolean vector after encoding
categorical columns for each dataset. The total number repre-
sents the size of the input vector for classifier training, which

6 Although most attributes are numeric representing constant values
(TLS versions, cipher suites), we treat them as strings because they
have categorical rather than ordinal meaning.

is obtained by concatenating the individual one-hot encoded
source features. The table also shows the size for each source
feature after applying one-hot encoding.

As can be seen, the largest vectors in all datasets are the
client and server extension features (F3 and F8), which con-
tain the most diverse values within the source datasets. The
total size of the feature vector varies slightly between the
datasets, reflecting the difference between the Windows and
mobile datasets and the older ISCX dataset. For example,
in the mobile dataset, we observed only a single TlsVersion
(F1), but a richer variation of extension values (F3 and F8).

We also calculated the correlation between the encoded
features. The graph in Fig. 3 shows the distribution of Pear-
son’s correlation coefficients between pairs of features in
the datasets. The histogram shows a distribution of cor-
relation coefficients between −1 and 1, with most values
centered around 0, indicating that most pairs of features are
uncorrelated. The low positive correlation is likely due to
the nature of one-hot coding, as some categories may rarely
co-occur, resulting in very low positive correlations between
pairs of features that are activated together in some cases. The
histogram also shows a tail towards correlation coefficients
close to 1, meaning that some pairs of features are highly cor-
related. We further examined these correlations and found
that specific client cipher suites are always used together
with certain extension sets (F3), signature algorithms (F7),
and supported groups (F4).

As part of feature selection, we evaluated two dimen-
sionality reduction methods—principal component analysis
(PCA) and autoencoder-based compression—by comparing
classifier performance on original one-hot-encoded vec-

Table 8 Data dimensions for features F1 to F9

Dataset Total F1 F2 F3 F4 F5 F6 F7 F8 F9

Windows 136 3 17 33 10 3 3 17 42 8

Mobile 142 1 23 46 10 8 5 10 30 9

ICSX 123 3 20 25 4 6 1 7 37 20

123



Annals of Telecommunications

Fig. 3 Correlation among
features

tors and their reduced forms. PCA projects data onto a
lower-dimensional linear space to maximize variance, while
autoencoders use neural networks to learn compact repre-
sentations. However, neither method significantly improved
classification metrics or reduced computation time. In fact,
the autoencoder approach introduced substantial training
overhead, increasing the overall computational cost.

The subsequent experimentswere conductedwith a nearly
balanced dataset, meaning the ratio of positive to negative
samples was close to 1. Nevertheless, Fig. 4 shows that sim-
ilar results can be achieved with a lower ratio of 0.8.

6.3.2 Dataset balancing

For each application, there are significantly fewer positive
class elements (connections of the application) because the
connections of all other applications form a negative class.
To address this issue, a random oversampling technique was
applied. In this method, instances of the minority class (pos-
itive samples) are randomly duplicated and added to the
training dataset until the class distribution becomes more
balanced. This simple duplication increases the presence of

Fig. 4 Impact of the unbalanced dataset on the classification
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theminority class during training, helping the classifier better
learn its characteristics.7

The graphs in Fig. 4 illustrate the impact of dataset imbal-
ance on key performance metrics of the trained classifiers.
The presented values represent the mean measured values
across all classifiers applied to the datasets. As shown, both
the recall and the F1-score improve when the dataset is more
balanced. As expected, the accuracy decreases slightly in the
balanced case. This is because, in an unbalanced dataset,
accuracy is often inflated—the classifier can predict the
majority class correctly most of the time, while failing to
detect instances of the minority class. In contrast, balanc-
ing the dataset forces the classifier to consider both classes
more equally, providing a more realistic assessment of its
true performance.

6.3.3 Application detectors

For each application, we trained a set of classifiers using
a variety of machine learning algorithms provided by the
ML.NET framework.8 Prior to training, the input data was
balanced with respect to the target application using the
random oversampling technique described earlier, ensur-
ing equal representation of positive and negative classes.
The classifiers were trained on the training portion of both
datasets, andmodel performancewas evaluated using the F1-
score, which provides a balanced measure of precision and
recall. The best-performing model for each application was
selected as its application-specific detector.

To optimize both model choice and configuration, we
employed ML.NET’s AutoML framework,9 which supports
joint model selection and hyperparameter tuning through
randomized or grid-based search over predefined parameter
spaces. This is crucial, as the values of hyperparameters—
such as the number of leaves in decision trees, learning rate
in boosting algorithms, or regularization strength in linear
models—have a significant impact on classification perfor-
mance. Each algorithm was wrapped in a SweepableEstima-
tor, enabling AutoML to explore different configurations by
evaluating multiple parameter combinations on the training
set. The candidate algorithms included:

• FastTree: A gradient-boosted decision tree implementa-
tion optimized for speed and scalability. Hyperparame-
ters such as learning rate, number of leaves, and number
of iterations were explored.

7 While more sophisticated methods such as SMOTENC could be
considered, even this simple approach sufficiently improved the false
negative rate.
8 https://learn.microsoft.com/en-us/dotnet/machine-learning/
mldotnet-api
9 https://learn.microsoft.com/en-us/dotnet/machine-learning/
automated-machine-learning-mlnet

• LightGBM:Ahigh-performance gradient boosting algo-
rithm that uses histogram-based learning. AutoML tuned
the number of iterations, learning rate, number of leaves,
and minimum data per leaf.

• LBFGS Logistic Regression: A linear classifier trained
using the L-BFGS optimizer, with AutoML exploring L2
regularization parameters.

• Field-aware Factorization Machines (FFM): A model
that captures feature interactions in sparse data. Hyper-
parameters included the number of latent factors and the
learning rate.

Each classifier was evaluated based on its F1-score,
and the configuration yielding the best performance for
a given application was selected. Consequently, different
applications were associated with different optimal models.
Among the evaluated classifiers, the random forest model
was most frequently selected (177 times), followed by Field-
aware FactorizationMachines (4 times) and LBFGSLogistic
Regression (5 times). The selected application detectorswere
subsequently validated using the methodology described in
Sect. 5.1.

7 Multi-level classification

Individual base classifiers often struggle to achieve high
accuracy on their own due to inherent limitations. However,
combining these classifiers into an ensemble can improve
performance by aggregating their outputs to produce a more
accurate and robust model. In this section, we explore dif-
ferent ensemble methods for combining classifiers. Despite
the improvements offered by this approach, challenges
remain, particularly in scenarios where application finger-
prints in TLS connections are not unique. Such fingerprints
are shared by multiple applications, leading to potential
misclassification. Contextual dictionary-based classification
offers a solution by using information from surrounding TLS
connections to improve predictions for ambiguous cases. By
extending information from unique fingerprints to related
connections, errors are reduced and classification accuracy
is improved in complex datasets.

7.1 Classifier combination

The individual application classifiers described in Sect. 6 are
taken as base classifiers and by combining them into an
ensemble we aim to produce a more accurate and robust
model. Three simple ensemble methods have been investi-
gated:

Set intersectionmodel:The set-based classifiers differ in their
accuracy and the size of the candidate application sets they
generate. Each classifier produces a set of potential appli-
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Table 9 Accuracy of prediction for combined classifiers

Mobile apps Windows apps All
Classification type OK Unknown Error AvgApp OK Unknown Error AvgApp OK Unknown Error AvgApp

Set-based classification

Intersection 83.1% 7.2% 9.7% 0.95 85.1% 1.0% 13.8% 1.14 84.0% 3.1% 12.8% 1.08

Majority voting 88.4% 0% 11.6% 1.15 86.1% 0% 13.9% 1.16 86.7% 0% 13.3% 1.17

Meta-model 85.0% 0% 15.0% 1.01 85.2% 0% 14.8% 1.11 84.6% 0% 15.4% 1.08

cations, and these sets can be refined by computing their
intersection. By intersecting all the non-empty sets produced
by each classifier, the resulting set of candidate applications
is typically smaller, narrowing the focus without necessarily
increasing predictive accuracy. This reduction simplifies the
application discovery process, making the approach valuable
in scenarioswhere fewer candidates are required for practical
usability.

Majority voting model: This method aggregates predictions
by selecting the application labels most frequently identified
by all classifiers. Majority voting is a well-known ensemble
method that relies on the consensus of the base classifiers
to produce the final prediction. It effectively captures the
dominant preferences of each model.

Meta-model: In this approach, the outputs of each set-based
classifier are transformed into feature vectors that serve as
input to a meta-model. The output set of each classifier is
coded as follows: 0 indicates the absence of an application in
the set; 1 indicates the presence of a single application in the
set; and for sets containing multiple applications, each appli-
cation is assigned a value of 1/n, where n is the size of the
set. These feature vectors are concatenated across all classi-
fiers to form the input to the meta-model. The meta-model,
employing LightGBM algorithm and trained using super-
vised learning on labeled data, learns to map these inputs
to the correct application labels. This approach is similar to
stacking, a commonensemblemethod inwhich ameta-model
integrates the predictions of multiple base models.

The results of the classifier combinationmethods are given
in Table 9. It can be seen that all the models give fairly

similar results. Considering the differences, the set inter-
section model is best at reducing the number of candidate
applications, making it suitable for tasks requiring a nar-
rower focus. The majority voting model achieves the highest
accuracy formobile applications whilemaintaining a reason-
able error rate. Themeta-model provides a robust alternative
by integrating the strengths of the basic classifiers through
stacking, offering competitive accuracywith a slightly higher
error rate. While the models have comparable performance
in terms of accuracy, the choice of method depends on the
specific requirements of the application, such as minimizing
candidate sets or optimizing accuracy.

7.2 Contextual dictionary-based classification

Another way to improve the accuracy of detecting network
applications in TLS traffic is to observe not only a single TLS
connection, but also its neighbors. The idea behind this is that
an application typically opens multiple TLS connections that
are related and share common properties. This means that
successfully identifyingoneTLSconnection helps to identify
related connections.

The classification based on the context of the surrounding
TLS connections provides more accurate results. The infor-
mation about running applications obtained by the unique
fingerprints (occurring only for one application) can be
spread to the surrounding TLS connection to help select the
correct application for ambiguous fingerprints. We imple-
mented this context idea as follows:

Fig. 5 Context-set generation
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Table 10 Accuracy of
prediction for context-based
classification, with the best
achieved values in bold

Windows size
Fingerprint type 11 21 31 41 51 61

Probabilistic classification

JA3+JA3S 35.7% 35.9% 35.9% 36.2% 36.4% 36.2%

JA4+JA4S 64.6% 66.3% 66.5% 66.3% 65.6% 64.6%

JA3+JA4+JA3S+JA4S 35.9% 36.1% 36.1% 36.3% 36.5% 36.4%

SNI 85.1% 84.7% 84.4% 84.3% 84.0% 83.9%

Set-based classification

JA3+JA3S 44.2% 43.9% 43.4% 42.9% 42.2% 41.3%

JA4+JA4S 93.7% 90.1% 88.1% 87.0% 85.6% 84.3%

JA3+JA4+JA3S+JA4S 44.3% 44.1% 43.6% 43.1% 42.5% 41.8%

SNI 95.3% 95.1% 95.0% 95.0% 94.8% 94.8%

1. For each TLS connection with an ambiguous finger-
print, we create a context-set. To create this set, we look
for unique fingerprints in the neighborhood within the
given time window and add associated applications to
the context-set.

2. We find the intersection between the context-set and the
set of applications associated with the ambiguous finger-
print.

3. If the intersection contains at least one application, we
select the most likely application from this intersection
(probabilistic classification) or return the entire intersec-
tion (set-based classification). If the intersection is empty,
we cannot refine our prediction with the context and use
the original set of applications stored in our dictionary
to select the most likely application or the entire set of
applications.

Figure5 shows the generation of the context-set for the
fingerprint in the blue rectangle. The context-set for this
fingerprint contains two applications: AliExpress and Alza.
Since the intersection with the set of associated applications
contains only the aliexpress application, we can refine the
results and select the most likely application in terms of the
context of the given TLS connection.

Table 10 summarizes the results of the context-based clas-
sification for theMDAdataset forwindow sizes ranging from
11 to 61 with a step equal to 10. The addition of the context

Table 11 Average number of predicted applications for one fingerprint
for context-based classification (set-based classification)

Windows size
Fingerprint type 11 21 31 41 51 61

JA3+JA3S 2.76 2.46 2.32 2.21 2.11 1.97

JA4+JA4S 4.5 3.67 3.28 3.15 3.06 3.00

JA3+JA4+JA3S+JA4S 2.72 2.41 2.28 2.18 2.10 1.99

SNI 1.42 1.39 1.40 1.40 1.40 1.40

improved the results by 3.9 to 12.5% for the probabilistic
classification. The highest improvement was achieved for
the combination of JA4 and JA4S fingerprints for the win-
dow equal to 31 (accuracy increased by 12.5%).However, the
accuracy of the set-based method is reduced by the addition
of context. The results show that the larger the context win-
dow, the worse the accuracy, but the efficiency increases (see
Table 11). In this case, the context can serve as a trade-off
between accuracy and efficiency.

A limitation of the context-based approach is the require-
ment of handling TLS connections from individual devices
independently. TLS connections can be sorted by source,
so context-based classification is applicable. Furthermore,
our context-based approach assigns a final application with
respect to both previous and subsequent unique TLS con-
nections. This introduces a small delay in the classification
of individual connections when the user is actively using the
application. In the case of termination of activity, a timeout
can be used, after which only the previous connections are
used for classification.

In general, adding context improves the classification
accuracy but introduces additional computational complex-
ity and delay, the extent of which depends on the size of the
window. The optimal window size is not necessarily the one
with the highest accuracy; rather, it should balance overall
accuracy with the efficiency of the entire identification pro-
cess.

8 Conclusion

8.1 Discussion

The aim of our experiments was to compare different
approaches to identifying the application based on TLS
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features. Although the experiments were limited to theMDA
and ISCX datasets, there are some interesting observations:

• The SNI approach provides consistent performance
across the different datasets, supporting the observation
that applications tend to use only a limited set of SNIs
to communicate with their application servers. In some
cases, the SNI is not available, or the applications contact
the share services, making such connections ambiguous.

• In fingerprinting, the different combinations of JA3 and
JA4 fingerprints give different levels of accuracy. The
best solution is the combination of JA4 and JA4S, which
proves the correct design of the hash calculation and sup-
ports the claim of the JA4+ authors about the usefulness
of this fingerprinting method for identifying encrypted
communications. The performance of the widely used
JA3 fingerprint is low, suggesting that it is becoming
obsolete. This is mainly due to the random order of TLS
parameters, which creates multiple fingerprints for an
application.

• Finally, we tried to build ML-based classifiers to iden-
tify applications. However, using only TLS attributes
resulted in classifiers that performed worse than the pre-
vious methods (see Tables 5 and 9). When we analyzed
the results, we found that the source data contained many
overlapping samples (see Sect. 3.2), which negatively
affected the metrics of the trained classifiers.

Despite the limited amount of data available for the exper-
iments, it is apparent from the results that the traditional
fingerprinting approach can achieve reasonable performance
in the task of identifying the candidate application for the
TLS connection. This is due to the fact that the method is
based on the exact matching of known fingerprints. Due to
the characteristics of the input data, the ML-based approach
does not help in the case of previously unseen samples, and
due to the overlapping samples, it is even worse overall than
the JA4+JA4S fingerprinting.

8.2 Comparison with other studies

The main objective of this paper was to compare traditional
TLS fingerprinting with ML-based methods and SNI match-
ing for identifying network applications that communicate
in TLS tunnels. This comparison was conducted using two
datasets: the MDA and the ISCX 2016 (VPN-nonVPN) (see
Table 5).

It is not easy to provide an objective comparison with
other studies because of proprietary datasets or datasets con-
taining statistical data (flows) that cannot be used for TLS
fingerprinting. Therefore, we selected a few studies for the
classification of network applications using the ISCX dataset
(see Table 12).

The first column shows our results (F1-score) for the fol-
lowing three methods: JA4+JA4S, ML-based classification,
and SNI matching. Results are shown for both probabilis-
tic classification (one application selected) and set-based
classification (a set of possible applications selected). The
second column contains the results of Barut et al. [4], who
tested three methods: random forest (RF), k-nearest neigh-
bor (k-NN), and convolution neural networks (CNN). Their
classifiers eitherworkedwith all available flowmetadata (121
features) or just the top ten important features (e.g., source
port, TLS cipher suite count). The third column includes the
results of Bu et al. [20], who compared a network-in-network
(NIN) classification model with a CNN. Depending on the
number of NN layers, they used either a large or a small NN
model. The final column shows the results of Zhou et al. [21],
who compared traditional ML methods with their combined
classifier.

As the results show, the accuracy of our TLS-based, ML-
based, and SNI classifiers are comparable to that of others.
The advantage of our approach is that we use data from the
first two packets of the TLS handshake for classification,
whereas flow-based statistical classifiers require data from
the complete communication.Buet al. [20] even analyze each
individual byte of the packet which is extremely demanding.

Table 12 Comparison of TLS classification on the ISCX dataset

Our approach Barut et al. [4] Bu et al. [20] Zhou et al. [21]
Method F1 Method F1 Method F1 Method F1

JA4+JA4S prob 0.889 RF metadata 0.843 NIN_large 0.974 SVM 0.564

ML-based prob 0.873 RF top 10 0.929 CNN_large 0.97 RF 0.971

SNI prob 0.924 k-NN metadata 0.774 NIN_small 0.969 NN 0.925

JA4+JA4S set-based 0.928 k-NN top 10 0.893 CNN_small 0.961 Naive Bayes 0.769

ML-based set-based 0.934 1D CNN meta+TLS 0.633 CNN_deep_pkt 0.965 LR 0.794

SNI set-based 0.955 2D CNN meta+TLS 0.767 Combined 0.954
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8.3 Deployment issues

While achieving high accuracy in identifying individual
applications through encrypted traffic analysis is challenging
—particularly due to the issue of shared fingerprints across
multiple applications—identifying a set of likely candidate
applications remains feasible and still valuable for network
monitoring. Shared fingerprints reduce the discriminative
power of TLS-based features alone, as different applications
mayexhibit similar handshake characteristics. To address this
limitation and improve classification precision, incorporat-
ing additional contextual features such as IP addresses, port
numbers, or flow-level metadata can be highly effective. For
example, IP-based heuristics can help associate traffic with
specific service providers or endpoints, reducing ambiguity
when fingerprints are not unique. By combining these con-
textual signals with fingerprint-based classification, network
administrators can more accurately narrow down potential
applications and services, which is especially beneficial in
complex, high-traffic environments.

In practice, all of the proposed methods require regu-
lar updates to the fingerprint database or retraining of the
models. This ongoing maintenance task is non-trivial and
requires significant resources, especially as applications are
frequently updated and evolve. Ensuring that the fingerprint-
ing method remains accurate and up-to-date is critical to
maintaining its effectiveness in identifying encrypted traf-
fic. Regular updates require a robust ecosystem similar to
that used for antivirus updates or IDS signatures.

All of themethods evaluated are based on TLS connection
information, which can be achieved in extended flow-based
monitoring environments through approaches such as IPFIX
[22], where network probes analyze and extract selected
information from TLS handshakes. Once this information is
captured, any of the presented identification methods can be
effectively applied. Although the machine learning approach
is more computationally intensive during training, the per-
formance of all the methods discussed is efficient enough
to allow real-time deployment in operational environments.
This makes them suitable for use in live network monitoring
systems where timely detection of application traffic is crit-
ical for security monitoring.

Identifying network applications is one of the most
requested features of network monitoring tools. We have
tested three methods based on fingerprinting techniques such
as JA3/JA4, SNI-to-application mapping, and ML-based
classification. Our experiments showed that accurate iden-
tification of individual applications is challenging. However,
identifying a set of possible applications provides administra-
tors with valuable insight. Identification of transmitted appli-

cations can serve several purposes, such as for network man-
agement (monitoring of frequently used applications), cyber
security (detecting transmitted malware), and security policy
(detecting forbidden applications, e.g., TikTok andWeChat).

When an application is properly identified in the network
traffic, based on the security policy, an alarm can be raised
or communication can be dropped by the IDS system.

Among the fingerprinting methods, the combination of
client and server fingerprints proved to be effective in dis-
tinguishing between a variety of applications, with the JA4
and JA4S methods achieving accuracy rates above 90%. In
contrast, older JA3/JA3S fingerprints showed lower perfor-
mance, mainly due to limitations in the way their hashes
are computed, rendering them inapplicable. The accuracy of
ML-based detectors varies with the input data set.

Further, feature engineering and the use of larger datasets
can improve performance. However, ML-based classifiers
offer the advantage of reducing the number of unknown
results, which is an inherent advantage of their underlying
principles compared to traditional fingerprinting techniques.
For comparison, we also evaluated the SNI-based method,
which takes advantage of the fact that applications often use
unique SNI values to identify their servers. As expected, the
SNI method gave the best results for single-application iden-
tification tasks.

8.4 Future work

In the future, we plan to test the methods on a wider range
of datasets, including those with different network environ-
ments and applications, to provide a more comprehensive
evaluation.

Futureworkmay include the development ofmore sophis-
ticated methods for annotating connections in real-world
scenarios that capture a wider range of application activi-
ties and interactions. This would result in richer datasets that
more accurately reflect actual patterns. The ML-based clas-
sification approach leaves significant room for improvement,
particularly through the use of advanced feature engineering
techniques that better capture the nuances in the TLS char-
acteristics of applications. In addition, alternative techniques
to improve classification accuracy can be explored to address
the issue of class imbalance.

Finally, while the methods have shown promise in con-
trolled environments, their effectiveness in real-world opera-
tional networks remains to be thoroughly evaluated. Deploy-
ing these techniques in live environments would provide
valuable insights into their practical utility, including how
well they handle diverse traffic patterns, background noise,
and incomplete or evolving data. Such deployment would
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also help assess the robustness of the models under realistic
constraints, such as limited visibility, resource limitations,
and the presence of previously unseen applications or obfus-
cation techniques. Evaluating the methods in operational
settings is essential for validating their reliability, scalability,
and overall readiness for integration into production network
monitoring and threat detection systems.

Appendix A: Themobile applications

Application Description

AccuWeather Weather forecasting app with real-time alerts
AliExpress Online retail platform for global shopping
Alipay Mobile payment and digital wallet service
Alza Shopping app for electronics and consumer goods
CAPCUT Video editing app with social media integration
ChatGPT AI chatbot interface by OpenAI
Discord Voice, video, and text communication platform
Disney Plus Streaming service for Disney-owned media
Facebook Social networking platform for connecting with

others
foodora Food delivery and ordering service
Gmail Email service by Google with Android integration
Google Play Official app store for Android apps
Instagram Photo and video sharing social network
Mapy-cz Czech map and navigation app
Messenger Facebook’s standalone messaging app
Muj vlak Czech railway travel planning app
Netflix Streaming service for movies and TV shows
Packeta Parcel tracking and delivery app
Reddit Forum-based social news aggregation platform
RegioJet Bus and train ticket booking app
Shein Online fashion retail platform
Signal Privacy-focused encrypted messaging app
Snapchat Multimedia messaging app with temporary con-

tent
Spotify Music streaming platform with personalized

playlists
Telegram Cloud-based instant messaging app
Temu E-commerce app for affordable goods
Tiktok Short-form video creation and sharing app
Trello Project and task management tool
Twitter Social media platform for microblogging
Viber Messaging and VoIP app with encryption
Waze Community-driven GPS navigation app
WeChat Chinese multi-purpose messaging and social app
WhatsApp End-to-end encrypted messaging platform
Wolt Food and goods delivery service
Youtube Online video sharing and streaming platform

Appendix B: The desktop applications

Application Description

4K_Stogram Windows desktop app for downloading
photos and videos from Instagram

4K_Tokkit Desktop software to download TikTok
videos in bulk

ADAMANT_Messenger Secure, decentralized messaging app with
blockchain integration

AirDroid Desktop app to manage Android devices
remotely

Asana Project management tool with a desktop
interface for task tracking

Beeper Unified chat app for integrating multiple
messaging platforms

Brave Privacy-focused web browser with built-in
ad blocker

Caprine Desktop wrapper for Facebook Messenger
Cozy_Drive Cloud storage client with synchronization

features for desktop
Deezer Music streaming app with a desktop ver-

sion
Electorrent Remote control interface for qBittorrent

clients
eM_Client Full-featured email client with calendar

and chat integration
Evernote Note-taking app with a Windows desktop

version
Google_Chrome Popular web browser with cross-platform

support
Headset Desktop music player built for streaming

from YouTube
Inssist Instagram assistant and scheduler as a

desktop wrapper
LINE Messaging app with voice and video call

support
Mailbird Unified email client with customizable

interface
MEGAsync Desktop sync tool for theMEGAcloud ser-

vice
Microsoft_Edge Web browser developed by Microsoft
Mozilla_Firefox Open-source web browser for privacy-

conscious users
Mozilla_Thunderbird Desktop email client developed byMozilla
Nextcloud Client for private cloud file storage
Notion All-in-one productivity app with notes,

tasks, and databases
Notion_Calendar Time management and scheduling desktop

app
Opera_Stable Feature-rich web browser with built-in

VPN
pCloud_Drive Cloud storage clientwith virtual drive func-

tionality
Proton_Drive Encrypted cloud storage with desktop sync
Send_Anywhere File transfer tool across devices and plat-

forms
Signal Privacy-focused messaging app with desk-

top client
Slack Team collaboration tool with messaging

and file sharing
Sonarr TV seriesmanagement and automation app
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Application Description

Spotify Music streaming app with a native desktop
client

TeamDrive Secure team cloud collaboration software
TeraBox Cloud storage service with a Windows sync

app
TIDAL High-fidelity music streaming desktop client
Trillian Multi-protocol instant messaging client
Tweeten Desktop Twitter client based on TweetDeck
Viber Messaging and calling app with desktop sup-

port
Yandex_Messenger Messaging client from Yandex with desktop

support
Zoom_Workplace Video conferencing app with chat and collab-

oration tools

Appendix C: The ISCX applications

Application/service Description

AIM AOL Instant Messenger, a legacy text and file
messaging service

BitTorrent Peer-to-peer protocol for distributing large
amounts of data

Email General category for sending and receiving
messages (SMTP, IMAP, POP3)

Facebook Social networking platform with messaging,
video, and content sharing

FTPS FTP over SSL/TLS for secure file transfer
Gmail Web-based email service developed byGoogle
Hangout Google’s legacy messaging and video confer-

encing platform
ICQ One of the earliest instant messaging services
Netflix Video streaming service offering movies,

series, and original content
SCP Secure file transfer protocol using SSH
SFTP SSH File Transfer Protocol for secure file

transfer
Skype Microsoft’s VoIP and messaging application
Spotify Music streaming service with personalized

recommendations
Vimeo Online video hosting and streaming platform

for creators
VoipBuster VoIP service for low-cost international calls
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