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Abstract—The use of ultrasound in non-invasive medical pro-
cedures is a rapidly expanding area of medicine. The success
of these treatments often depends on complex ultrasound sim-
ulations that require significant computing power, time, and
associated calculation costs. To solve the differential equations
associated with these simulations, the pseudo-spectral method
with Fourier basis functions is employed. Thus, a significant
part of the simulation time is spent computing the Fast Fourier
Transform. This paper presents an approach that has the
potential to reduce computation time and, consequently, the
calculation costs of ultrasound wave propagation simulations
used in the pre-planning phase of non-invasive treatments by
involving the pruned Fast Fourier Transform algorithm (pruned
FFT). The paper employs spectrum filtration using a binary map
to emulate the behaviour of the pruned FFT. This allows for
the evaluation of the impact of the pruned FFT on the number
of computed elements in the spectral domain and the accuracy
of the simulation. Results on real data have shown that it is
possible to replace the Fast Fourier Transform (FFT) applied
to acoustic pressure and velocity with the pruned version of
the algorithm while obtaining results that are suitable for pre-
planning purposes, thereby reducing computation time of the
treatment planning. Involving the pruned FFT can also enable the
execution of simulations in higher resolution domains with much
faster execution times. In some cases, we were able to achieve
around 90% accuracy on the single edge of the 2D domain.

Index Terms—Fourier transform, Simulation, Ultrasound,
High performance computing

I. INTRODUCTION

In medicine, ultrasound is used for diagnostic purposes,
such as ultrasound imaging [1]. However, ultrasound can
also be employed for non-invasive treatment purposes using
focused high-intensity ultrasound. Focused high-intensity ul-
trasound can be used to produce temporary or permanent
changes in brain tissue [2], making it suitable for non-invasive
treatments. To achieve optimal transducer parameters and
positioning, the k-Wave toolbox [3] utilises the pseudo-spectral
method with Fourier basis functions [4]. Since the k-Wave
toolbox employs Fourier basis functions, a significant portion
of the simulation is consumed by computing the Fourier
transform.

The most common algorithm to perform the Fourier trans-
form is the Fast Fourier Transform (FFT) [5]. Some applica-
tions, however, may operate only over a subset of the spectral
coefficients computed by the FFT algorithm. In such cases,

there may be a need to reduce computation time by computing
only the required subset of the spectral coefficients through the
use of a Sparse Fourier Transform (sparse FFT) [6] or Pruned
Fourier Transform (pruned FFT) [7]. The difference between
these two transforms lies in how they localise the desired
coefficients in the spectrum. The sparse FFT suits signals
with few non-zero coefficients at unknown spectral positions,
typically using domain-specific knowledge [8]. Conversely, the
pruned FFT algorithm is optimised for known zero patterns of
the spectrum coefficients, bypassing unnecessary computations
in the Fast Fourier Transform algorithm.

This paper aims to examine the impact of the pruned
FFT when applied to acoustic pressure and velocity in two-
dimensional ultrasound wave propagation simulations per-
formed by the k-Wave toolbox [3]. Primary attention will be
given to computational accuracy, the size of the computed area
in the spectrum, and the position of the focus. The position of
the ultrasound focus is crucial since a specific position in the
tissue needs to be targeted. Whilst the Sparse FFT was also
considered, earlier experiments have shown that this algorithm
is not suitable for this kind of computation [9].

In the following sections, the mathematical definition of the
ultrasound wave propagation simulation implemented in k-
Wave will be described, followed by a section detailing the
experimental pipeline that allows the area in the spectrum
of acoustic pressure and velocity for the pruned FFT to be
estimated using the Acoustic Field Propagator (AFP) [10].
Finally, the impact of applying the pruned FFT on simulation
accuracy will be evaluated. The results from this paper should
serve as a theoretical basis for the future deeper evaluation of
the effect of the pruned FFT on ultrasound wave propagation
simulation.

II. MATHEMATICAL BACKGROUND

To compute ultrasound wave propagation, the k-Wave tool-
box employs the pseudo-spectral method using Fourier basis
functions. This technique involves representing the solution of
the differential equation as a sum of specific basis functions.
Unlike finite-difference time domain methods, which rely on
local computations at neighbouring points, spectral methods
utilise information from the entire domain, leading to higher
computational accuracy [4].
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Fig. 1: Illustration of the filter orientation.

The k-Wave toolbox runs simulations based on the following
governing equations [3]:

∂u

∂t
= − 1

ρ0
∇p

∂ρ

∂t
= −ρ0∇ · u− u · ∇ρ0

p = c20(ρ+ d · ∇ρ0 +
B

2A

ρ2

ρ0
− Lρ)

(1)

Equation (1) can be written in a discrete form using the k-
space pseudo-spectral method [11]. This equation is part of the
spatial gradient calculations based on the Fourier collocation
spectral method.

∂

∂ξ
pn = F−1{ikξκeikξF{pn}} (2)

In Equation (2), for the Cartesian direction ξ = x in R1,
ξ = x, y in R2, F and F−1 denote the forward and inverse
spatial Fourier transform , i is the imaginary unit, kξ represents
the wave numbers in the ξ direction, and κ is the k-space
operator defined as κ = sinc(crefk∆t/2), where cref is a
scalar reference sound speed.

The Fast Fourier Transform (FFT) algorithm is used to
convert signals from the spatial domain to the spectral domain.
Each simulation step of the ultrasound propagation simulation
involves 14 FFTs in the 3D domain and 11 FFTs in the 2D
domain. This computation consumes approximately 60% of
the total simulation time, making it a significant part of the
overall simulation [12].

III. EMULATING PRUNED FFT WITH FILTRATION

To emulate the pruned FFT in the ultrasound wave prop-
agation performed by k-Wave, filtration using a 2D binary
map was employed. In each simulation step, the full FFT over
acoustic pressure and velocity is computed. The spectrum is
multiplied by the binary map representing the coefficients of
the pruned FFT. The result of this multiplication is analogous
to the spectrum computed by the pruned FFT, as coefficients
outside the filter become zero through multiplication.

The changes to the original simulation source code lie in
the modified HDF5 input file, which holds all datasets and
attributes. The file was extended with a so-called ’filtration

kernel’, which is a 2D dataset holding the filtration binary map
that is used to multiply the resulting FFT spectrum. The filter
always has one edge equal to the size of one dimension’s edge
based on its orientation. Figure 1 illustrates both possible filter
orientations. Firstly, the reduced dimension is X (columns),
and secondly, the reduced dimension is Y (rows). The orange
area represents ones, and the white represents zeros. We
primarily target low frequencies; therefore, the filter is placed
on the sides of the domain. By computing the full row/column
of the coefficients, better accuracy is achieved. Moreover, this
approach may lead to a simpler implementation of the pruned
FFT in the future. Although it is possible to use the symmetry
of the complex domain where only half of the coefficients are
computed, for better understanding, all row and column sizes
in the experiments will be given in full domain sizes. The
percentage of computed or skipped rows/columns remains the
same for both reduced and full dimension sizes.

IV. EXPERIMENTAL PIPELINE

To automate the process of simulation input file creation,
spectrum area estimation, simulation, and result evaluation, the
experimental pipeline was created. The scheme of the pipeline
with the flow of all HDF5 files can be seen in Figure 2. The
pipeline consists of the following five steps:

Input files creation - Creation of the k-Wave input file
includes specifying all simulation properties such as media
sound speed, density, transducer shape and frequency, grid
spacing, and simulation time. These simulation properties
are also used to create an input file for the Acoustic Field
Propagator (AFP) [10]. The AFP input file contains transducer
properties, domain properties, and the time at which the
pressure field will be computed. All properties are inherited
from the k-Wave simulation, except the time. Since the AFP
only works with homogeneous media, the lowest sound speed
value from the original simulation is used, as this results in
higher frequencies in the spectrum. The simulation time is
chosen to capture the propagated wave before it reaches the
edge of the domain in at least one direction, ensuring the
transition between the wave and the steady part of the domain
is obtained.

Acoustic field propagation - In this step, the calculation
of the acoustic field from single-element and phased array
transducers in homogeneous media is performed using the
AFP. The AFP enables the calculation of the acoustic pressure
field at all spatial positions at a given time in a single step.
The computation time is significantly lower compared to the
full ultrasound propagation simulation. However, this method
cannot compute propagation in heterogeneous media or the
reflection of the propagated wave, thus it cannot replace
a full ultrasound wave propagation simulation. Despite its
limitations, it provides an acceptable estimation of the spectral
coefficient positions.

Spectrum area estimation - To estimate the area for the
filtration, the acoustic pressure from the previous step is used.
The bisection approach is employed, where the condition is
in the form of the error in the space domain. This provides
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Fig. 2: The evaluation pipeline to estimate area in the spectral domain and compare the result of the reference and filtered
version of the simulation.

an approximate position of the most significant coefficients
in the spectrum. Since most of the significant coefficients are
low frequencies [9], the spectrum is shifted for the purpose of
the bisection, placing all low frequencies around the centre of
the spectral domain. In each iteration, the coefficients outside
the borders are temporarily zeroed, and the inverse FFT is
computed. The resulting space domain is compared to the
original one, and based on the error, the borders in the spectral
domain are shifted towards (if the error is below the threshold)
or away from (if the error is above the threshold) the centre
of the domain. This operation is symmetrical about the centre
of the domain. The final filter area is added to the k-Wave
simulation file in the form of the binary filter.

Ultrasound wave propagation simulation & Evaluation -
In this step, two simulations are executed. Firstly, the original
ultrasound wave propagation and secondly, its modified ver-
sion with acoustic pressure and velocity filtration. To compute
both simulations, the CUDA implementation of the simulation
is used. Finally, both the results of the original and filtered
simulations are compared. The figures with the reference and
filtered acoustic pressure, their spectrum in the last simulation
step, and the normalised L∞ error in the space and spectrum
domains are created.

A. Estimation of the filtration direction

The direction in which the wave propagates together with
transducer properties affect the position of the coefficients
in the spectral domain [13]. The wave propagation direction
is primarily given (among other factors) by the transducer
position. In Figure 3, two positions of the piston transducer
were used in ultrasound wave propagation in water. It can
be seen that the coefficients in their spectra are in different
positions. To capture the significant coefficients while reducing
the number of computed coefficients, bisection is performed
over both directions—rows and columns. Since the error
threshold is the same in both cases, the direction of the filter
is chosen based on the smaller number of rows/columns that
need to be computed.

Table I shows the impact of the filtration direction on the
size of the filter area in the simulation shown in Figure 3.
It can be observed that the direction of the filter impacts
the accuracy of the computation, though not as significantly

TABLE I: Effect of the filtration direction on the number of
computed rows/columns and error.

Transducer
alignment

Edge
size

Reduced
dimension

Row/Column
Skip cnt.

Skip
[%]

Linf

[%]

X 1024 X 636 62.11 1.71

Y 1024 X 42 4.10 0.18

X 1024 Y 42 4.10 0.20

Y 1024 Y 636 62.11 1.73

(a) Transducer aligned with
X-axis

(b) Transducer aligned with
Y-axis

(c) Transducer aligned with
X-axis (freq. domain)

(d) Transducer aligned with
Y-axis (freq. domain)

Fig. 3: Effect of the transducer position on the frequency
domain

as the number of computed rows/columns. In all subsequent
experiments, the filter direction will be chosen based on the
number of rows/columns that need to be computed.

B. Estimation of the coefficient area

The bisection algorithm is driven by the error in the space
domain computed after the spectral domain coefficient filtra-
tion over the result of the AFP. Three possible errors were
considered: Mean Absolute Percentage Error (MAPE), Root
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TABLE II: Comparison of error and skipped rows/columns
under different levels of Mean Absolute Percentage Error

(MAPE) in domain with edge size of 1024.

MAPE 10% 20% 30% 40% 50%

Rows skip 1 502 552 712 760

Rows skip [%] 0.10 49.02 53.91 69.53 74.22

L∞[%] 0 0.51 0.59 1 1.24

TABLE III: Comparison of error and skipped rows/columns
under different levels of Normalised Percentage L∞ error in

domain with edge size of 1024.

Norm. L∞ 1% 2% 3% 4% 5%

Rows skip 670 810 856 886 906

Rows skip [%] 65.43 79.10 83.59 86.52 88.48

L∞[%] 0.85 1.76 2.45 3.44 4.73

Mean Squared Percentage Error (RMSPE), and Normalised
Percentage L∞ Error. However, during the experiments, the
RMSPE proved to be inappropriate for the purpose of the
bisection. Tables II and III show the results of the coefficient
filtration with bisection using MAPE and Normalised Percent-
age L∞ Error in a simulation with an arc transducer in water
aligned with the X axis (filtered dimension is X).

The results show that Normalised Percentage L∞ error is
much more predictable in the case of the final simulation error,
where the selected threshold is, in the simplest simulation,
always higher than the final error. Subsequent experiments will
show that this may not always be true. Another advantage is
its ability to include significant coefficients in the filtration
area. If there is a coefficient in the spectrum that would
significantly affect the result in the space domain, we are able
to include it in the computed area much more precisely than
by using MAPE, as the error represents the point with the
highest difference from the reference simulation. In contrast,
MAPE represents the error across all points in the domain.
The disadvantage of the MAPE error is also its lack of
intuitiveness for possible bisection threshold adjustment. The
Normalised Percentage L∞ Error is much more suitable for
the area estimation, and thus we will use it in all subsequent
experiments.

V. EVALUATION OF THE METHOD OVER REAL DATA

In this section, the impact of filtration on the spectrum will
be evaluated with focus on spectrum coefficient reduction,
position of the focus and the overall simulation error. The
error in the domain will be expressed in the form of the
Normalised Percentage L∞ error [14]. To evaluate the impact
of the pruned FFT over real data, all experiments will be
measured on ultrasound wave propagation in the human head.
To show the effect of transducer position on the simulation
result, the following experiments will contain two positions of
piston and arc transducer: one aligned with the X axis (Figure
4a) and the second unaligned with either axis (Figure 4b).
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(a) Transducer aligned with
X-axis
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(b) Transducer under angle

Fig. 4: Position of the transducer to the head used in the
experiments.

The piston transducer will be placed in the same position as
the arc transducer in Figure 4. The dot transducer will be
measured only once, as it cannot be ”aligned” with the domain
axis. The frequency of the transducer was set to 600kHz
with amplitude equal to 10Pa in all experiments. The original
domain size was 576 × 648 grid points, with uniform grid
spacing of 4.6875 × 10−4, time step dt = 53.2181ns, and
CLF = 0.3. This leads to 5.3 points per wavelength (in
water). The simulation ran for 5061 steps, based on wave
travel time across the diagonal of the grid. The first set of
experiments focuses on increased resolution of the simulation.
To correctly represent the geometry of the tissue, especially
bones and the skull, a higher resolution of the simulation may
be required [15]. The resolution of the tissue geometry impacts
the error in the phase of the wave. Therefore, the higher the
simulation resolution, the more precise the simulation will be.
Since only the grid spacing and the number of grid points will
change, the spectral domain of such a simulation will contain
more zero or negligible coefficients. This should lead to an
increase in the number of filtered coefficients in the spectrum.

In the first set of experiments, the domain resolution was
progressively increased by a factor of two, starting from the
original size up to 8 times the original domain size, where
the grid spacing reduces by the same factor to keep the
physical size of the domain constant. Table IV shows the
results of the simulations over various resolutions with 2%
and 3% bisection error thresholds on different transducer types
and positions (X in the name of the experiment represents
transducer alignment). The chosen filter dimension in all cases
was X-axis, so it is omitted in the table. It can be observed that
the position of the transducer has a significant impact on the
number of computed rows in both arc and piston transducers.
The bisection threshold affects not only the number of filtered
rows but also the calculation error, as it allows the bisection
algorithm to further reduce the calculated area. Furthermore,
the final error in some cases does not match the given threshold
error, as seen in the simulation in water. This is caused by the
heterogeneity of the media.

Figure 5 shows the Normalised L∞ error for the ArcX
experiment with a 3% bisection error. As we can see, the
error mostly occurs at the boundary between two media with
a large difference in sound speed properties (e.g., skin →
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Fig. 5: The Normalised L∞ error for ArcX experiment.
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Fig. 6: Focal point pressure variation in final 100 steps of
ArcX simulation.

skull). However, there is no shift in the focal point, and
its error is around 3%. Figure 6 shows the value of the
pressure at the focal point during the last 100 simulation
steps. In the case of the Piston and PistonX experiments, the
results are close to the Arc and ArcX experiments, where
the position of the transducer affects the number of filtered
coefficients. In the case of the Piston, the overall computation
error is significantly better due to the geometry of the piston
transducer. The Dot experiments showed that this approach
is not suitable for this type of transducer. The coefficient
reduction is quite low and the simulation error is relatively
high compared to the experiments with other transducer types.
Increasing the resolution improves the number of computed
rows and reduces simulation error. When the domain size of
the simulation is increased while maintaining the same grid
spacing, the physical size of the simulation expands. The next
set of experiments was performed on such a domain. The same
sizes as in the increased resolution were used, but the grid
spacing remained unchanged. Table V shows that increasing
the physical size of the domain leads to an increase in error,
especially in the ArcX experiment. In the Dot, PistonX, and
Piston experiments, the values remain relatively consistent
across each domain size.

Our results show that coefficient reduction depends on
transducer positioning. While the dot transducer cannot be
aligned with domain edges, both piston and arc transducers can

be aligned through domain rotation if necessary. After rotation,
the rectangular shape of the domain can be restored by filling
the domain with the surrounding media. Since the domain is
surrounded by a Perfect Match Layer [3], no reflection will
affect the simulation results.

VI. DISCUSSION

When we compare other tools for solving acoustic pressure
wave equations [14], we can see that for some benchmarks, the
median values for the cross-comparison range between 10%
and 100% for the L∞ error. It is difficult to compare our results
directly with those benchmarks, as our simulations differ from
those presented in [14]. However, computation errors achieved
in our set of experiments are promising, especially for high-
resolution simulations.

The method is limited in maintaining high frequencies that
represent edges in spatial domain. Thus, in cases of two media
with significantly different sound speeds, this approach may
not give correct results.

Regarding acceleration, approximately 60% of the simu-
lation computation is dedicated to calculating the Fourier
transform. If we compute roughly 60% of the rows/columns,
we could achieve an acceleration of around 30%. Since
multiplication of the zero coefficients equals zero, there will
be additional reduction in other mathematical operations,
especially in the spectral domain. Due to the lower number
of coefficients in the spectral domain, there will also be
a reduction in memory accesses. Depending on the future
implementation, the sizes of the matrices holding the results
of the pruned FFT could potentially be reduced to match the
size of the nonzero elements, leading to a memory reduction.
In 3D simulation the reduction will be even more significant
since another dimension will be reduced.

VII. CONCLUSION

The integration of the pruned FFT algorithm into ultrasound
wave propagation simulations shows potential for improving
computational efficiency, particularly in the pre-planning phase
of a medical treatments. Our experiments demonstrate that
it is possible to apply spectrum filtration using a binary
map to emulate the pruned FFT, thus reducing the number
of computed elements in the spectral domain and lowering
computation time with acceptable accuracy of the simulations.
This approach is particularly beneficial when working with
high-resolution domains, where the computational time may
be significantly greater.

The experiments have shown that the position of the
transducer has a significant impact on computation accuracy
and the number of computed coefficients. By optimising the
transducer’s position and the error thresholds in the bisection
algorithm, we were able to achieve substantial reductions in
the number of computed rows while maintaining acceptable
levels of simulation error. The results indicate that the pruned
FFT can be a powerful tool for reducing the computational
load of ultrasound simulations. The best results were achieved
in high-resolution simulations, where the number of reduced
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TABLE IV: The measurement for the various resolution of the original domain for 2% and 3% threshold error.

2% 3%

1x 2x 4x 8x 1x 2x 4x 8x

Skip
[%]

L∞
[%]

Skip
[%]

L∞
[%]

Skip
[%]

L∞
[%]

Skip
[%]

L∞
[%]

Skip
[%]

L∞
[%]

Skip
[%]

L∞
[%]

Skip
[%]

L∞
[%]

Skip
[%]

L∞
[%]

Arc 19.10 1.68 22.22 0.33 22.66 0.16 22.79 0.11 28.12 2.64 33.16 0.61 33.94 0.31 34.16 0.12

ArcX 46.18 2.26 72.22 1.47 82.81 1.56 90.10 3.02 57.29 8.12 76.39 3.10 87.07 3.53 92.97 4.84

Piston 3.82 0.73 4.17 0.24 4.17 0.14 4.17 0.15 5.90 0.87 6.08 0.22 6.25 0.13 6.25 0.15

PistonX 19.44 1.14 35.59 0.49 56.25 0.41 75.87 0.48 26.39 1.71 46.35 0.61 68.40 0.64 80.86 1.16

Dot 6.25 3.74 8.51 1.02 10.59 1.44 12.67 3.27 9.03 4.70 12.33 1.24 15.28 1.64 18.06 3.37

TABLE V: The measurement for the various domain sizes of the original domain for 2% and 3% threshold error.

2% 3%

1x 2x 4x 8x 1x 2x 4x 8x

Skip
[%]

L∞
[%]

Skip
[%]

L∞
[%]

Skip
[%]

L∞
[%]

Skip
[%]

L∞
[%]

Skip
[%]

L∞
[%]

Skip
[%]

L∞
[%]

Skip
[%]

L∞
[%]

Skip
[%]

L∞
[%]

Arc 19.10 1.68 27.60 1.24 35.33 1.67 44.31 3.19 28.12 2.64 38.37 2.03 45.49 2.65 52.34 4.74

ArcX 46.18 2.26 58.68 5.20 62.50 17.44 64.89 79.78 57.29 8.12 62.67 28.99 67.01 53.21 72.92 86.07

Piston 3.82 0.73 3.82 0.39 3.91 0.23 3.95 0.23 5.90 0.87 5.73 0.39 5.82 0.29 5.90 0.32

PistonX 19.44 1.14 19.62 0.44 19.27 0.34 19.49 0.40 26.39 1.71 26.91 0.64 26.48 0.54 26.74 0.58

Dot 6.25 3.74 6.25 3.27 6.25 1.62 6.25 3.38 9.03 4.70 9.20 4.33 9.11 2.26 9.11 4.92

coefficients was up to 90%, with approximately 5% error.
Future research will focus on the implementation of the pruned
FFT algorithm and its integration into k-Wave ultrasound wave
propagation simulation.
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C. Cueto, P. Gélat, L. Guasch, J. Jaros, Y. Jing, R. Jones, N. Li, P. Marty,
H. Montanaro, E. Neufeld, S. Pichardo, G. Pinton, A. Pulkkinen,
A. Stanziola, A. Thielscher, B. Treeby, and E. van ’t Wout, “Benchmark
problems for transcranial ultrasound simulation: Intercomparison of
compressional wave models,” The Journal of the Acoustical Society
of America, vol. 152, no. 2, p. 1003–1019, Aug. 2022. [Online].
Available: http://dx.doi.org/10.1121/10.0013426

[15] J. L. B. Robertson, B. T. Cox, J. Jaros, and B. E. Treeby, “Accurate
simulation of transcranial ultrasound propagation for ultrasonic
neuromodulation and stimulation,” The Journal of the Acoustical
Society of America, vol. 141, no. 3, pp. 1726–1738, 03 2017. [Online].
Available: https://doi.org/10.1121/1.4976339

173


