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ABSTRACT
Ultrasound neurostimulation, a technique thatmodulates the brain’s
electrical activity, has emerged as a significant secondary treatment
option for cases resistant to pharmacological interventions. The
therapy is achievable through the application of a three-dimensional
steerable ultrasound, directed by patient-specific stimulation plans.
These plans are meticulously crafted through full-wave ultrasound
propagation simulations. Nonetheless, the computational intensity
required for calculating these plans poses a significant challenge,
often reaching the memory capacities of contemporary graphics
processing units (GPUs). By representing material properties and
k-space operators more efficiently, we achieved up to 22% reduction
in GPU memory usage, while accelerating calculations by 8.5% on
an Nvidia Volta V100. This optimization introduced an error that
reduced focal pressure by 0.5% without any focus movement, values
that are clinically acceptable.
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1 INTRODUCTION
Disorders of the brain, including neurological and psychiatric dis-
eases, affect one in four people1. The personal impact can be devas-
tating and societal costs are enormous (5.9% GDP EU). New treat-
ment options are needed with enhanced efficacy and reduced side-
effects, costs, and invasiveness. Yet, brain disorders are among the
1World Health Organization (2001)https://apps.who.int/iris/handle/10665/42390

HPDC ’24, June 3–7, 2024, Pisa, Italy
©
ACM ISBN 979-8-4007-0413-0/24/06. . . $15.00
https://doi.org/10.1145/3625549.3658823

medical conditions most difficult to treat. This is caused not only
by the complexity of human brain anatomy and function, but also
by the intricate challenge of targeting specific subregions and net-
works in an anatomically precise manner to modulate dysfunctional
neural activity. Pharmacological interventions, the first-line treat-
ment for most brain disorders, act not only on the entire brain but
also the remaining organism, and are therefore often associated
with considerable systemic side-effects.

Neurostimulation techniques that modulate the electrical activity
of the brain have thus evolved as an important class of second-line
treatments for pharmacoresistant cases. What is needed is a non-
invasive brain stimulation technique that can stimulate brain targets
with high anatomical precision, unlimited penetration depth, full
reversibility, and low risk-profile. This can be achieved using the
newly emerging technique of low-intensity focused transcranial
ultrasonic stimulation for neuromodulation.

This objective is achievable through the application of a three-
dimensional steerable ultrasound, directed by patient-specific stim-
ulation plans. These plans are meticulously crafted through full-
wave ultrasound propagation simulations. Nonetheless, the com-
putational intensity required for calculating these plans poses a
significant challenge, often reaching the memory capacities of con-
temporary graphics processing units (GPUs).

2 IMPLEMENTATION
The tissue realistic models of ultrasound wave propagation in the
human body have to take into account many specific aspects. A de-
factor standard in this area is represented by the k-space corrected
pseudospectral model implemented the k-Wave toolbox [2]. The
required governing equations can be written as three-coupled first-
order partial differential equations derived from the conservation
laws and a Taylor series expansion for the pressure about the density
and entropy:
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Here u is the acoustic particle velocity, d is the acoustic particle
displacement, 𝑝 is the acoustic pressure, 𝜌 is the acoustic density,
𝜌0 is the ambient (or equilibrium) density, 𝑐0 is the isentropic sound
speed, and 𝐵/𝐴 is the nonlinearity parameter which characterises
the relative contribution of finite-amplitude effects to the sound
speed. All the material parameters are allowed to be heterogeneous.
Two linear source terms are also included, where F is a force source
term, and M is a mass source term.
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Table 1: The summary of implemented reduction levels.

Quantity Data
type

Reduction Level
Low Med High

Nonlinearity coefficient Half 1 1 1
Sound Speed Half 1 1 1

Density Half 1 4 4
Reference Density Half 0 0 3
Initial Pressure Brain float 1 1 1
Pressure Source Brain float 1 1 1

Absorption Tau and Eta Brain float 2 2 2
Absorption Nabla Brain float 1 1 1
Kappa Operator Half 0 0 0.5

Kappa Source Operator Half 0.5 0.5 0.5
Reduced matrices 8.5 11.5 15
Memory reduction 10.5% 15.7% 21.8%

2.1 Simulation Code Description
The simulation code was implemented in the C++ and CUDA lan-
guages using the standard 32b float data type, with the help of HDF5
IO library and the cuFFT library for Fourier transform calculation.

To improve accuracy and decrease the spatial resolution needed,
k-space pseudospectral methods utilize a 3D fast Fourier transform
(FFT) for gradient calculation across the entire domain, accounting
for 50-60% of the execution time. Apart from FFTs, the simulations
conduct straightforward element-wise matrix operations through
approximately 20 CUDA compute kernels on over 30 real or complex
matrices containing acoustic quantities and medium parameters.

2.2 Mixed-Precision Arithmetic
An innovative strategy showcased in this approach is the reduc-
tion of the simulation’s memory requirements by utilizing reduced
precision data types for storing specific quantities. This not only
diminishes the memory footprint but may also accelerate execution
by enabling the simultaneous performance of two operations in
half precision.

Due to the high dynamic range needed for Fourier transforms
and the disparate units of measure used for acoustic pressure and
acoustic particle velocity, these quantities and their gradients are
excluded from reduction. However, material properties, with their
2-3 digit precision, are suitable for reduced data types.

Table 1 outlines the quantities whose accuracy was decreased
and specifies the employed data type, either the 16-bit half floating
point or the Google Brain 16-bit floating point format. The half data
type was utilized for basic material properties which have a low
dynamic range. Conversely, the Brain float data type was applied to
pressure sources and absorption coefficients, whose dynamic range
can span up to six orders of magnitude.

This study examines three levels of memory reduction, aiming
to harmonize computational efficiency with accuracy. The low level
targets basic material properties that remain constant through-
out the computation. The medium level additionally encompasses
acoustic density, recalculated at each time step. The high level fur-
ther incorporates the kappa derivation operator, directly influencing
gradient computation.

Table 2: Simulation benchmarks. Nx, Ny, and Nz denote spa-
tial grid sizes, andNt indicates the total number of time steps.

Dataset Nx Ny Nz Nt GPU Memory
PH1-BM7-SC1 324 192 192 3600 1.78 GB
PH1-BM8-SC1 512 384 432 12000 8.60 GB
PH1-BM9-SC1 512 512 432 12000 11.3 GB

Table 3: Execution time reached on an Nvidia Volta V100.

Dataset Full Low Mid High
PH1-BM7-SC1 20.09s 19.39s 18.79s 18.51s

(3.61%) (6.92%) (8.54%)
PH1-BM8-SC1 449s 435s 423s 415s

(3.27%) (6.31%) (8.25%)
PH1-BM9-SC1 597s 577s 560s 550s

(3.33%) (6.39%) (8.42%)

The CUDA compute kernels were refactored to operate in mixed
precision, with quantities stored in reduced precision being read
from memory in pairs. When feasible, calculations in reduced pre-
cision allowed for simultaneous execution of two operations. If not,
data was extended to higher precision (float data type) for sequen-
tial operation. Only CUDA cores were used for calculations. While
this approach did not lessen the computational load, it conserved
memory bandwidth, a critical bottleneck in k-Wave simulations.

3 EXPERIMENTAL RESULTS
The experimental assessment of the proposed technique was con-
ducted using three realistic simulation benchmarks released by
the iTRUSST consortium [1]. These benchmarks assess the maxi-
mum acoustic pressure distribution within the brain induced by the
bowl transducer. Different spatial and temporal resolutions were
selected, as detailed in Table 2. The GPU memory consumption in
the original simulation ranged from 1.8 GB to 11.3 GB.

3.1 Execution Acceleration
Given the high dynamic range of acoustic quantities and the inher-
ent limitations of performing calculations in reduced precision, the
overall reduction in execution time ranges between 3.27% and 8.54%,
as detailed in Table 3. Notably, since Fourier transforms account
for 50-60% of the total computation time, the observed acceleration
is substantial. This performance improvement is consistent across
various simulation sizes. Furthermore, detailed CUDA kernel pro-
filing, outlined in Table 4, indicates that several kernels markedly
benefit from operating in lower precision.

3.2 Accuracy Investigation
The impact of mixed precision calculations on accuracy was eval-
uated using four metrics. The first two, 𝐿2 norm and 𝐿∞ norm,
assessed noise levels across the entire simulation domain. The lat-
ter two metrics focused on analyzing the pressure field within the
focal region, see Table 5.

The low memory reduction level resulted in negligible errors
across all three benchmarks, aligning with the 0.1-1% uncertainty
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Table 4: Acceleration for particular CUDA kernels.

CUDA Kernel Reduction Level
Low Med High

AddPressureSource 5.96% 102.37% 103.28%
ComputeAbsorptionTerm 10.20% 10.12% 10.14%
ComputeDensityLinear 7.34% 53.38% 52.99%
ComputePressureGradient 0.08% 0.21% 3.86%
ComputePressureTerms 9.05% 31.53% 31.51%
ComputeVelocityGradient 0.21% 0.22% 3.47%
ComputeVelocityUniform 0.28% 0.00% 16.16%
SumPressureTerms 28.51% 28.46% 28.47%

typically associated with material properties. The medium memory
reduction yielded a maximum absolute error below 0.5% through-
out the simulation domain. The high memory reduction exceeded
the 1% threshold, reaching up to 3% error in the largest benchmark.
As depicted in the comparison of pressure fields, where Fig. 1 il-
lustrates the original code’s pressure distribution and Fig. 2 shows
the absolute error, the error manifests as random noise without
altering the focus’s shape or position. Notably, no movement of the
focal point was detected in benchmarks, and the pressure amplitude
difference remained under a 0.5% margin. These findings affirm the
method’s clinical applicability and robustness.

Table 5: Accuracy under various levels of memory reduction.

Dataset Metric Reduction Level
Low Med High

PH1-
BM7-SC1

𝐿2 error 0.071% 0.415% 1.166%
𝐿∞ error 0.081% 0.313% 1.004%

Amplitude diff 0.072% 0.045% 0.065%
Focus movement 0.0 mm 0.0 mm 0.0 mm

PH1-
BM8-SC1

𝐿2 error 0.091% 0.519% 2.765%
𝐿∞ error 0.080% 0.301% 1.014%

Amplitude diff 0.071% 0.197% 0.264%
Focus movement 0.0 mm 0.0 mm 0.0 mm

PH1-
BM9-SC1

𝐿2 error 0.092% 0.731% 6.98%
𝐿∞ error 0.106% 0.542% 2.941%

Amplitude diff 0.070% 0.132% 0.530%
Focus movement 0.0 mm 0.0 mm 0.0 mm

4 CONCLUSIONS
This study explored the feasibility of applying mixed precision
calculations within the CUDA-accelerated k-Wave toolbox. Key
quantities were identified for conversion into reduced precision
data types, leading to the adaptation of CUDA computing kernels
for the utilization of these data types and the execution of multiple
operations concurrently where feasible.

Efficient representation of material properties and k-space op-
erators resulted in up to 22% reduction in GPU memory usage for
precision tasks and accelerated computations by a factor of 8.5% on
an Nvidia Volta V100 graphic card. This reduction in memory usage
allows for an increase in simulation resolution by 7.3%, enabling

Figure 1: Maximum acoustic pressure distribution across the
entire simulation domain, computed with full precision.

Figure 2: The absolute difference in acoustic pressure across
the entire domain, quantified by the 𝐿∞ norm, resulting from
the high memory reduction.

more precise focus targeting. The introduced optimization slightly
decreased the focal pressure by 0.5%, without causing any shift in
the focal point, an outcome within clinically acceptable margins.

Despite the performance improvement being under 9%, this en-
hancement significantly reduces the cost of simulations. Consider-
ing that a single neurostimulation procedure may target multiple
locations, this reduction is deemed substantial.
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