
k-Dispatch: Enabling Cost-Optimized Biomedical Workflow
Offloading

Marta Jaros
Faculty of Information Technology,
Brno University of Technology

Brno, Czech Republic
jarosmarta@fit.vutbr.cz

Jiri Jaros
Faculty of Information Technology,
Brno University of Technology

Brno, Czech Republic
jarosjir@fit.vutbr.cz

ABSTRACT
Automated execution of computational workflows has become a
critical issue in achieving high productivity in various research
and development fields. Over the last few years, workflows have
emerged as a significant abstraction of numerous real-world pro-
cesses and phenomena, including digital twins, personalized medici-
ne, and simulation-based science in general. k-Dispatch is a novel
tool designed for the efficient offloading of biomedical workflows to
remote high-performance computing clusters or cloud. In addition
to data transfers, reporting, error handling and remote computa-
tions monitoring, k-Dispatch leverages a set of optimizations to
dynamically determine suitable execution parameters for individual
tasks within workflows, aiming to meet predefined constraints and
optimization criteria. k-Dispatch has been successfully deployed
within k-Plan, an advanced modelling tool for planning transcranial
ultrasound stimulation (TUS) procedures.

CCS CONCEPTS
• Computing methodologies → Planning with abstraction
and generalization.

KEYWORDS
Workflow scheduling, Multi-criteria optimization, HPC, Cloud

ACM Reference Format:
Marta Jaros and Jiri Jaros. 2024. k-Dispatch: Enabling Cost-Optimized Biomed-
ical Workflow Offloading. In The 33rd International Symposium on High-
Performance Parallel and Distributed Computing (HPDC ’24), June 3–7, 2024,
Pisa, Italy. ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/
3625549.3658828

1 INTRODUCTION
Biomedical ultrasound plays a crucial role in cancer diagnosis and
treatment, offering non-invasive solutionswith fewer complications
compared to traditional methods like biopsy or surgery. It encom-
passes various applications such as tissue ablation, drug delivery,
and neurostimulation for conditions like epilepsy and Alzheimer’s
disease [7]. To tailor therapeutic ultrasound procedures to individ-
ual patients, evaluating complex physical models beforehand is

HPDC ’24, June 3–7, 2024, Pisa, Italy
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0413-0/24/06
https://doi.org/10.1145/3625549.3658828

crucial. The k-Wave toolbox [5], an open-source platform widely
adopted in the scientific community, facilitates time-domain sim-
ulation of acoustic waves in tissues across different computing
architectures, including distributed high-performance computing
(HPC) clusters.

In managing complex workflows and their distribution across
computational resources, workflow management systems (WMSs)
like Pegasus and NextFlow have emerged [1]. These systems aim
to automate and streamline processes, provide remote computa-
tion monitoring and logging, and offer user-friendly interfaces for
interaction with computing facilities. This paper specifically ad-
dresses the efficient execution of complex ultrasound workflows on
large-scale distributed computing clusters, focusing on optimizing
resource allocation for each task within workflows.

The k-Wave toolbox implements its physical models as dis-
tributed and moldable programs, where users specify execution
parameters based on program scaling, input data size, and cluster
utilization. However, achieving perfect performance scaling is chal-
lenging, and computational costs may increase with resource utiliza-
tion. Additionally, scaling behavior depends heavily on processor
architecture and memory subsystems. Moreover, data collected on
one system may not be easily transferable to others.

To address these challenges, this paper introduces a novel ap-
proach that utilizes historically collected performance data to esti-
mate suitable execution parameters for each task within workflows
at a global level. This approach aims to optimize resource allocation,
preventing system failures and long waiting times in computational
queues, thus enhancing the efficiency of batch schedulers on remote
computing facilities.

2 OPEN PROBLEMS
Workflow scheduling is a complex and challenging problem. The
execution of many tasks on distributed and heterogeneous comput-
ing systems needs to be precisely coordinated as it affects results
delivery time, workflow makespan (total execution time includ-
ing queuing times) and cost. A list of selected open problems and
challenges follows:

• Heterogeneous computing resources. This includes chal-
lenges such as load balancing, data transfer optimization,
and resource allocation. Computing platforms differ in com-
puting power and capacity, data storage, and network con-
nectivity.

• Real-time decision making. When planning the execu-
tions of workflows, many factors need to be considered, e.g.,
task input data and related parameters, type and amount of
requested resources, current availability and utilization of

1

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3625549.3658828
https://doi.org/10.1145/3625549.3658828
https://doi.org/10.1145/3625549.3658828
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3625549.3658828&domain=pdf&date_stamp=2024-08-30


HPDC ’24, June 3–7, 2024, Pisa, Italy Jaros et al.

computing facility, time and cost constraints, and so on. The
decision must be made promptly before the situation at the
facility has changed.

• Quality of Service (QoS). Workflow execution and sched-
uling are supposed to provide some guarantees about the
QoS including throughput, reliability and fault tolerance.
Proper monitoring of executed workflows and remote com-
puting facilities is essential for QoS. Although the process of
monitoring itself may be straightforward, the challenge is to
properly recognize and handle uncommon and suspicious
situations.

• Security. Workflow executions have to ensure the security
and privacy of workflow data and computations, especially
when involving sensitive data, such as personal health infor-
mation or financial transactions.

• Multi-objective optimization. To balance multiple objec-
tives, such as execution time, computational cost, energy
consumption, and resource utilization, workflow scheduling
algorithms face several challenges. It is usually necessary to
build a performance database and employ different optimiza-
tion algorithms and heuristics to operate over this database,
and finally perform, e.g., Pareto optimization or trade-off
analysis.

Considerations for users’ challenges are important. Depending
on their expertise, users may face various difficulties throughout
the workflow execution process, from constructing the workflow to
managing data transfers, execution, and monitoring. Constructing
the workflow involves defining inputs, outputs, and dependencies,
along with cluster-specific execution parameters. Submission is
the most crucial point where a low-level knowledge of executed
programs may be required and must be performed thoroughly.

3 SOFTWARE ARCHITECTURE
k-Dispatch [4] provides HPC-as-a-service, ensuring automated and
failure-free job execution with advanced planning. Unlike other
WMSs, it targets users without prior computational science exper-
tise. Offering biomedical workflows, k-Dispatch handles execution
offloading, planning, and monitoring, alongside supporting mecha-
nisms like accounting, reporting, file transfers, and fault tolerance.
Deployed within k-Plan for transcranial ultrasound stimulation
(TUS) planning, it utilizes remote Czech and UK computational
resources.

The architecture of k-Dispatch, illustrated in Fig. 1, consists
of three main modules: the Web server, Dispatch database, and
Dispatch core. User applications, such as medical GUIs or web apps,
communicate with the Web server via HTTPS and REST API. The
Dispatch database contains information about users, submitted
workflows, computational resources, available executable binaries
and permissions, including performance data crucial for workflow
planning, HPC selection, and accounting. The Dispatch core is
pivotal, managing workflow planning, execution, and monitoring,
and communicating with HPC (PBS and Slurm-based) and cloud
facilities (AmazonWeb Services, Google Cloud) via SSH and RSYNC
protocols.

Developed under clinical standards, k-Dispatch adheres to strict
rules, undergoes thorough testing, and is versioned in a GitLab

repository. Only certified binaries are allowed in workflows, and
all data is anonymized and temporarily stored as needed.

Figure 1: Simplified architecture of k-Dispatch (DSM, Dis-
patch Server Module) showing its three essential modules -
Web Server, Dispatch Database including Performance Data-
base, and Dispatch Core, and their connection to user applica-
tions (TPM, Treatment Planning Module) and computational
resources (SEM, Simulation Execution Module).

Although being proposed for a set of predefined biomedical
workflows, k-Dispatch is not limited to them. k-Dispatch is based
on modular design and implements a so-called plug&execute ap-
proach. It allows easy extensions by adding (1) new computational
workflows, (2) task execution planning strategies and algorithms,
and (3) computing resources. Since k-Dispatch provides a simple
and well-documented interface in the form of Python virtual classes,
new functionality can be added by employing inheritance and poly-
morphism.

4 OPTIMIZATION OF EXECUTION
PARAMETERS

Before conducting experiments, we collected extensive performance
data covering various simulation sizes and execution parameters,
including conventional production domain sizes (ranging from
5123 to 10243 with low prime factors) and unconventional domain
sizes with high prime factors and suboptimal workload distribution
across ranks.

Optimization of execution parameters stands on a dynamically
updated performance database and four performance modules:
(1) Optimizer selects suitable execution parameters based on data
from the performance database using techniques such as genetic
algorithms or simulated annealing. (2) Estimator is invoked if the
collected performance data is incomplete or missing for a given
input. (3) Evaluator regularly assesses candidate workflows based
on predefined constraints and optimization criteria using a cluster
simulator. Finally, (4) Collector updates the performance database
after each successful completion of the workflow calculation.

For multi-objective optimization, we designed three fitness func-
tions: (a) Local (task-level) optimization, minimizing the execution
time per task and considering only one optimization criterion. The
overall execution time (makespan) may not be the fastest one due to
longer waiting times for free resources. (b) ) Global (workflow-level)
Optimization using on-Demand resource Allocations (GODA) balanc-
ing workflow makespan and cost with a trade-off coefficient. This
approach finds time or cost-constrained solutions as well as differ-
ently balanced solutions and is suitable for HPC centres. Finally,

2



k-Dispatch: Enabling Cost-Optimized Biomedical Workflow Offloading HPDC ’24, June 3–7, 2024, Pisa, Italy

(c) Global (workflow-level) Optimization using Static resource Allo-
cations (GOSA), minimizing latency without a trade-off coefficient,
suitable for cloud environments. [2]

Experimental results show that workflows with 64 tasks can be
optimized within 15 s with a 95% success rate using local optimiza-
tion, and within a minute using global optimization approaches.

The fitness function is encapsulated by the GA. The fitness func-
tion is, however, universal enabling the GA to be easily replaced by
different optimization methods. The encapsulating method repre-
sents a black box inside which the execution parameters are selected
based on the task input and collected performance data in history.
To obtain consistent results, all experiments were performed under
a static allocation of 64 computational nodes on IT4Innovations’
clusters1. The results were compared against the ALEA cluster sim-
ulator and a custom one-pass cluster simulator called Tetrisator [3].

In Estimator, we used linear (LI) and quadratic interpolation (QI)
methods to estimate the missing values. LI achieved promising re-
sults within an already seen single domain, achieving errors as low
as 4% on the training dataset but performance diminished consid-
erably on validation and testing datasets with errors escalating to
nearly 25%. QI managed to achieve a more consistent error rate of
10.5% across unseen domain sizes. Both LI and QI were selected for
k-Wave codes as they have O(𝑛 log𝑛) time complexity.

Therefore, we designed two other approaches using symbolic
regression (SR) and artificial neural networks (ANN) to estimate
the execution time of a single k-Wave task.

We utilized HeuristicLab [6], a framework for heuristic and evo-
lutionary algorithms, to train SR models. Custom operators tailored
to our workflows, including modulo operations and rounding func-
tions, were developed to extend HeuristicLab’s capabilities. To vali-
date the models, we employed a validation testing set to evaluate
performance on previously unseen data. Due to the time-intensive
nature of the training procedure, we utilized the Barbora HPC clus-
ter, where training a single parameter configuration typically took
between 10 and 20 hours.

The ANN utilizes the Tensorflow library within the Google Colab
environment. Data entering the ANN is first normalized using
the Normalization layer to adjust the mean to 0 and the standard
deviation to 1. The network architecture consists of a first layer with
12 neurons, followed by six repetitions of a fully connected layer
with the ReLU activation function and an active Dropout layer. The
final layer is a fully connected layer with one neuron, representing
the predicted output. This architecture was finalized after extensive
experimentation with hyperparameters and network architectures.

The experiments revealed a complementary relationship be-
tween both models. The SR model demonstrated impressive ac-
curacy, especially in scenarios optimized for the k-Wave toolbox,
achieving an average error of 5.64%. In broader situations where
domain sizes deviated from this policy, the trained ANN displayed
acceptable predictive capability, with an error margin of 8.25%.

5 CONCLUSIONS
This research notably improves the prediction of execution time
for distributed ultrasound simulations, emphasizing the correla-
tion between simulation size and resource allocation. Our genetic

1https://www.it4i.cz/en/infrastructure/barbora

algorithm-based optimization approach utilizes four performance
modules with the performance database. Central to multi-objective
optimization is the fitness function, for which we designed three
variations addressing diverse optimization criteria and computing
resources. Furthermore, we explored three methods to estimate
missing data in the performance database, assessing their efficacy.

In summary, our findings lay a strong foundation for future
developments in execution time prediction, with potential appli-
cations beyond ultrasound simulations. Notably, the approach is
adaptable. While interpolation methods are straightforward and
can be accurate, their error rate fluctuates. The Neural Network is
preferred for blind predictions, whereas the Symbolic Regression
model excels when specific factors like domain size factorization,
node occupancy, and load balance influence execution time.

Moving forward, integrating these modules into k-Dispatch will
enable fully automated optimization for ultrasound workflows,
greatly enhancing efficiency and resource management.

6 ACKNOWLEDGMENTS
This work was supported by the Ministry of Education, Youth and
Sports of the Czech Republic through the e-INFRA CZ (ID:90254).
This project has received funding from the European Unions Hori-
zon Europe research and innovation programme under grant agree-
ment No 101071008. This work was supported by Brno University
of Technology under project number FIT-S-23-8141.

REFERENCES
[1] Ewa Deelman, Karan Vahi, Mats Rynge, Rajiv Mayani, Rafael Ferreira da Silva,

George Papadimitriou, and Miron Livny. 2019. The Evolution of the Pegasus
Workflow Management Software. Computing in Science & Engineering 21, 4 (2019),
22–36. https://doi.org/10.1109/MCSE.2019.2919690

[2] Marta Jaros and Jiri Jaros. 2023. Optimization of Execution Parameters of Moldable
Workflows under Incomplete Performance Data. In Job Scheduling Strategies for
Parallel Processing. JSSPP 2022 (Lecture Notes in Computer Science, Vol. 13592).
Springer Nature Switzerland AG, 152–171. https://doi.org/10.1007/978-3-031-
22698-4_8

[3] Marta Jaros, Dalibor Klusacek, and Jiri Jaros. 2020. Optimizing Biomedical
Ultrasound Workflow Scheduling Using Cluster Simulations. In Job Schedul-
ing Strategies for Parallel Processing. JSSSP 2020 (New Orleans, US) (Lecture
Notes in Computer Science, Vol. 12326). Springer Nature Switzerland AG, 68–84.
https://doi.org/10.1007/978-3-030-63171-0_4

[4] Marta Jaros, E. Bradley Treeby, Panayiotis Georgiou, and Jiri Jaros. 2020. k-
Dispatch: A Workflow Management System for the Automated Execution of
Biomedical Ultrasound Simulations on Remote Computing Resources. In Pro-
ceedings of the Platform for Advanced Scientific Computing Conference, PASC
2020 (New York, US). Association for Computing Machinery, 1–10. https:
//doi.org/10.1145/3394277.3401854

[5] Bradley E Treeby and Ben T Cox. 2010. k-Wave: MATLAB toolbox for the sim-
ulation and reconstruction of photoacoustic wave-fields. Journal of Biomedical
Optics 15, 2 (2010), 21314.

[6] StefanWagner, Gabriel Kronberger, Andreas Beham, Michael Kommenda, Andreas
Scheibenpflug, Erik Pitzer, Stefan Vonolfen, Monika Kofler, Stephan Winkler,
Viktoria Dorfer, and Michael Affenzeller. 2014. Advanced Methods and Applications
in Computational Intelligence. Topics in Intelligent Engineering and Informatics,
Vol. 6. Springer, Chapter Architecture and Design of the HeuristicLab Optimization
Environment, 197–261.

[7] Yu-Feng Zhou, Ali Syed Arbab, and Ronald Xiaorong Xu. 2011. High intensity
focused ultrasound in clinical tumor ablation. World journal of clinical oncology 2,
1 (2011), 8–27. https://doi.org/10.5306/wjco.v2.i1.8

Received 21 March 2024; revised 19 April 2024; accepted 12 April 2024

3

https://doi.org/10.1109/MCSE.2019.2919690
https://doi.org/10.1007/978-3-031-22698-4_8
https://doi.org/10.1007/978-3-031-22698-4_8
https://doi.org/10.1007/978-3-030-63171-0_4
https://doi.org/10.1145/3394277.3401854
https://doi.org/10.1145/3394277.3401854
https://doi.org/10.5306/wjco.v2.i1.8

	Abstract
	1 Introduction
	2 Open Problems
	3 Software Architecture
	4 Optimization of Execution Parameters
	5 Conclusions
	6 Acknowledgments
	References

