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ABSTRACT
Noninvasive ultrasound surgeries represent a rapidly growing field
in medical applications. Preoperative planning often relies on com-
putationally expensive ultrasound simulations. This paper explores
methods to accelerate these simulations by reducing the compu-
tation time of the Fourier transform, which is an integral part of
the simulation in the k-Wave toolbox. Two experiments and their
results will be presented. The first investigates substituting the stan-
dard Fast Fourier Transform (FFT) with a Sparse Fourier Transform
(SFT). The second approach utilises filtering of the frequency spec-
trum, inspired by image compression algorithms. The aim of both
experiments is to find a suitable method for accelerating the Fourier
transform while utilising the sparsity of the spectrum in acoustic
pressure. Our findings show that filtering offers significantly bet-
ter results in terms of computation error, leading to a substantial
reduction in overall simulation runtime.

CCS CONCEPTS
• Computing methodologies → Massively parallel and high-
performance simulations.
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1 INTRODUCTION
The Fourier transform is a fundamental mathematical tool used to
convert signals from the time domain to the frequency domain. This
transformation is crucial for applications like image compression,
ultrasound imaging, or numerical calculation of derivation.

Widely used algorithm for computation of the Fourier trans-
form is Fast Fourier transform algorithm (FFT) [1]. This algorithm
reduces time complexity of the Fourier transform from 𝑂 (𝑁 2) to
𝑂 (𝑁 log𝑁 ) where 𝑁 is length of input signal, which is significant
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improvement compared to the original algorithm. While the Fast
Fourier Transform revolutionised the speed of calculating Fourier
transforms, it is not always necessary to compute all 𝑁 coefficients.
In some problems the spectrum contains only a few nonzero coef-
ficients or significant coefficients (that we are interested in) and
noise. An example of such a problem is GPS synchronisation [3].

This property of the signal is used by algorithm called the Sparse
Fourier transform (SFT). This algorithm expect the signal to contain
at most 𝑘 significant coefficients, where 𝑘 ≪ 𝑁 for the signal of
length𝑁 . This leads to lower time complexities compared to the FFT
that may be beneficial for some applications working with signals
with sparse spectral domain and large datasets or in real-time envi-
ronment. There are multiple implementations of SFT algorithms
that use various techniques to estimate Fourier coefficients from
sparse signals. Some of these implementations are universal, aiming
to identify the 𝑘 most significant coefficients across general signals,
while others exploit specific signal characteristics or operate within
defined domains of knowledge.

This paper explores possibility to accelerate ultrasound wave
propagation simulations in k-Wave toolbox [6] by involving some
sort of the Sparse Fourier transform algorithm that utilises infor-
mation about the simulation, such as transmitter frequency, me-
dia density, sound speed, etc. In these simulations, calculating the
Fourier transform typically consumes about 60% of the time in each
simulation step [4]. We specifically focus on applying the SFT to the
spatial pressure distribution. During the preplanning of ultrasound
surgeries, multiple simulations are executed to find the required
position of the transmitter (focus). By involving the SFT algorithm,
the overall time required to locate the position of the transmitter,
and thus the cost paid for computation resources, should decrease.
The following sections present two experiments and their results.
The first investigates the usage of the classic SFT approach by imi-
tating its functionality, computing the simulation step only with
the 𝑘 most significant coefficients. The second approach takes in-
spiration from image compression techniques, utilising filtering to
reduce the number of computed Fourier coefficients. The results
from these experiments will be used in ongoing research focused
on this topic.

2 PHYSICAL PROBLEM DESCRIPTION
To compute the ultrasoundwave propagation simulation, the k-Wave
toolbox uses the pseudo-spectral method with the Fourier basis
function. The idea of this method is to transform the solution of
the differential equation into a sum of certain basis functions. In
the spectral methods, the solution depends on the entire domain
compared to the finite-difference time domain methods where gra-
dient is computed base on the function value at the neighbour
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points. This makes the spectral method more accurate than local
methods [2].

The k-Wave toolbox is employed to run simulations based on
the following governing equations [6].

𝜕𝑢

𝜕𝑡
= − 1

𝜌0
∇𝑝

𝜕𝜌

𝜕𝑡
= −𝜌0∇ · 𝑢 − 𝑢 · ∇𝜌0

𝑝 = 𝑐20 (𝜌 + 𝑑 · ∇𝜌0 +
𝐵

2𝐴
𝜌2

𝜌0
− 𝐿𝜌 )

(1)

Equation (1) can be written in a discrete form using the k-space
pseudo-spectral method [5]. This equation is part of the spatial gra-
dient calculations based on the Fourier collocation spectral method.

𝜕

𝜕𝜉
𝑝𝑛 = F −1{𝑖𝑘𝜉𝜅𝑒𝑖𝑘𝜉 F {𝑝𝑛}} (2)

In Equation (2) for the Cartesian direction 𝜉 = 𝑥 in 𝑅1, 𝜉 = 𝑥,𝑦

in 𝑅2, F and F −1 denote the forward and inverse spatial Fourier
transform , 𝑖 is the imaginary unit, 𝑘𝜉 represents the wave num-
bers in the 𝜉 direction, and 𝜅 is the k-space operator defined as
𝜅 = 𝑠𝑖𝑛𝑐 (𝑐𝑟𝑒 𝑓 𝑘Δ𝑡/2), where 𝑐𝑟𝑒 𝑓 is a scalar reference sound speed.

In the actual implementation the Fast Fourier transform algo-
rithm is used to transform signal from spatial to spectral domain.
Each simulation step of the ultrasound propagation simulation
consists of 14 FFTs, that take significant part of the simulation [4].

3 EXPERIMENTS
All simulations presented in the following sections are computed
using the k-Wave toolbox. To evaluate the quality of experimental
simulations, a reference ultrasound wave propagation simulation
was created. This simulation will be used to compute the error in
acoustic pressure against the modified version of the simulation.
The simulation itself has a size of 10242 grid points and consists of
a parabolic ultrasound transmitter and a medium with four layers
representing water, skin, skull, and brain. The reference acoustic
pressure at the end of the simulation, along with its spectrum,
can be seen in Figure 1. For a correct interpretation of the results,
especially the images in the frequency domain, it is important to
mention that all images of the acoustic pressure contain the state
after the last simulation step has finished.
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(a) Time domain

Reference signal (freq. domain)
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(b) Frequency domain

Figure 1: The last step of the reference ultrasound wave
propagation in heterogeneous media.

3.1 Computing with 𝑘 most significant Fourier
coefficients

The goal of this experiment is to simulate the behaviour of the
Sparse Fourier transform algorithm, which computes only a given
number of the most significant coefficients. This was achieved by
using the actual implementation of the k-Wave, where immediately
after the computation of the FFT over the acoustic pressure, a
certain percentage of coefficients were zeroed out. The non-zero
coefficients left in the spectrum represent the significant coefficients
that would be found by the SFT algorithm.
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(a) Time domain

Normalised absolute error
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(b) Normalised absolute error

Figure 2: The last simulation step of the ultrasound wave
propagation in heterogeneous media effected by filtering

out 30% of the lowest-amplitude coefficients.
Filtered signal
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Normalised absolute error
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(b) Normalised absolute error

Figure 3: The last simulation step of the ultrasound wave
propagation in heterogeneous media effected by filtering

out 70% of the lowest-amplitude coefficients.

The results of this experiment have shown that by filtering out
30% of lowest coefficients (see Figure 2), the normalised absolute
error against the reference solution is on the order of 10−3, thus
the maximum error in focus is around 0.8%. On the other hand, in
the experiment where 70% of all coefficients were zeroed out (see
Figure 3), the final acoustic pressure distribution consisted only
of noise.

In the case of using the SFT in ultrasound wave propagation, the
number of significant coefficients that need to be found is relatively
high compared to the size of the domain. This could lead to longer
execution times due to the overhead caused by the nature of the SFT
algorithm, rather than using the actual solution in the form of FFT.
In this case, by reducing the number of significant coefficients in the
spectral domain that need to be estimated by SFT, the computation
error of the simulation increases rapidly.
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3.2 Efficient Fourier Transform Computation
via Filtering

This experiment was inspired by the process usually used in image
compression. When we look at the image in Figure 1b, it can be
observed that most of the coefficients are located at the centre of
the spectral domain, indicating that they represent low frequencies.
The idea is to use a mask, as shown in Figure 4, where the yellow
circle represents coefficients that will be computed (1) and the blue
coefficients that will be zeroed out (0).
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Figure 4: Filtration mask

The original simulation was modified so that after each com-
putation of the full FFT over the acoustic pressure, the spectral
domain is multiplied by the mentioned mask, and the result is used
within the actual simulation step. This process is repeated for each
simulation step.

The result of the simulation with this modification is shown in
Figure 5. It can be observed that most of the computation error
is located at the position of the transmitter and at the boundaries
of the media. This is caused by removing high frequencies that
represent sharp edges. Since the additive transmitter is used, even
though we filter out high frequencies, the transmitter persists in
the domain.

The number of coefficients that need to be computed is equal to
the number of yellow grid points in the filtrationmask. The radius of
the circle is 256 grid points, which means the circle contains 205 861
grid points. The number of grid points in the domain is 10242. This
means that approximately 80% of the coefficients can be zeroed out,
and approximately 20% of the coefficients are computed. This gives
us significantly better results than using the classic SFT approach
described in the first experiment, as the maximum error in focus in
the spatial domain is around 8.9%. Another advantage is removing
overhead of the SFT algorithm by specifying coefficients (using the
mask) that will be computed directly based on the transmitter and
domain properties.

4 CONCLUSION
The experiments have shown that by computing only coefficients
within a given mask that covers specific areas in the spectral do-
main, the accuracy of this simulation is significantly better than by
computing the same number of coefficients selected based on the
amplitude value. This may lead to a reduction in the time complex-
ity of the FFT used in simulations. The following research will focus
on solving challenges that come with this approach, such as trans-
mitter error reduction and the selection of the spectral coefficients
that will be computed and used during simulation.
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Filtered signal (freq. domain)
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(c) Frequency domain
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Figure 5: The last simulation step of the ultrasound wave
propagation in heterogeneous media effected by filtering

out coefficient using mask.
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