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Abstract—This study introduces a comprehensive system de-
signed to predict the execution time of k-Wave ultrasound
simulations, factoring in the domain size and allocated computing
resources. The predictive models, developed using symbolic
regression and neural networks, were trained on historical
performance data acquired from the Barbora supercomputer. For
domain sizes with optimal parameters, the symbolic regression
model outperformed, achieving an average error of 5.64%.
Conversely, the neural network showed commendable efficacy
in general domain scenarios, with an average error of 8.25%.
Notably, in both instances, the average error remained below the
10% threshold, aligning closely with the uncertainty inherent
in the measured data and the execution of real large-scale jobs.
Consequently, this predictive system is well-suited for deployment
in resource optimization frameworks, significantly enhancing the
efficiency of large-scale simulation executions.

Index Terms—Prediction of Execution Time, Moldable tasks,
Symbolic Regression, Neural Network, Supercomputer, Simula-
tion, k-Wave, Ultrasound, HeuristicLab.

I. INTRODUCTION

Biomedical ultrasound finds pivotal applications in the
dynamic landscape of cancer diagnosis and treatment ad-
vancements. Noteworthy applications include non-invasive ab-
lation of cancerous tissues, precision-targeted drug delivery,
diagnostic imaging, and neurostimulation for conditions like
epilepsy, Alzheimer’s, or Parkinson’s disease. In contrast to
conventional approaches such as biopsy, open surgery, and
radio- or chemo-therapy, ultrasound distinguishes itself by
being non-invasive, non-ionizing, and associated with fewer
post-treatment complications [1].

To customize therapeutic ultrasound procedures according
to individual patient requirements, it is essential to assess
complex physical models beforehand. One widely adopted
physical model within the global scientific community is the
open-source k-Wave toolbox designed for the time-domain
simulation of acoustic waves propagating in tissues in 1,
2, or 3 dimensions [2]. The toolbox has been optimized to
support various computing architectures, encompassing multi-
core processors, graphics processing units, and particularly,
distributed high-performance computing clusters consisting of
numerous computing nodes [3], [4].

Over the last decade, k-Wave has attracted a lot of interest
amongst biomedical physicists, ultrasonographers, neurolo-
gists, oncologists and other clinicians. Numerous applica-

tions of k-Wave have been reported in photoacoustic breast
screening [5] and transcranial brain imaging [6]. k-Wave has
also been used for exciting applications in HIFU, including
treatment planning of kidney [7], liver [8] and prostate tu-
mour ablations [9], ultrasound neurosurgery and targeted drug
delivery [10], and neurostimulation [11].

These applications demand intricate and resource-intensive
computations that typically surpass the capabilities of desktop
computers or small servers. Therefore, it becomes crucial
to delegate the computational workload to cloud or HPC
clusters. Furthermore, these applications are not characterized
by a single program execution; instead, they involve complex
computing workflows. To address the execution complexity of
ultrasound workflows, various workflow management systems,
including tools like k-Dispatch or Pegasus, have been devel-
oped [12], [13]. These systems aim to achieve three primary
objectives: (1) provide a user-friendly interface between users
and HPC facilities, shielding them from technical details, (2)
ensure efficient workflow execution in terms of time and
cost, and (3) monitor and account for workflow execution.
This paper specifically concentrates on the second objective:
efficient performance-cost execution of complex ultrasound
workflows on large-scale distributed computing clusters.

The physical models within the k-Wave toolbox are imple-
mented as distributed moldable programs. This allows users
to specify execution parameters based on program scaling,
input data size and complexity, or actual cluster utilization.
Execution parameters, in this context, refer to the amount of
computing resources (number of computing nodes or processor
cores) assigned to a particular task. However, as performance
scaling is never perfect, the computing cost may increase
with the amount of resources used. Performance scaling may
also exhibit various oscillations, rendering some execution pa-
rameter configurations ineffective due to workload imbalance.
It’s also worth noting that the scaling behavior in general is
strongly influenced by processor architecture, memory sub-
system and interconnection. Moreover, data collected on one
system is usually not portable across different systems.

Given the finite nature of available resources and the com-
petition among users and workflows for these resources, it
is critical to optimize the resource allocation for each task
in the workflow. Numerous strategies have been developed
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for fine-tuning the execution parameters of specific tasks.
These include approaches like Greedy Algorithms, Simulated
Annealing, and Genetic Algorithms, which focus on various
objectives such as minimizing total execution time, reducing
computational costs, improving cluster utilization, and de-
creasing queuing times [14]–[16].

These algorithms typically involve generating candidate
solutions that define the execution parameters for individual
tasks. These solutions are then evaluated by a cluster simulator,
which measures the effectiveness of the workflow schedules
against specific goals like execution time, cost, and queuing
times, while complying with cluster execution policies and
considering task priorities and dependencies.

However, prior to this evaluation, it’s crucial to accurately
estimate or predict the task execution time based on the
chosen execution parameters and the type of simulation. This
prediction is challenging due to the vast state space involved,
as the simulation domain can vary in size from something as
small as a fingertip to as large as an entire abdomen or head,
and the computing resources can range from a single CPU
core to hundreds of nodes with tens of thousands of cores.

Therefore, the primary objective of this paper is to develop
a robust method that can reliably predict the execution time
for a specific ultrasound task, considering its input data and
execution parameters.

II. PROPOSED TECHNIQUE

This section provides a comprehensive explanation of the
simulation code, the focal point for estimating execution
time. Following this, the process involved in gathering and
preprocessing the data for training, validation, and testing
will be meticulously outlined. Finally, we present two unique
predictors and delve into the nuances of their implementation.

A. Performance Behaviour of k-Wave Simulations

The k-Wave distributed simulation code employs the Mes-
sage Passing Interface (MPI) to facilitate collaboration among
multiple computing processes, enabling them to work together
by exchanging messages over the network. This approach
involves decomposing and distributing the simulation domain
across the cooperating processes, inherently represented as a
Cartesian grid. Typically, the domain size varies between 128
and 2048 grid points in one direction.

To achieve parallelism, the simulation domain is partitioned
into 2D slabs that are distributed among specific computing
processes, referred to as ranks in MPI terminology. Each rank
is mapped to a single computing core, and the application
can span across hundreds of computing nodes (see Fig. 1).
However, the slab decomposition imposes a limitation on the
suitable number of ranks, restricting it to integer divisors of
the z domain size. Choosing any other number may result in
workload imbalance, as some ranks would have to process
more slabs than others.

The strong scaling [17] of the code is determined by the time
complexity of each simulation step. As k-Wave functions as

running the actual simulation following the discrete
equations discussed in Section 2.2, and storing the out-
put data. The post-processing phase involves analysing
the (potentially large) output files and presenting this
data in a human-readable form. Here, the discussion is
focused primarily on the parallel implementation of the
simulation phase. Some discussion of the pre- and
post-processing stages is given in Section 5.

The discrete equations solved during the simulation
phase are given in equations (4a) to (4d) and equation
(6). Examining these equations, the data stored in mem-
ory during the simulation phase comprises of twenty-
one real 3D matrices defined in the spatial domain, and
three real and three complex 3D matrices defined in the
spatial Fourier domain (in addition to vector and scalar
values). The 3D matrices contain the medium proper-
ties at every grid point, the time-varying acoustic quan-
tities, the derivative and absorption operators and
temporary storage. The operations performed on these
datasets include 3D FFTs, element-wise matrix opera-
tions, injection of the source signal and the collection of
output data.

The implementation of the discrete equations was
written in C++ as an extension to the open-source k-
Wave acoustics toolbox (Treeby and Cox, 2010a;
Treeby et al., 2012). The standard message passing
interface (MPI) was used to perform all interprocess
communications, the MPI version of the FFTW library
was used to perform the Fourier transforms (Frigo and
Johnson, 2005) and the input/output (I/O) operations
were performed using the hierarchical data format
(HDF5) library. To maximise performance, the code
was also written to exploit single instruction multiple
data (SIMD) instructions such as streaming SIMD

extensions (SSE). Further details of the implementation
are given in the following sections.

3.2 Domain decomposition and the FFT

To divide the computational domain across multiple
interconnected nodes in a cluster, a one-dimensional
domain decomposition approach was used in which the
3D domain is partitioned along the z-dimension into
2D slabs. The slabs are then distributed over P MPI
processes, where each MPI process corresponds to one
physical CPU core. The total number of processes is
constrained by P � Nz, where Nz is the number of
grid points in the z-dimension (and thus the number of
slabs). This decomposition approach was used as it is
directly supported by the FFTW library, while other
approaches, such as 2D partitioning are not.

Figure 3 shows how the various spatial data struc-
tures are distributed to processes. For each 3D matrix
there are a maximum of Nz=Pd e 2D slabs stored on
each process. For 1D quantities oriented along the z-
axis, the data is partitioned and scattered over the pro-
cesses in a similar manner. For 1D quantities oriented
along either the x- or y-axis (and for scalar quantities),
the data is broadcast and replicated on every process.
The exception is for the source and sensor masks, which
list the grid indices where the input data is defined and
where the output data is collected. These are distributed
such that individual processes are assigned the portion
of the list that corresponds to parts of the source and/
or sensor that fall within its local section of the domain.
As the source and sensor masks do not usually cover
the whole domain, many processes are likely to receive
no source or sensor related data.

Figure 3. Illustration of the 1D slab decomposition used to partition the 3D domain within a distributed computing environment.
The 3D matrices are partitioned along the z-dimension and distributed over P MPI processes. 1D vectors oriented along the x- and
y-dimensions are broadcast, while the vectors along the z-dimension are scattered. All scalar variables are broadcast and replicated
on each process.
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Fig. 1. Domain decomposition of the 3D simulation space in the distributed
version of the k-Wave solver. The simulation space is divided into 2D slabs
distributed among the computing processes [3].

a pseudospectral wave equation solver, its performance heav-
ily depends on the computation of Fast Fourier Transforms
(FFTs). Approximately 60% of the execution time is dedicated
to calculating 3D FFTs. The remaining computations involve
element-wise matrix operations with linear time complexity.
Consequently, the code exhibits an asymptotic time complexity
of O(N logN), dictated by the FFT.

However, the performance of FFT is not uniform across
arbitrary domain sizes. It is well-established that optimal
performance is achieved only for domain sizes that can be
factorized into small primes (2, 3, 5, and 7) [18]. Otherwise,
the computation time can increase by an order of magnitude.

Additionally, the distributed 3D FFT necessitates a global
data exchange in the form of matrix transposition. This sig-
nificantly impacts the interconnection network. The number
of messages to be exchanged grows with P 2, where P
represents the number of ranks. Furthermore, as the number
of ranks increases, the messages become smaller, leading to
reduced network bandwidth and increased latency. Since no
distributed cluster offers a full interconnection, there is always
competition over the interconnection links between messages,
making accurate prediction of the execution time challenging.

Another factor influencing k-Wave’s performance is the
distribution of ranks over computing nodes. k-Wave is es-
tablished as a memory-bound application, suggesting that
it is often advantageous to underpopulate computing nodes
by leaving some computing cores unused. This approach
prevents memory congestion and allows for the utilization of
more computing nodes, thereby achieving higher aggregated
network bandwidth. However, since it is not feasible to allocate
node partitions, users can only specify an integer number of
nodes to be assigned to the computation. The optimal number
of ranks is then calculated by following equations as a highest
domain size factor smaller than the product of an assigned
number of nodes and cores per node, see Eq. (1).

ranks = max(factor(Nz) < cores ∗ nodes) (1)

occupation =
⌈ranks/nodes⌉

cores
(2)

imbalance =
Nz mod ranks

ranks
(3)
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Here, Nz represents the number of grid points along the z
direction, cores denotes the number of cores per node, and
nodes signifies the assigned number of nodes. Occupancy is
calculated as the fraction of active cores and load imbalance as
the fraction of fully underutilized ranks (with full workload).

For instance, consider a simulation domain size of 10243

and an HPC system with 36 cores per node, aiming to use 15-
18 nodes. The core range is 540-648, with the largest 1024
divisor being 512, leading to a node occupancy of 0.948 (15
nodes) to 0.79 (18 nodes). The ranks are evenly distributed,
and each processes 2 slabs, resulting in perfect load balance.
However, in cases like distributing this domain across 300
ranks in 10 nodes, we see an occupancy rate of 0.83 and a
load imbalance of 0.413, leading to 6 idle cores per node and
uneven slab allocation among ranks.

Fig. 2 illustrates the strong scaling efficacy of the k-Wave
solver. The number of ranks is chosen to maximize occupancy
and minimize load imbalance. This figure elucidates the vari-
ation in computational time as the number of allocated com-
puting nodes increases for different cube simulation domains.
While the scaling trends are near-ideal (implying that doubling
the resources halves the computation time), it’s important to
note that the curve’s slope and steps are influenced by factors
such as occupancy and load imbalance, in accordance with
Eqs. (2) and (3). Additionally, the increasing communication
overhead also plays a significant role in this scaling behavior.

B. Collection of Performance Data

Given the impracticality of collecting a comprehensive data-
set for every combination of simulation domain size and
the assigned number of computing nodes, a representative
dataset was gathered. The target HPC system, where k-Wave
was deployed is the Barbora cluster. Barbora consists of 201
compute nodes, totaling over 7 thousand compute cores with
44TB RAM. Nodes are interconnected through a fully non-
blocking fat-tree InfiniBand network.

The dataset used for training includes 1,813 instances of
the k-Wave simulation. The simulations covered a total of 39
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Fig. 2. Strong scaling performance of the distributed k-Wave solver across
various domain sizes (highest factor indicated in brackets) and different
numbers of computing nodes.

different domain sizes ranging from 1283 to 30723 grid points,
consisting of 27 cubes, 10 prisms, and 2 cuboids. Seven of
these dimension sizes exhibited suboptimal factorization into
prime numbers (factors exceeding 7). For each domain size,
simulations were executed using 1 to 32 computing nodes.
Among the 1,813 instances, 414 cases indicated non-ideal
distribution of the domain across available nodes.

Gathering performance data is both time and cost-intensive
in our context. In fact, the collection of the performance
dataset utilized almost 4,000 node hours on the Barbora
cluster, equating to over 10,000 USD.

For each instance, the following features were recorded:
• Nx – Number of grid points along the x direction,
• Ny – Number of grid points along the y direction,
• Nz – Number of grid points along the z direction,
• Fx – Highest prime factor of Nx,
• Fy – Highest prime factor of Ny,
• Fz – Highest prime factor of Nz,
• Nodes – Number of assigned nodes,
• Ranks – Number of assigned MPI ranks,
• Occupancy – Fraction of used cores, Eq. (2),
• Imbalance – Fraction of underutilized ranks, Eq. (3),
• Time – Execution time per simulation time step in ms.

C. Filtration of Performance Data

In the process of data collection, an extensive and varied
database encompassing diverse simulation sizes and execution
parameters was compiled. The database incorporates conven-
tional production domain sizes (cubes ranging from 5123 to
10243 with low prime factors) as well as more unconventional
domain sizes with high prime factors and suboptimal distribu-
tion across ranks.

Nevertheless, this diversity has the potential to introduce
noise into the training dataset and diminish the model’s quality
for suitable domain sizes and well-distributed scenarios. To
address this, three distinct data filters were devised:

1) cubes, denoted as C,
2) suitable factor, denoted as F ,
3) suitable decomposition, denoted as D.

These filters result in eight distinct datasets:
1) no filter (-),
2) cubes only (C),
3) domains with suitable factor (F ),
4) domains with suitable decomposition (D),
5) domains with suitable factor and decomposition (FD),
6) cubes with suitable factor (CF ),
7) cubes with suitable decomposition (CD),
8) cubes with suitable factor and decomposition (CFD).
Each dataset is subsequently partitioned into a training set

(70%), a validation set (15%), and a testing set (15%).

D. Symbolic Regression Approach

The first approach used to predict the execution time of the
distributed k-Wave simulation is based on symbolic regression.
Symbolic Regression (SR) [19] is a type of regression analysis
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[20] that aims to find a mathematical expression or formula
that best describes the relationship between variables in a given
dataset. In our scenario, we are investigating the correlation
between the size of the simulation domain, its factorization,
decomposition, and the mapping onto computing nodes con-
cerning the execution time of the simulation.

Unlike traditional regression methods used in our previ-
ous research that typically use predefined functional forms
(e.g., linear, quadratic), the SR algorithm explores a space of
mathematical expressions, combining mathematical operations
and functions, to create a formula that best fits the observed
data. The goal is to find a symbolic expression that not only
accurately represents the training data but also generalizes
well to new, unseen data. Wilstrup et al. demonstrated that
symbolic regression is well-suited for solving problems with
limited datasets, which is particularly crucial in our case [21].

For training SR models, we employed HeuristicLab, a
framework for heuristic and evolutionary algorithms developed
by members of the Heuristic and Evolutionary Algorithms
Laboratory since 2002 [22]. HeuristicLab offers a range of
methods based on genetic programming [23], including vari-
ous recombination operators and search space strategies.

The training process utilized the training dataset discussed
in Section II-C. For validation and comparison purposes with
other techniques, the validation testing set was employed to
assess the algorithm’s performance on previously unseen data.

Given the time-intensive nature of the training procedure,
a clean virtual machine running Windows 11 and HeuristicLab,
utilizing the QEMU virtualization toolkit, was deployed on
the Barbora cluster. This setup allowed for the simultaneous
execution of multiple instances, each running on a 36-core
node with 192GB of memory. Typically, training a single
parameter configuration required between 10 and 20 hours.

Each training run was constrained to a maximum of 1
million generations, with each generation consisting of 100
individuals and the preservation of the best-performing indi-
vidual (elitism). The regression tree’s maximum height was

Fig. 3. Illustration of the best symbolic regression model for the dataset
including only cubes with suitable factor and decomposition.

limited to 16 and the size of the tree to 42 nodes. The mutation
probability was set at 10%. All other parameters, including the
optimization algorithm and tree interpreter, were maintained
at their default settings. After a comprehensive evaluation, the
mean square error function was adopted as the error (fitness)
function. An example of regression tree is depicted in Fig. 3.

While HeuristicLab provides numerous mathematical oper-
ators, we extended its capabilities by developing a new plugin
that introduces operators specifically tailored to our task. These
operators encompass modulo operations, rounding up, down,
and to the nearest integer. The final set of operators to be used
in regression tree nodes includes:

• arithmetic operations (+, -, *, ÷),
• modulo,
• rounding (up, down, to the nearest integer),
• exponential function,
• logarithm,
• constant,
• input variable multiplied by a constant,
• power functions (square, cube, square root, cube root,

general power, general root),
• conditional if-then-else statement,
• comparison (>, <),
• logical operators (and, or, not, xor).

E. Artificial Neural Network Approach

The second approach is based on Artificial Neural Network
(ANN) [24]. The Tensorflow library was used to create and
train ANNs in the Google Colab environment allowing to
execute calculation on hardware accelerators.

The structure of the ANN is show in Listing 1. The data
entering the ANN is first normalized using the Normalization
layer, which adjusts the data to have a mean of 0 and a standard
deviation of 1. The first layer of the ANN consists of 12
neurons according to the features defined in Sec. II-B. After
that, a fully connected layer with the ReLU activation function
and a Dropout layer, which is active only during training, is
repeated 6 times. At the end, there is a final fully connected
layer with one neuron, whose value represents the predicted
output. This specific architecture was kept fixed after extensive
experimentation involving hyperparameter adjustments and
various network architectures. The mean square error function
was again adopted as the error function.

The training utilized the Adam optimizer [25] with a step
size parameter of 10−4. To prevent overtraining and limit
training time, the early stopping technique was employed to
terminate the model training if the error on the validation
dataset remained unchanged for the last 500 iterations. How-
ever, the inclusion of Dropout layers extended the required
number of epochs. Each of the 8 filtered datasets was used to
train the ANN, and the training process was halted as soon as
the validation loss remained unchanged for 500 epochs. Fig. 4
depicts the training and validation error trends during training
on all the data without any filtering.
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model = tf.keras.Sequential([
normalizer,
tf.keras.layers.Dense(256, activation=’relu’),
tf.keras.layers.Dropout(0.1),
tf.keras.layers.Dense(256, activation=’relu’),
tf.keras.layers.Dropout(0.1),
tf.keras.layers.Dense(256, activation=’relu’),
tf.keras.layers.Dropout(0.1),
tf.keras.layers.Dense(256, activation=’relu’),
tf.keras.layers.Dropout(0.1),
tf.keras.layers.Dense(256, activation=’relu’),
tf.keras.layers.Dropout(0.1),
tf.keras.layers.Dense(256, activation=’relu’),
tf.keras.layers.Dropout(0.1),
tf.keras.layers.Dense(1),

])

Listing 1. Architecture of the Artificial Neural Network.

III. EXPERIMENTAL RESULTS

In this chapter, we examine the accuracy of the developed
models by comparing the real and predicted execution times.
Initially, we discuss the general accuracy, highlighting how it
varies with the applied data filters. Subsequently, we delve into
two representative cases, detailing the model accuracy across
training, validation, and testing datasets. Lastly, we present
graphs comparing real and predicted scaling for domain sizes
in the testing set (which were not previously exposed to the
models), specifically tailored for the Barbora supercomputer.

A. Prediction Accuracy and Data Filtration Dependence

Table I concisely presents the average relative errors for both
models evaluated across various datasets, filtered as outlined
in Sec. II-C. These average errors were computed across all
domain sizes and over the computing node range from 1 to
32. For clarity and conciseness, only the final model’s error
box plot is shown in Fig. 9. Additionally, Fig. 5 provides a
succinct representation of the errors encountered in the testing
datasets.

Fig. 4. Training and validation error of the ANN on the complete dataset
without any filtering.

In the context of both validation and testing datasets, SR
has shown enhanced precision in execution time estimates,
especially for datasets with domain sizes amenable to effective
factorization into small prime numbers. It also tends to yield
superior outcomes for cubic domain configurations.

Conversely, ANN demonstrates a notable proficiency in
scenarios where domain sizes include large prime factors,
a situation where the FFT library’s efficiency markedly re-
duces, leading to less predictable execution times. Interest-
ingly, excluding instances of inefficient decompositions did
not substantially improve the accuracy for any of the models.
This outcome is possibly attributed to the robustness of the
load imbalance feature, which seems to adeptly capture and
represent this particular complexity.

B. Prediction Accuracy for Selected Cases

This section provides an in-depth analysis of specific
datasets. Table II presents the average prediction errors for
domain sizes with suitably small prime factors (up to 7). This
subset is crucial since representing typical use cases.

Both models can be trained with a reasonably small error
on the training dataset. The error produced by SR is around
5% with only a few outliers, namely the domain size of 5123

where the execution time is significantly overshot. ANN is
also able to capture the scaling of training dataset reasonably
well. The validation set, however, exhibits significantly higher
error, especially for ANN. Better results were achieved for the
testing dataset, which clearly show the SR is better for these
domain sizes.

Fig. 6 shows the real and predicted execution times for
cubic domain of 10243 grid points. The scaling is precisely
predicted by the SR with the average relative error of 4.78%.

TABLE I
THE AVERAGE RELATIVE PREDICTION ERROR OBSERVED IN SPECIFIC

PERFORMANCE DATASETS OVER ALL DOMAIN SIZES.

Filter Type Dataset SR ANN

1. No filter
Training 13.70% 9.35%
Validation 9.31% 10.33%
Testing 13.55% 8.25%

2. Cubes
Training 7.78% 7.79%
Validation 9.90% 34.42%
Testing 9.97% 17.50%

3. Suitable Factor
Training 5.58% 5.75%
Validation 11.26% 21.71%
Testing 5.64% 12.46%

4. Suitable Decomposition
Training 18.62% 6.32%
Validation 22.51% 6.49%
Testing 15.16% 11.84%

5. Suitable Factor and
Decomposition

Training 7.27% 7.50%
Validation 14.01% 15.45%
Testing 7.48% 19.38%

6. Cubes with Suitable
Factor

Training 10.25% 5.99%
Validation 11.65% 19.11%
Testing 8.85% 21.16%

7. Cubes with Suitable
Decomposition

Training 14.53% 6.83%
Validation 16.38% 13.90%
Testing 17.77% 7.83%

8. Cubes with Suitable
Factor and Decomposition

Training 8.93% 7.11%
Validation 7.94% 27.72%
Testing 5.68% 23.25%
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Fig. 5. Visualization of the average relative errors in trained models across
datasets subjected to various filters. The datasets are arranged in order of
increasing error magnitude as determined by the symbolic regression model.

All steps on the original curve are very well captured. The
execution time is slightly overestimated, which is the better
case, since execution run is not terminated prematurely. In
contrast, the ANN’s predictions for the scaling curve are
considerably less accurate (error of 14.4%), characterized by
a substantial underestimation of execution time and a slight
delay in identifying the step points.

A similar pattern is evident in the cuboid simulation domain,
see Fig. 7. SR here attains an error rate of 8.14%, leading to
a more pronounced overestimation for 8 to 10 nodes, and the
creation of two spurious steps in the scaling curve, absent in
the original. This discrepancy is likely due to the significant
size difference between the Ny and Nz sizes. While the
ANN model successfully approximates the general trend of the

TABLE II
THE RELATIVE ERROR OF BOTH MODELS ON SELECTED DOMAIN SIZES
WITH SUITABLE FACTORS. THE TRAINING, VALIDATION AND TESTING

DATASETS HAD 24, 4 AND 4 DIFFERENT SIMULATION SIZES.

Training dataset
Domain size Factors SR Error ANN Error

256× 256× 1536 {2}, {2}, {2,3} 5.19% 12.13%
256× 256× 2048 {2}, {2}, {2} 8.66% 12.56%
432× 432× 1728 {2,3}, {2,3}, {2,3} 4.33% 6.87%

5123 {2} 14.88% 7.29%
7563 {2,3,7} 4.69% 5.13%
7683 {2,3} 3.41% 3.42%
8103 {2,3,5} 2.51% 7.16%
9603 {2,3,5} 5.34% 4.22%
12803 {2,5} 6.21% 2.48%
20483 {2} 3.10% 4.00%

Validation dataset
256× 256× 1024 {2}, {2}, {2} 13.48% 50.41%
384× 384× 1024 {2,3}, {2,3}, {2} 15.59% 32.13%
512× 512× 1024 {2}, {2}, {2} 11.53% 30.37%

6753 {3,5} 10.12% 13.70%
Testing dataset

384× 384× 1536 {2,3}, {2,3}, {2,3} 8.14% 13.05%
5763 {2,3} 7.99% 15.24%
8963 {2,7} 3.17% 6.12%
10243 {2} 4.78% 14.40%
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Fig. 6. Analysis of real vs. predicted execution times for a domain size of
10243 and 1-32 computing nodes utilizing SR and ANN models trained on a
filtered dataset with suitable factors. Domain taken from the testing dataset.

curve, it underestimates the values. Notably, it fails to detect
the step at 10 nodes and introduces an anomalous fluctuation
at 24 nodes, resulting in elevated errors for larger node counts.
In total, the average prediction error reaches 13.05%.

Table III shows the prediction error for the complete per-
formance dataset, which includes cases with substantial prime
factors of 13 and 23. Analysis of the testing datasets indicates
that the ANN yields more uniform predictions, especially in
scenarios involving higher prime factors. In scenarios where
the largest factor is 23, the SR model demonstrates a tendency
to underestimate execution time, with a significant margin of
approximately 30.49%, which represents a critical issue in
terms of accuracy and reliability. The data also suggests that
the performance dataset might not be sufficiently extensive to
train both models for precise scaling predictions. However, as
previously noted, compiling this dataset is resource-intensive.

Fig. 8 shows the comparison of the real and predicted scal-
ing on a domain of 7363 grid points. It is immediately evident
how much SR underestimates the execution time. However,
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Fig. 7. Analysis of real vs. predicted execution times for a domain size of
384× 384× 1536 and 1-32 computing nodes utilizing SR and ANN models
trained on a filtered dataset with suitable factors. Domain taken from the
testing dataset.
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TABLE III
THE RELATIVE ERROR OF BOTH MODELS ON A UNFILTERED DATASET. THE

TRAINING, VALIDATION AND TESTING DATASETS HAD 29, 5 AND 5
DIFFERENT SIMULATION SIZES.

Training dataset
Domain size Factors SR Error ANN Error

256× 256× 2048 {2}, {2}, {2} 19.23% 22.48%
384× 384× 1024 {2,3}, {2,3}, {2} 23.37% 16.69%
384× 256× 1536 {2,3}, {2,3}, {2,3} 8.11% 9.74%

6483 {2,3} 16.14% 7.22%
6503 {2,5,13} 10.46% 12.70%
7563 {2,3,7} 11.99% 7.67%
8003 {2,5} 5.96% 7.94%
8323 {2,13} 7.33% 8.73%
10243 {2} 5.79% 2.91%
20483 {2} 4.24% 3.96%

Validation dataset
384× 512× 1536 {2,3}, {2}, {2,3} 6.70% 7.08%
512× 512× 1536 {2}, {2}, {2} 11.91% 7.21%
512× 512× 2048 {2}, {2}, {2} 14.91% 11.96%

6753 {3,5} 7.05% 8.59%
7043 {3,11} 11.80% 15.48%

Testing dataset
6403 {3,5} 17.92% 10.82%
7363 {3,23} 30.49% 5.42%
8103 {2,3,5} 4.22% 6.34%
8403 {2,3,5,7} 4.89% 6.09%
15363 {2} 8.45% 8.49%

the shape of the curve is captured very well. ANN almost
perfectly matches the scaling for the number of computing
nodes higher than 4.

C. Summary and Discussion

The presented results show that both models complement
each other. This necessitated the development of a composite
model, leveraging both algorithms for specific scenarios. The
accuracy of this model, as illustrated in the box plot of Fig.
9, demonstrates notable efficiency. For domains with suitable
factors, the error margin is kept below 5.64%, while for more
general cases, the error does not exceed 8.25%.
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Fig. 8. Analysis of real vs. predicted execution times for a domain size of
7363 (factor of 23) and 1-32 computing nodes utilizing SR and ANN models
trained on the unfiltered dataset. Domain taken from the testing dataset.

This methodology marks a substantial advancement over our
prior model, which relied on linear and quadratic interpolation
techniques. In the case of cubic domains with small prime
factors, linear interpolation demonstrated promising results,
achieving errors as low as 4% on the training dataset. However,
its performance diminished considerably on the validation
and testing datasets, with errors escalating to nearly 25%.
Conversely, quadratic interpolation managed to attain a more
consistent error rate of 10.5%. Despite these improvements,
it’s important to note that both techniques exhibited signifi-
cantly higher error rates, deemed unacceptable, in scenarios
involving domains with large prime factors.

A comparable methodology was employed in [26], con-
centrated on estimating the execution time of data processing
tasks within HPC systems. Mirroring our approach, Bielecki’s
study involved compiling a performance database using typical
input data and then applying polynomial regression, as well as
support vector and k-nearest neighbor regression techniques.
Despite conducting these tasks on a single node, Bielecki
reported average error rates ranging from 34% to 40%

In a related study, Phinjaroenphan [27] extended the scope
to include executions on multiple nodes. Focusing on the
execution time prediction for a matrix-matrix multiplication
task, the author utilized the k-nearest neighbors algorithm and
reported an estimation error of approximately 25%.

A seminal work on execution time prediction was pre-
sented in [28]. This publication corroborates that the tech-
nique outlined in our paper aligns well with current state-
of-the-art methodologies, yielding estimations that are within
the measurement uncertainty range typical for HPC systems,
approximately around 10%.

IV. CONCLUSIONS

This research has been pivotal in advancing the prediction
of execution time for distributed ultrasound simulations, with a
primary focus on the interplay between simulation size and re-
source allocation. Through the establishment of a performance
database, two machine learning models were trained. The
Symbolic Regression model exhibited commendable accuracy,
particularly in scenarios optimized for the k-Wave toolbox
and adhering to its internal domain size factorization policy,
achieving an average error of 5.64%. In more generalized
situations, where domain sizes deviate from this policy, the
trained Neural Network demonstrated acceptable predictive
capability with an error margin of 8.25%.
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SR model (Factor Filter)

ANN model (No filter)

Prediction Error [%] 

Fig. 9. Box plot summarizing the prediction error over every case from a
testing dataset.
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When comparing these results with our prior execution time
estimation technique, which incorporated linear and quadratic
splines, the estimation accuracy has improved from 25%
and 10.5% respectively [29]. This enhancement represents a
significant improvement, contributing to more effective job
placement and reduced queueing times.

In summary, the outcomes of this study provide a solid
foundation for future advancements in execution time predic-
tion, with potential applications extending beyond the realm
of ultrasound simulations. A notable strength of this approach
is its adaptability. The Neural Network is preferred for blind
predictions, while the Symbolic Regression model is effective
when specific features, such as domain size factorization, node
occupancy, and load imbalance, influence execution time.

Looking ahead, the development and implementation of
this prediction system are prepared to take two significant
directions. The first objective is to incorporate this prediction
system into the k-Dispatch workflow management system [12].
This integration is anticipated to enable a fully automated op-
timization process for ultrasound workflows, significantly en-
hancing efficiency and resource management. Post-integration,
the performance database will be enriched in real-time with
data from successfully completed tasks. This ongoing data
collection will facilitate continual refinement of the models,
providing a more robust and comprehensive training dataset.
Moreover, this adaptive model will extend its applicability
to a variety of simulation codes and computing systems,
broadening the scope and impact of this research.
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