
On the usage of the Sparse Fourier Transform in ultrasound
propagation simulation

Ondrej Olsak
iolsak@fit.vutbr.cz

Faculty of Information Technology
Brno University of Technology

Brno, Czech Republic

Jiri Jaros
jarosjir@fit.vutbr.cz

Faculty of Information Technology
Brno University of Technology

Brno, Czech Republic

ABSTRACT
The Fourier transform is an algorithm for transforming the signal
from the space/time domain into the frequency domain. This algo-
rithm is essential for applications like image processing, communi-
cation, medicine, differential equations solvers, and many others.
In some of these applications, most of the Fourier coefficients are
small or equal to zero. This property of the signals is used by the
Sparse Fourier transform which estimates significant coefficients of
the signal with a lower time complexity than the Fourier transform.
The goal of this paper is to evaluate available implementations of
the Sparse Fourier transform on a set of benchmarks solving the
ultrasound wave propagation in 1D, 2D, and 3D heterogeneous
media. The results show that the fastest available implementation
in 1D domains is MSFFT, however, it is not possible to use it in
our implementation of the 2D Sparse Fourier transform. Thus the
AAFFT 0.9 is selected for our implementation of the 2D Sparse
Fourier transform as the most stable and acceptably fast implemen-
tation. The results on 3D simulation data show, that by using the
SpFFT library it is possible to reduce the computation time of the
Fourier transform in ultrasound wave propagation simulation.

CCS CONCEPTS
• Computing methodologies → Massively parallel and high-
performance simulations.

KEYWORDS
Fourier transform, Sparse Fourier transform, high performance
computing, k-Wave, ultrasound wave propagation
ACM Reference Format:
Ondrej Olsak and Jiri Jaros. 2023. On the usage of the Sparse Fourier Trans-
form in ultrasound propagation simulation. In 2023 the 10th International
Conference on Bioinformatics Research and Applications (ICBRA) (ICBRA
2023), September 22–24, 2023, Barcelona, Spain. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3632047.3632064

This work is licensed under a Creative Commons Attribution International
4.0 License.

ICBRA 2023, September 22–24, 2023, Barcelona, Spain
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0815-2/23/09
https://doi.org/10.1145/3632047.3632064

1 INTRODUCTION
The Fourier transform is a widely used algorithm for transforming
signals from time to frequency domain and analyzing their spectral
representation. Applications of the Fourier transform take place
in multiple areas including medicine applications like magnetic
resonance [20], ultrasound imaging [25], solving of differential
equations [23], or numerical calculation of derivation [26]. Since
the Fourier transform allows calculation of the derivation more
precisely than other methods, such as localized finite difference
methods [13], thus it makes it suitable for usage in the ultrasound
wave propagation simulation.

The time complexity of the Fourier transform algorithm is𝑂 (𝑁 2),
which is not suitable for long-time series. To reduce the time com-
plexity of the Fourier transform, the Fast Fourier transform algo-
rithm (FFT) [7] was introduced. This algorithm reduces compu-
tational time complexity from 𝑂 (𝑁 2) to 𝑂 (𝑁 log𝑁), which is a
significant improvement against the original algorithm. Although
the Fast Fourier transform algorithm significantly reduced the time
necessary to compute the Fourier transform, it is not always nec-
essary to compute all Fourier coefficients, especially if from the
nature of the problem there are only a few nonzero coefficients
in the frequency domain. One example of such a problem is GPS
synchronization [11]. The synchronization process produces only
a single spike in the time domain. To find this spike the Sparse
Inverse Fourier transform was used. Another application using
the sparse property of the input signal is a Time-Based Analog-to-
Digital converter [29] working for signals with 3% sparse frequency
domain.

The sparsity of the signal means, that the signal has only at most
𝑘 significant coefficients, where 𝑘 << 𝑁 for the signal of length 𝑁 .
The rest of the coefficients are usually zero (for exactly sparse sig-
nals) or negligible (for approximately sparse signals) representing
noise in the processed signal. A good example of a sparse signal in
the frequency domain is monochromatic light or a single-frequency
transmitter. This signal property is exploited by the Sparse Fourier
transform (SFT) algorithms. The Sparse Fourier transform can find
significant coefficients with lower than 𝑂 (𝑁 log𝑁) time complex-
ity. The algorithm usually consists of three main steps frequency
bucketization, frequency estimation, and collision resolution [24].
Multiple algorithms are performing the SFT with different tech-
niques and time complexity [18], for example, sFFT 2.0 [12], AAFFT
[15], DMSFT [22] andmany others which varies in noise robustness,
time complexity and accuracy.

In this paper, some of the available implementations of the SFT
will be selected and used to compute the Sparse Fourier transform
in the last step of the ultrasound wave propagation simulation. In

107

https://orcid.org/0000-0002-9098-962X
https://orcid.org/0000-0002-0087-8804
https://doi.org/10.1145/3632047.3632064
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3632047.3632064
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3632047.3632064&domain=pdf&date_stamp=2024-02-27

ICBRA 2023, September 22–24, 2023, Barcelona, Spain Ondrej Olsak and Jiri Jaros

the simulations, we focus on a spatial pressure distribution so the
last simulation step was selected to get more dense input samples.
The number of coefficients of the signal in a frequency domain
increases during simulation time due to signal decay, absorption,
dispersion, and reflection. During this process, physical phenomena
like reflection, refraction, and diffraction occur.

In the following sections, the experiments over the 1D signals
concerning computation accuracy and execution time will be de-
scribed. After the evaluation of the 1D implementations, one of
them will be chosen and used in an implementation of the 2D SFT
to evaluate possible usage of the Sparse Fourier transform on 2D
signals with a focus on computation accuracy. At the end the SpFFT
[2] (3D SFT library) will be evaluated on 3D simulation samples.

2 PROBLEM SPECIFICATION
Ultrasound simulations are used in many areas from industry to
medicine. One of the rapidly emerging and critically deployed is
preoperative treatment planning of ultrasound surgery. To run
the simulation, the k-Wave toolbox [28] based on the following
governing equations is used [28].

𝜕𝑢

𝜕𝑡
= − 1

𝜌0
∇𝑝

𝜕𝜌

𝜕𝑡
= −𝜌0∇ · 𝑢 − 𝑢 · ∇𝜌0

𝑝 = 𝑐20 (𝜌 + 𝑑 · ∇𝜌0 +
𝐵

2𝐴
𝜌2

𝜌0
− 𝐿𝜌)

(1)

Equation (1) can be written in a discrete form using the k-space
pseudospectral method [27]. This equation is part of the spatial gra-
dient calculations based on the Fourier collocation spectral method.

𝜕

𝜕𝜉
𝑝𝑛 = F −1{𝑖𝑘𝜉𝜅𝑒𝑖𝑘𝜉 F {𝑝𝑛}} (2)

In Eq. (2) for the Cartesian direction 𝜉 = 𝑥 in 𝑅1, 𝜉 = 𝑥,𝑦 in
𝑅2, F and F −1 denote the forward and inverse spatial Fourier
transform , 𝑖 is the imaginary unit, 𝑘𝜉 represents the wave numbers
in the 𝜉 direction, and 𝜅 is the k-space operator defined as 𝜅 =

𝑠𝑖𝑛𝑐 (𝑐𝑟𝑒 𝑓 𝑘Δ𝑡/2), where 𝑐𝑟𝑒 𝑓 is a scalar reference sound speed.
There are several approaches to solve mentioned differential

equations such as pseudo-spectral method [28], finite-difference
time-domain method [14], etc.

The k-Wave toolbox uses the pseudo-spectral method with the
Fourier basis function, which means that a significant portion of
the simulation is spent on the computation of the Fourier transform.
This makes it a suitable tool for reducing simulation time by using
the SFT algorithm.

The idea of pseudo-spectral methods is to transform the solution
of the differential equation into a sum of a certain basis function.
In the finite-difference time-domain methods, the gradient is com-
puted based on the function values at the neighbor points. The more
points are used, the more accurate the derivative estimation is. In
spectral methods, the solution depends on the entire domain which
makes them more accurate than local methods [10]. In k-Wave, the
Fourier collocation spectral method is used [28]. In this method the
derivative is much more accurate, thus the finer sampling around
3-5 grid points as opposed to 15-20 for finite difference methods

can be used. This reduce the memory requirements 100 times in 3D
domain. Additionally, thanks to the k-space correction, a relatively
long step can be chosen, with a CFL (Courant-Friedrichs-Lewy)
number of 0.3. This means that only three steps are needed to move
the wave by one grid point.

In the current implementation, the Fast Fourier transform algo-
rithm is used to find the signal’s coefficients in the spectral domain.
Computation of the ultrasound propagation simulation consists of
many simulation time steps requiring 14 FFTs to be computed in
each time step, which contributes to 60% of the simulation time
spent by computing the Fourier transform [17]. This means that the
Fourier transform takes a significant part of the simulation time.

When the transmitter with a single frequency is used, the signal
will spread across the medium and new frequencies will accrue
during simulation time. Primarily on the edges of different media
due to the change of propagation speed and reflection on the edges
of two media.

The assumption is that it should be possible to decrease the
computation time by using the Sparse Fourier transform algorithm.
To answer the question about the possibility of the usage of the SFT,
the experiments on the one, two, and three-dimensional domains
will be performed and evaluated in the following sections.

3 ONE-DIMENSIONAL SPARSE FOURIER
TRANSFORM

At the beginning of this section, freely available one-dimensional
SFT algorithm implementations will be shortly introduced followed
by the experiments and their evaluation. All of the following imple-
mentations have two common input parameters. The length of the
signal 𝑁 and the number of significant coefficients 𝑘 . This means
that number of significant coefficients must be known before the
transform execution.

3.1 Ann Arbor Fast Fourier Transform (AAFFT)
The Ann Arbor Fast Fourier Transform algorithm [15] comes in
two variants.

AAFFT 0.5, the implementation of the FADFT-1 [8] with the time
complexity 𝑂 (𝑘2 · 𝑝𝑜𝑙𝑦𝑙𝑜𝑔(𝑁)) and AAFFT 0.9 that is implementa-
tion of FADTF-2 [9] with the time complexity 𝑂 (𝑘 · 𝑝𝑜𝑙𝑦𝑙𝑜𝑔(𝑁)).
The difference is that FADTF-2 uses the unequally spaced Fourier
transform meaning multiplication of some 𝑘 × 𝑘 submatrix of the
𝑁 × 𝑁 Fourier matrix by a length-k vector [9].

In experiments, AAFFT 0.9 was used. The implementation relies
on twenty user-defined parameters thus, its usage requires a lot of
parameter tuning. These parameters affect the accuracy and com-
putation time of the algorithm. It is impossible to run experiments
with all combinations of these twenty input parameters. Therefore,
the parameters with the highest impact on the execution time and
precision were selected and changed during our experiments, the
other parameters were set to a default value. The changing parame-
ters affect the number of coefficient estimation cycles, the number
of Taylor series coefficients, and the number of input samples used
in the estimation phase of the algorithm.

108

On the usage of the Sparse Fourier Transform in ultrasound propagation simulation ICBRA 2023, September 22–24, 2023, Barcelona, Spain

3.2 Gopher Fast Fourier Transform (GFFT)
The Gopher Fast Fourier Transform [5] implementation comes in
four variants with different algorithms [5][16] for finding and esti-
mating coefficients of the input signal. All variants take advantage
of aliasing phenomena.

Table 1: Time complexity of different GFFT implementations

Implementation name Runtime complexity
GFFT-det-slow 𝑂 (𝑁 · 𝑘 · log2 𝑁)
GFFT-det-fast 𝑂 (𝑘2 · log4 𝑁)

GFFT-rand-slow 𝑂 (𝑁 · log𝑁)
GFFT-rand-fast 𝑂 (𝑘 · log5 𝑁)

A detailed explanation of differences between all mentioned
variants can be found in [16]. Table 1 shows the time complexity of
different GFFT implementations. Tested implementation requires
only one input parameter controlling the accuracy of the Monte-
Carlo algorithm to be set by the user.

3.3 Discrete Michigan State Fourier Transform
algorithm (DMSFT)

The Discrete Michigan State Fourier Transform algorithm [22] was
derived from the previously mentioned GFFT algorithm. It’s time
complexity is 𝑂 (𝑘2 · log

11
2 𝑁). This algorithm uses the multiscale

error correction to estimate coefficients in noise signals [19]. The
implementation of this algorithm requires three user-defined pa-
rameters. First gives the number of points used in convolution,
second the first main prime number in the sampling scheme, and
third controls the number of sets of prime numbers in the sampling
scheme.

3.4 Multiscale Sub-linear Time Fourier
Transform (MSFFT)

The Multiscale Sub-linear Time Fourier algorithm [6] runs in a time
complexity 𝑂 (𝑘 · log𝑘 · log 𝑁

𝑘
) on average. This implementation

has four input parameters. The idea of the MSFFT algorithm is the
alike principle of analog-to-digital conversion where a value of the
signal can be estimated with high precision by using coarse binary
quantization. The authors recommended suitable values for these
parameters to achieve a good balance between speed and accuracy.

3.5 Experiments
To evaluate the libraries, the k-Wave toolbox [28] to simulate ul-
trasound propagation in a 1D grid was used. Simulations with a
different number of media were run to get inputs with various
numbers of significant coefficients. The transmitter was set to a
single frequency to get the simplest simulation. The input signals
are shown in Fig. 1. To reduce the amount of noise in the input
signal, all coefficients smaller than -50dB were filtered out before
the benchmark execution. In real simulations, the threshold of the
noise is given by the parameters of the perfectly matched layer
(PML) that gives us computation accuracy. The number of media in
real simulations is around 30 for segmented data and 256 for data
from computed tomography [21].

(a) Homogeneous media
(1 medium)

(b) Heterogeneous media
(2 media)

(c) Heterogeneous media
(3 media)

(d) Heterogeneous media
(4 media)

Figure 1: Last step of the linear wave propagation simulation
performed by the k-Wave toolbox. The X axis represents
grid points(distance) and Y axis represents amplitude.

As mentioned before, all implementations require the number
of most significant coefficients to search for as an input parameter.
To get this value, the Fourier transform was applied to the filtered
input signal to get the number of the most significant coefficients
𝑘 . The number of coefficients in each input signal is the following:
one for homogeneous media, 13 for two media, 16 for three media,
and 18 for four media.

The field of our interest was the computation time and accuracy
of the result in form of 𝐿2 and 𝐿𝑖𝑛𝑓 error that are defined as follow:

𝐿2𝐸𝑟𝑟𝑜𝑟 =

√√∑𝑁
𝑖=0 |𝑦2𝑖 − 𝑥2

𝑖
|∑𝑁

𝑖=0 𝑦
2
𝑖

(3)

𝐿∞𝐸𝑟𝑟𝑜𝑟 =𝑚𝑎𝑥 (|𝑥𝑖 − 𝑦𝑖 |) (4)

As the reference library, FFTW3 [1], which is a de-facto standard
in FFT calculation Fast Fourier transform algorithm was used. The
sizes of the input domain were 𝑁 = 220, 222, 224, 226, 228 with the
input file size from 8MB up to 2048MB. As mentioned before, all
these implementations have some parameters, that influence the
execution time and accuracy. We run multiple simulations to select
the parameters that have the best balance between execution time
and accuracy. For each parameter, an interval was selected, and
the step by which the parameter is increased within the interval
(eg. 𝐼 =< 0, 1 > and 𝑠𝑡𝑒𝑝 = 0.2 results in a vector of parameter
𝑝 = {0, 0.2, 0.4, 0.6, 0.8, 1}). Each implementation was then run with
all combinations of these parameters over each input signal. The
run with the smallest error and the best execution time was selected
as the final value. The table of parameters is attached in appendix
A. All simulations were computed on a single compute node of the

109

ICBRA 2023, September 22–24, 2023, Barcelona, Spain Ondrej Olsak and Jiri Jaros

210 212 214 216 218 220 222 224 226 228
Domain size

10−4

10−3

10−2

10−1

100

101

102

Ti
m
e
[s
]

Com utation time with s arsity k = 1
AAFFT
DMSFT

FFTW
MSFFT

GFFT-Subdet
GFFT-Superdet

(a) Homogeneous media
(1 medium)

210 212 214 216 218 220 222 224 226 228
Domain size

10−4

10−3

10−2

10−1

100

101

Ti
m
e
[s
]

Com utation time with s arsity k = 13
AAFFT
DMSFT

FFTW
MSFFT

GFFT-Subdet
GFFT-Superdet

(b) Heterogeneous media
(2 media)

210 212 214 216 218 220 222 224 226 228
Domain size

10−4

10−3

10−2

10−1

100

101

Ti
m
e
[s
]

Com utation time with s arsity k = 16
AAFFT
DMSFT

FFTW
MSFFT

GFFT-Subdet
GFFT-Superdet

(c) Heterogeneous media
(3 media)

210 212 214 216 218 220 222 224 226 228
Domain size

10−4

10−3

10−2

10−1

100

101

Ti
m
e
[s
]

Com utation time with s arsity k = 18
AAFFT
DMSFT

FFTW
MSFFT

GFFT-Subdet
GFFT-Superdet

(d) Heterogeneous media
(4 media)

Figure 2: Execution time of SFT implementations on signal
of length between 2𝑥 - 2𝑦 with sparsity k = {1, 13, 16, 18}.

Barbora supercomputer [3]. This node is equipped with two Intel
Cascade Lake 6240, 2.6GHz, and 192GB of RAM.

Before we look at the results, it is important to mention that all
graphs with the results are in the logarithmic scale and the number
of coefficients in the signals is extremely low compared to the sizes
of the input signal.

The results are shown in Figure 2. First, the MSFFT implementa-
tion outperforms all of the other implementations over all given
inputs. Second, the AAFFT is the most stable implementation con-
cerning the signal size. With the increasing size of the signal, this
implementation’s execution time is almost constant, which proba-
bly depends on how efficiently the given implementation estimates
the coefficients concerning the number of used signal samples.
Finally, almost all of the measured implementations outperform
FFTW3 on large input domains except GFFT-Superdet. Measured
𝐿2 and 𝐿𝐼𝑛𝑓 errors of the SFT implementations are shown in Fig.
3. We can see that all implementations have an acceptable level of
error (except of the AAFT on the second simulation), which is in
the case of ultrasound propagation simulation 𝐿𝐼𝑛𝑓 <= 10−5. All
computations were made with double precision values.

We can notice that there are no values for GFFT in the error
charts and the execution time measurement is not complete for
this library in heterogeneous media. The reason is the initialization
process of the GFFT library. To execute the benchmark over the SFT
algorithm implementation, it is necessary to load the signal into
the structures of the SFT algorithm implementation. The implemen-
tation of the GFFT algorithm does not allow an easy way to load
the whole input signal because the sampling and other operations
are performed during the initialization process. The GFFT source
code allows benchmarking where the user selects a number of coef-
ficients and level of noise and GFFT creates only samples necessary

for its computation. Thus processing the whole input of this size

1 13 16 18
Number of significan coefficien s k

10−12

10−10

10−8

10−6

L 2
 e

rro
r

L2 error on inpu size N=220

AAFFT
DMSFT

MSFFT
GFFT-Subdet

GFFT-Superdet
Max L2

(a) 𝐿2 error

1 13 16 18
Number of significant coefficients k

10−11

10−9

10−7

10−5

10−3

L I
nf
 e
rro

r

LInf error on in ut size N=220

AAFFT
DMSFT

MSFFT
GFFT-Subdet

GFFT-Superdet
Max Linf

(b) 𝐿𝑖𝑛𝑓 error

Figure 3: 𝐿2 and 𝐿𝑖𝑛𝑓 error of different SFT implementations
on the 1D signal with 220 samples

leads to a long initialization process in the case of heterogeneous
media so we were not able to measure the results of this library on
bigger inputs due to the time-consuming initialization process.

The 𝐿𝑖𝑛𝑓 error of almost all of the evaluated implementations
is on the values, that allow their usage in ultrasound propagation
simulation. Even if the error of each step were summed up, the
simulation 𝐿𝑖𝑛𝑓 error would be lower than 10−5 in 1000 simulation
time steps. The speedup against FFTW [1] is in the case of MSFFT
[6] on the order of 10.000x, and in the case of AAFFT 0.9 [15] 82x
for a signal with 4 media and the size of 228.

4 TWO-DIMENSIONAL SPARSE FOURIER
TRANSFORM

The process of computation of 2D SFT is schematically described in
Figure 4. The algorithm of the two-dimensional Fourier transform
uses a one-dimension Fourier transform in the following way. In
the first step, the one-dimensional Fourier transform is applied to
each row in the 2D domain. After the first step, each row contains
the results of the one-dimensional Fourier transforms. In the second
step, the Fourier transform algorithm is called on the results from
the first step but in a column direction.

Figure 4: Usage of one-dimensional FFT to create
two-dimensional FFT.

For the implementation of the two-dimensional SFT, we needed
a 1D SFT implementation, that meets some requirements. The im-
plementation should be able to fill 𝑘 most significant coefficients
with zeros in case the selected 𝑘 for a given dimension is larger

110

On the usage of the Sparse Fourier Transform in ultrasound propagation simulation ICBRA 2023, September 22–24, 2023, Barcelona, Spain

than the real number of nonzero coefficients. The selected imple-
mentation should be able to compute the Fourier transform over
all rows and columns without the need to change or modify its
settings (input parameters). And the final requirement is that the
algorithm implementation allows acceptable integration for usage
in the two-dimensional variant of the SFT.

20 40 60 80 100 120 140

50

100

150

200

(a) Part of the skull

50 100 150 200 250 300

50

100

150

200

250

300

350

400

450

(b) Full skull

Figure 5: Last step of ultrasound propagation simulation on
the real data 5a focus in part of the head, 5b focus in full

head image.

Based on the results from the previous section, we decided to
select AAFFT 0.9. This SFT implementation, as the only one from
the presented implementations (3), meets all requirements and
is suitable for our proof of concept 2D SFT implementation. The
reasons why other libraries were not chosen are the following. The
GFFT has no suitable implementation for use in two-dimensional
SFT (the initialization process is the main issue here). MSFFT is not
able to fill the final number of 𝑘 with zeros and DMSFT requires
separate settings for almost every row and column.

To verify the possibility of using the SFT on the real simulation
data the 2D implementation of the SFTwas used on two real samples
of ultrasound wave preparation in a human head. The first one,
see Fig. 5a, (denote as SimP_2D) represents the last step of the
simulation on the cutout of the human head. The second one, see
Fig. 5b, (denote as SimF_2D) is the last step of the simulation in the
domain with a full human skull.

We run multiple experiments over each simulation with decreas-
ing number of the most significant coefficients which we looked
for (parameter 𝑘) and with differently filtered signals where all
coefficients that are lower than the given value (-50dB up to -90dB)
were filtered out. Fig. 6 shows 𝐿2 error and Fig. 7 shows 𝐿𝑖𝑛𝑓 error
for differently filtered input signal.

It can be observed that 𝐿2 error does not reach the required
value even with an increasing number of coefficients (parameter 𝑘).
The AAFFT 0.9 was not able to estimate coefficients with higher
precision even with different parameter settings. In a simple test
simulation in homogeneous media, the 𝐿2 error was reached. On
the other hand, the required value of the 𝐿𝑖𝑛𝑓 error is satisfied when
𝑘 is between 64 - 96 for SimP_2D and 96 - 128 for SimF_2D. It is
important to mention that value of the 𝐿2 error depends on the size
of the domain, base on it’s definition in the Eq. 3.

When looking at Fig. 8, the execution time of our proof of concept
2D SFT implementation is somewhere between 47 to 65 minutes.
The AAFFT 0.9 is not a thread safe library, thus it is not possible to
perform 1D SFT over rows/columns in parallel. The second cause of

such a long execution time is the fact that the number of coefficient
estimation iterations had to be increased to achieve better accuracy.

32 64 96 128 160 192 224 256 288 320
Number of significant coefficients k

10−4

10−3

10−2

10−1

L 2
 e

 o

L2 e o on pa t of the skull of 512x512 g id points
coefs > -50dB
coefs > -60dB
coefs > -70dB
coefs > -80dB
coefs > -90dB
Max L2

(a) 𝐿2 error for part of the skull

32 64 96 128 160 192 224 256 288 320
Number of ignificant coefficient k

10−4

10−3

10−2

10−1

100

L 2
 e
rro

r

L2 error on a full kull of 512x512 grid point
coef > -50dB
coefs > -60dB
coef > -70dB
coef > -80dB
coef > -90dB
Max L2

(b) 𝐿2 error for full skull

Figure 6: 𝐿2 error of the 2D SFT in double precision

32 64 96 128 160 192 224 256 288 320
Number of significant coefficients k

10−9

10−8

10−7

10−6

10−5

10−4

10−3

L i
nf
 e

 o

Linf e o on pa t of the skull of 512x512 g id points
coefs > -50dB
coefs > -60dB
coefs > -70dB
coefs > -80dB
coefs > -90dB
Max Linf

(a) 𝐿𝑖𝑛𝑓 error for part of the skull

32 64 96 128 160 192 224 256 288 320
Number of ignificant coefficient k

10−9

10−8

10−7

10−6

10−5

10−4

10−3

L i
nf
 e
rro

r

Linf error on a full kull of 512x512 grid point
coef > -50dB
coefs > -60dB
coef > -70dB
coef > -80dB
coef > -90dB
Max Linf

(b) 𝐿𝑖𝑛𝑓 error for full skull

Figure 7: 𝐿𝑖𝑛𝑓 error of the 2D SFT in double precision

32 64 96 128 160 192 224 256 288 320
Number f significant c efficients k

47.5

50.0

52.5

55.0

57.5

60.0

62.5

65.0

Ex
ec
ut
i
n
tim

e
[m

in
]

Executi n time n part f the skull f 512x512 grid p ints

c efs > -50dB
c efs > -60dB
c efs > -70dB
c efs > -80dB
c efs > -90dB

(a) Part of the skull

32 64 96 128 160 192 224 256 288 320
Number of significant coefficients k

47.5

50.0

52.5

55.0

57.5

60.0

62.5

65.0

Ex
ec
ut
io
n
tim

e
[m

in
]

Execution time on a full skull of 512x512 grid oints

coefs > -50dB
coefs > -60dB
coefs > -70dB
coefs > -80dB
coefs > -90dB

(b) Full skull

Figure 8: Execution time of the 2D SFT implementation

The number of coefficients in the spectral domain is variable
during the simulation, where the signal may spread across a media
with a different sound speed and density. For the usage of the Sparse
Fourier transform in ultrasound propagation simulation, it will be
necessary to use some iterative approach to estimate an unknown
number of coefficients in each row/column of the media to achieve
a two-dimensional Fourier transform with a given accuracy.

5 THREE-DIMENSIONAL SPARSE FOURIER
TRANSFORM

For a three-dimensional SFT, we were able to find the SpFFT[2]
library. SpFFT implements a three-dimensional Sparse Fourier trans-
form with the support of OpenMP, MPI, CUDA, and ROCm. There
is support for both single and double precision implementation.

111

ICBRA 2023, September 22–24, 2023, Barcelona, Spain Ondrej Olsak and Jiri Jaros

2 4 6 8
Node count

2−6

2−5

2−4

2−3

2−2

2−1

20

21

T
m

e
[s

]

Backward transform n s ngle prec s on

2 4 6 8
Node count

2−5

2−4

2−3

2−2

2−1

20

21

22

T
m

e
[s

]

Backward transform n double prec s on

2 4 6 8
Node count

2−5

2−4

2−3

2−2

2−1

20

21

T
m

e
[s

]

Forward transform n s ngle prec s on

2 4 6 8
Node count

2−5

2−4

2−3

2−2

2−1

20

21

22

T
m

e
[s

]

Forward transform n double prec s on

SFT - 2623, (P262)
FFTW - 2623, (P262)

SFT - 5023, (F502)
FFTW - 5023, (F502)

SFT - 4723, (P472)
FFTW - 4723, (P472)

SFT - 9223, (F922)
FFTW - 9223, (F922)

Figure 9: Execution time of the SpFFT for the different
number of computation nodes.

Three-dimensional simulation is the main simulation used for
treatment planning, thus the experiments were executed over unfil-
tered real 3D simulation data (last simulation step) to get as close to
the real conditions as possible. First, two simulations in the domain
with a cutout of the human head were taken. The size of these simu-
lations is 2623 and 4723 with input sizes 1GB and 4 GB. Let’s denote
them as P262 and P472 respectively. The second two simulations
with the domain containing a full human head were taken. The
simulation domain sizes are 5023 and 9223 with input sizes 1.25GB
and 6.5GB. Let’s denote them as F502 and F922 respectively. As the
reference the FFTW3 [1] library was used. The measurement was
executed at Karolina cluster [4] on one up to eight computation
nodes, where each of them is equipped with two AMD Zen 2 EPIC
7H12, 2.6GHz, and 256GB of RAM.

The results in Table 2 show that in double precision the SpFFT
library meets the required precision unlike for single precision.
When we look at the computation speedup in Table 3 for forward
transform and in Table 4 for backward transform it can be observed,
that in some cases this library is more than two times faster for for-
ward transform and almost two times faster for backward transform
than FFTW3 that is currently used in ultrasound wave propagation
simulation.

6 CONCLUSION
The performance and accuracy of several SFT algorithm implemen-
tations on the last step of one-dimensional ultrasound propagation
simulation were measured. After the evaluation of the selected 1D
SFT implementations, AAFFT 0.9 was chosen as a suitable 1D SFT
implementation for our experimental two-dimensional SFT. In the
final section, the SpFFT implementation of the three-dimensional
SFT was measured on unfiltered real simulation data.

Table 2: 𝐿2 and 𝐿𝑖𝑛𝑓 error of the 3D SFT implementation in
Single precision (SP) and Double precision (DP) on the real
data samples after forward and backward transformation.

P262 F502 P472 F922
𝐿2 error SP 7.71𝑒−4 1.09𝑒−3 7.27𝑒−4 8.60𝑒−4
𝐿𝑖𝑛𝑓 error SP 6.33𝑒−2 1.12𝑒−1 8.41𝑒−2 1.47𝑒−1

𝐿2 error DP 4.08𝑒−8 3.20𝑒−8 2.91𝑒−8 3.62𝑒−8
𝐿𝑖𝑛𝑓 error DP 1.60𝑒−10 1.46𝑒−18 1.89𝑒−18 3.12𝑒−18

Table 3: Forward transformation speedup of the 3D SFT
against 3D FFTW on the real data samples.

Node cnt 1 2 3 4 5 6 7 8
P262 0.76 0.89 0.27 0.56 0.72 0.57 0.78 0.97
F502 1.13 0.42 1.33 0.91 1.14 0.94 1.25 1.37
P472 0.81 0.57 1.84 0.67 1.14 0.93 1.26 1.27
F922 2.24 2.48 1.89 1.32 1.70 1.76 1.81 1.44

Table 4: Backward transformation speedup of the 3D SFT
against 3D FFTW on the real data samples.

Node cnt 1 2 3 4 5 6 7 8
P262 0.40 0.27 0.32 0.34 0.47 0.38 0.60 0.46
F502 0.84 0.40 1.04 0.50 0.70 0.88 1.10 1.00
P472 0.51 0.37 0.94 0.54 0.66 0.85 1.04 0.90
F922 1.86 1.00 1.56 1.02 1.51 1.55 1.58 1.14

The results have shown that MSFFT is in given cases the fastest
implementation with time around 10−4 seconds and 𝐿𝑖𝑛𝑓 error
around 10−11. Unfortunately, MSFFT was not able to fill 𝑘 coeffi-
cients with zeros which eliminates it from being used in 2D SFT
implementation. The results have also shown that the accuracy and
computation time of each library is highly dependent on the values
of the input parameters.

In the 2D variant of SFT, the sparsity of the signal in each
row/column of the 2D domain is different, thus the results with
differently filtered input signals were provided. The measurements
have shown the 2D SFT can be used on the real simulation data
while reaching 𝐿𝑖𝑛𝑓 error below 10−10. In the case of the 3D input
data, the results show that SpFFT is more than two times faster
for forward transform and almost two times faster for backward
transform while holding the required computation precision.

The results indicate that using the Sparse Fourier transform in
k-Wave [28] ultrasound propagation simulation should be possible
while holding a given computation accuracy. This may lead to lower
simulation time, thus reducing the time of the treatment planning.

However, there are some goals to achieve. First, remove the
dependency of the 1D SFT on the knowledge of the number of
coefficients in the spectral domain of the input signal and expensive
parameter tuning before transform execution. Second, the 2D SFT
implementation using existing 1D SFT is currently fully sequential,
which leads to a long computation time that does not allow us to
run full simulations with the use of this 2D SFT implementation.

112

On the usage of the Sparse Fourier Transform in ultrasound propagation simulation ICBRA 2023, September 22–24, 2023, Barcelona, Spain

This paper provides an answer which concludes with the state-
ment that it is theoretically possible to use SFT in the ultrasound
propagation simulation. This paper should be the starting point
for the future acceleration of the ultrasound wave propagation
simulation in the k-Wave toolbox.

ACKNOWLEDGMENTS
This work was supported by the Ministry of Education, Youth and
Sports of the Czech Republic through the e-INFRA CZ (ID:90254).
This project has received funding from the European Unions Hori-
zon Europe research and innovation programme under grant agree-
ment No 101071008. This work was supported by Brno University
of Technology under project number FIT-S-23-8141.

REFERENCES
[1] 2014. FFTW home page. https://www.fftw.org/
[2] 2019. SpFFT Documentation. https://spfft.readthedocs.io/en/latest/
[3] 2023. IT4I technical information of the Barbora supercomputer page. https:

//www.it4i.cz/en/infrastructure/barbora
[4] 2023. IT4I technical information of the Karolina supercomputer page. https:

//www.it4i.cz/en/infrastructure/karolina
[5] I. Ben Segal and M. A. Iwen. 2010. Signal Approximation via the Gopher Fast

Fourier Transform. AIP Conference Proceedings 1301, 1 (2010), 494–502. https://doi.
org/10.1063/1.3526650 arXiv:https://aip.scitation.org/doi/pdf/10.1063/1.3526650

[6] Andrew Christlieb, David Lawlor, and Yang Wang. 2013. A Multiscale Sub-linear
Time Fourier Algorithm for Noisy Data. https://doi.org/10.48550/ARXIV.1304.
4517

[7] James W. Cooley and John W. Tukey. 1965. An Algorithm for the Machine
Calculation of Complex Fourier Series. Math. Comp. 19, 90 (1965), 297–301.
http://www.jstor.org/stable/2003354

[8] Anna Gilbert, Sudipto Guha, Piotr Indyk, Senthilmurugan Muthukrishnan, and
Martin Strauss. 2002. Near-optimal sparse Fourier representations via sampling.
Conference Proceedings of the Annual ACM Symposium on Theory of Computing,
152–161. https://doi.org/10.1145/509907.509933

[9] Anna Gilbert, Senthilmurugan Muthukrishnan, and Martin Strauss. 2004. Im-
proved Time Bounds for Near-Optimal Sparse Fourier Representations. Proceed-
ings of SPIE - The International Society for Optical Engineering 5914 (01 2004).
https://doi.org/10.1117/12.615931

[10] S. Gottlieb and D. Gottlieb. 2009. Spectral methods. Scholarpedia 4, 9 (2009), 7504.
https://doi.org/10.4249/scholarpedia.7504 revision #91796.

[11] Haitham Hassanieh, Fadel Adib, Dina Katabi, and Piotr Indyk. 2012. Faster GPS
via the Sparse Fourier Transform. In Proceedings of the 18th Annual International
Conference on Mobile Computing and Networking (Istanbul, Turkey) (Mobicom
’12). Association for Computing Machinery, New York, NY, USA, 353–364. https:
//doi.org/10.1145/2348543.2348587

[12] Haitham Hassanieh, Piotr Indyk, Dina Katabi, and Eric Price. 2012.
Simple and Practical Algorithm for Sparse Fourier Transform. In Pro-
ceedings of the 2012 Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA). 1183–1194. https://doi.org/10.1137/1.9781611973099.93
arXiv:https://epubs.siam.org/doi/pdf/10.1137/1.9781611973099.93

[13] A. Hosokawa. 2005. Simulation of ultrasound propagation through bovine
cancellous bone using elastic and Biot’s finite-difference time-domain meth-
ods. The Journal of the Acoustical Society of America 118, 3 (2005), 1782–1789.
https://doi.org/10.1121/1.2000767 arXiv:https://doi.org/10.1121/1.2000767

[14] A. Hosokawa. 2005. Simulation of ultrasound propagation through bovine
cancellous bone using elastic and Biot’s finite-difference time-domain methods.
The Journal of the Acoustical Society of America 118, 3 (09 2005), 1782–1789.
https://doi.org/10.1121/1.2000767 arXiv:https://pubs.aip.org/asa/jasa/article-
pdf/118/3/1782/15275850/1782_1_online.pdf

[15] Mark Iwen, Anna Gilbert, and And Strauss. 2007. Empirical evaluation of a
sub-linear time sparse DFT algorithm. Communications in Mathematical Sciences
5 (01 2007), 981–998. https://doi.org/10.4310/CMS.2007.v5.n4.a13

[16] M. A. Iwen. 2010. Improved Approximation Guarantees for Sublinear-Time
Fourier Algorithms. https://doi.org/10.48550/ARXIV.1010.0014

[17] Jiri Jaros, Bradley Treeby, and Alistair Rendell. 2012. Use of multiple GPUs on
shared memory multiprocessors for ultrasound propagation simulations. Confer-
ences in Research and Practice in Information Technology Series 127, 43–52.

[18] Zhikang Jiang, Jie Chen, and Bin Li. 2021. Empirical Evaluation of Typical
Sparse Fast Fourier Transform Algorithms. IEEE Access 9 (2021), 97100–97119.
https://doi.org/10.1109/ACCESS.2021.3095071

[19] Zhikang Jiang, Jie Chen, and Bin Li. 2021. Empirical Evaluation of Typical
Sparse Fast Fourier Transform Algorithms. IEEE Access 9 (2021), 97100–97119.

https://doi.org/10.1109/ACCESS.2021.3095071
[20] Michael Lustig, David L. Donoho, Juan M. Santos, and John M. Pauly. 2008.

Compressed Sensing MRI. IEEE Signal Processing Magazine 25, 2 (2008), 72–82.
https://doi.org/10.1109/MSP.2007.914728

[21] Jackson W. Massey and Ali E. Yilmaz. 2016. AustinMan and AustinWoman:
High-fidelity, anatomical voxel models developed from the VHP color images. In
2016 38th Annual International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC). 3346–3349. https://doi.org/10.1109/EMBC.2016.7591444

[22] SamiMerhi, Ruochuan Zhang, Mark A. Iwen, and AndrewChristlieb. 2017. A New
Class of Fully Discrete Sparse Fourier Transforms: Faster Stable Implementations
with Guarantees. https://doi.org/10.48550/ARXIV.1706.02740

[23] D.H. Mugler and R.A. Scott. 1988. Fast fourier transform method for partial
differential equations, case study: The 2-D diffusion equation. Computers &
Mathematics with Applications 16, 3 (1988), 221–228. https://doi.org/10.1016/0898-
1221(88)90182-4

[24] Elias Rajaby and Sayed Sayedi. 2022. A structured review of sparse fast Fourier
transform algorithms. Digital Signal Processing 123 (01 2022), 103403. https:
//doi.org/10.1016/j.dsp.2022.103403

[25] Chaojun Shou, Xiaoyu Chen, Hao-Li Liu, and Po-Hsiang Tsui. 2016. Using
Short-Time Fourier Transform to Ultrasound Signals for Fatty Liver Detection.
International Journal of Signal Processing Systems (08 2016), 300–303. https:
//doi.org/10.18178/ijsps.4.4.300-303

[26] Sunaina, Mansi Butola, and Kedar Khare. 2018. Calculating numerical derivatives
using Fourier transform: some pitfalls and how to avoid them. European Journal
of Physics 39, 6 (10 2018), 065806. https://doi.org/10.1088/1361-6404/aadda6

[27] Bradley Treeby, Ben Cox, and Jiri Jaros. 2016. k-Wave A MATLAB toolbox
for the time domain simulation of acoustic wave fields User Manual. (2016).
http://www.k-wave.org/manual/k-wave_user_manual_1.1.pdf

[28] E. Bradley Treeby, Jiri Jaros, P. Alistair Rendell, and T. Ben Cox. 2012. Modeling
nonlinear ultrasound propagation in heterogeneous media with power law ab-
sorption using a k-space pseudospectral method. Journal of the Acoustical Society
of America 131, 6 (2012), 4324–4336. https://doi.org/10.1121/1.4712021

[29] Praveen K. Yenduri, Aaron Z. Rocca, Aswin S. Rao, Shahrzad Naraghi, Michael P.
Flynn, and Anna C. Gilbert. 2012. A Low-Power Compressive Sampling Time-
Based Analog-to-Digital Converter. IEEE Journal on Emerging and Selected Topics
in Circuits and Systems 2, 3 (2012), 502–515. https://doi.org/10.1109/JETCAS.
2012.2221832

A BENCHMARK PARAMETERS

Table 5: Table of parameters for 1D SFT libraties

AAFFT 0.9
Parameter name Interval Step

Num_FreqID_CoefEst_Iterations <5, 11> 2
KShattering_Sample_Points <64, 128> 64

FCE_Sample_Points <128, 256> 128
Norm_Estimation <5, 11> 2
Max_FCE_Medians <5, 11> 2
FFCE_Iterations <5, 11> 2

DMSFT
Parameter name Interval Step
first_main_prime <1, 11> 1

number_of_sample_sets <1, 11> 1
kappa <4, 6> 1

GFFT
Parameter name Interval Step

monteCarloAlgAccuracy <0.5, 2.0> 0.2
MSFFT

Parameter name Value
c1 2

c_sigma 6
alias_frac 0.25

beta 2.5

113

https://www.fftw.org/
https://spfft.readthedocs.io/en/latest/
https://www.it4i.cz/en/infrastructure/barbora
https://www.it4i.cz/en/infrastructure/barbora
https://www.it4i.cz/en/infrastructure/karolina
https://www.it4i.cz/en/infrastructure/karolina
https://doi.org/10.1063/1.3526650
https://doi.org/10.1063/1.3526650
https://arxiv.org/abs/https://aip.scitation.org/doi/pdf/10.1063/1.3526650
https://doi.org/10.48550/ARXIV.1304.4517
https://doi.org/10.48550/ARXIV.1304.4517
http://www.jstor.org/stable/2003354
https://doi.org/10.1145/509907.509933
https://doi.org/10.1117/12.615931
https://doi.org/10.4249/scholarpedia.7504
https://doi.org/10.1145/2348543.2348587
https://doi.org/10.1145/2348543.2348587
https://doi.org/10.1137/1.9781611973099.93
https://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9781611973099.93
https://doi.org/10.1121/1.2000767
https://arxiv.org/abs/https://doi.org/10.1121/1.2000767
https://doi.org/10.1121/1.2000767
https://arxiv.org/abs/https://pubs.aip.org/asa/jasa/article-pdf/118/3/1782/15275850/1782_1_online.pdf
https://arxiv.org/abs/https://pubs.aip.org/asa/jasa/article-pdf/118/3/1782/15275850/1782_1_online.pdf
https://doi.org/10.4310/CMS.2007.v5.n4.a13
https://doi.org/10.48550/ARXIV.1010.0014
https://doi.org/10.1109/ACCESS.2021.3095071
https://doi.org/10.1109/ACCESS.2021.3095071
https://doi.org/10.1109/MSP.2007.914728
https://doi.org/10.1109/EMBC.2016.7591444
https://doi.org/10.48550/ARXIV.1706.02740
https://doi.org/10.1016/0898-1221(88)90182-4
https://doi.org/10.1016/0898-1221(88)90182-4
https://doi.org/10.1016/j.dsp.2022.103403
https://doi.org/10.1016/j.dsp.2022.103403
https://doi.org/10.18178/ijsps.4.4.300-303
https://doi.org/10.18178/ijsps.4.4.300-303
https://doi.org/10.1088/1361-6404/aadda6
http://www.k-wave.org/manual/k-wave_user_manual_1.1.pdf
https://doi.org/10.1121/1.4712021
https://doi.org/10.1109/JETCAS.2012.2221832
https://doi.org/10.1109/JETCAS.2012.2221832

	Abstract
	1 Introduction
	2 Problem specification
	3 One-dimensional Sparse Fourier Transform
	3.1 Ann Arbor Fast Fourier Transform (AAFFT)
	3.2 Gopher Fast Fourier Transform (GFFT)
	3.3 Discrete Michigan State Fourier Transform algorithm (DMSFT)
	3.4 Multiscale Sub-linear Time Fourier Transform (MSFFT)
	3.5 Experiments

	4 Two-dimensional Sparse Fourier Transform
	5 Three-dimensional Sparse Fourier Transform
	6 Conclusion
	Acknowledgments
	References
	A Benchmark parameters

