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7x ± 1: Close Relative of the Collatz Problem
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Abstract: We show an iterated function of which iterates oscillate wildly and grow at a dizzying pace. We conjecture that
the orbit of arbitrary positive integer always returns to 1, as in the case of the Collatz function. The conjecture is supported
by a heuristic argument and computational results.
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I. Introduction

It is conjectured that, for arbitrary positive integer n,
a sequence defined by repeatedly applying the function

f(n) =

{
3n+ 1 : if n ≡ 1 (mod 2),
n/2 : if n ≡ 0 (mod 2)

(1)

will always converge to the cycle passing through 1. The odd
terms of such sequence typically rise and fall repeatedly.
The conjecture has never been proven. The problem is
known under several different names, including the Collatz
problem, 3x+1 problem, Syracuse problem, and many oth-
ers. There is an extensive literature, [1, 2], on this question.

Its close relative is

f(n) =


7n+ 1 : if n ≡ +1 (mod 4),
7n− 1 : if n ≡ −1 (mod 4),
n/2 : if n ≡ 0 (mod 2),

(2)

which also always converges to the cycle passing through
1 when iteratively applied on arbitrary positive integer n.
Also here, the odd terms typically rise and fall repeatedly.
It is one of many possible generalizations of the 3x+1 prob-
lem. However, unlike others, this one shares incredibly many
similarities with the original conjecture.

The main goal of the paper is to present a new problem
similar to the Collatz problem and a new conjecture similar
to the Collatz conjecture.

II. Heuristic Argument

To prove that such sequences always return to 1, it should
be shown that these sequences could never repeat the same
number twice and they cannot grow indefinitely. Although
the 3x+ 1 conjecture has not been proven, there is a heuris-
tic argument, [3–5], that suggests the sequence should de-
crease over time. A similar heuristic argument can be used
for 7x± 1 problem. The argument is as follows. If n is odd,
then f(n) = 7n ± 1 is divisible by 4; thus two iterations
of f(n) = n/2 must follow. Conversely, when n is even,
then f(n) = n/2 follows. Furthermore, one can verify that
if the input n is uniformly distributed modulo 2l+2, then the
output of the two branches above is uniformly distributed
modulo 2l, for an integer l ≥ 0. All branches of the subse-
quent iteration therefore occur with equal probability. Now,
if the input n is odd, the output of the former branch should
be roughly 7/4 times as large as the input n. Similarly, if the
input n is even, the output of the latter branch is 1/2 times as
large as n. If we express the magnitude of n logarithmically,
we get expected growth from the input n to the output of the
branches above
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Since the growth is negative, the heuristic argument suggests
that the magnitude tend to decrease over a long time period.

III. Known Cycles

On positive integers, sequences defined by both the
3x+ 1 and the 7x ± 1 functions eventually enter a repeat-
ing cycle 1 → · · · → 1. When zero is included, there is an-
other cycle 0 → 0 which, however, cannot be entered from
outside. When the 3x + 1 is extended to negative integers,
the sequence enters one of a total of three known negative
cycles. These are −1 → · · · → −1, −5 → · · · → −5,
and −17 → · · · → −17. Nevertheless, when the 7x ± 1
is extended to negative integers, the sequence will always
converge to the cycle passing through −1. These cycles are
listed in Tabs. 1 and 2. In contrast to the 3x+1 problem, ev-
ery progression in 7x ± 1 on negative numbers corresponds
to negated progression on positive numbers, and vice versa.

Tab. 1. 3x+1 problem. Known cycles. Only odd terms due to lim-
ited space

cycle length

−17 → −25 → −37 → −55 → −41 → −61 →
→ −91 → −17

18

−5 → −7 → −5 5

−1 → −1 2

+1 → +1 3

Tab. 2. 7x± 1 problem. Known cycles. Only odd terms due to lim-
ited space

cycle length

−1 → −1 4

+1 → +1 4

IV. Experimental Evidence

For instance, the 7x ± 1 sequence for starting value
n = 235 is listed in Tab. 3. It takes 244 steps to reach the
number 1 from 235. This is also known as the total stop-
ping time. The highest value reached during the progression
is 428 688. For a better mental picture of this sequence, the
progression is also graphed in Fig. 1. The odd terms can be
recognized as local minima, whereas the even terms as ei-
ther local maxima or descending lines. One can easily see
that the odd terms rise and fall repeatedly. Such behavior is
also common to 3x+ 1 sequences.

Tab. 3. 7x±1 sequence starting at 235. Steps through odd numbers
in bold

235, 1644, 822, 411, 2876, 1438, 719, 5032, 2516,
1258, 629, 4404, 2202, 1101, 7708, 3854, 1927, 13488,
6744, 3372, 1686, 843, 5900, 2950, 1475, 10324,
5162, 2581, 18068, 9034, 4517, 31620, 15810, 7905,
55336, 27668, 13834, 6917, 48420, 24210, 12105,
84736, 42368, 21184, 10592, 5296, 2648, 1324, 662,
331, 2316, 1158, 579, 4052, 2026, 1013, 7092, 3546,
1773, 12412, 6206, 3103, 21720, 10860, 5430, 2715,
19004, 9502, 4751, 33256, 16628, 8314, 4157, 29100,
14550, 7275, 50924, 25462, 12731, 89116, 44558,
22279, 155952, 77976, 38988, 19494, 9747, 68228,
34114, 17057, 119400, 59700, 29850, 14925, 104476,
52238, 26119, 182832, 91416, 45708, 22854, 11427,
79988, 39994, 19997, 139980, 69990, 34995, 244964,
122482, 61241, 428688, 214344, 107172, 53586,
26793, 187552, 93776, 46888, 23444, 11722, 5861,
41028, 20514, 10257, 71800, 35900, 17950, 8975,
62824, 31412, 15706, 7853, 54972, 27486, 13743,
96200, 48100, 24050, 12025, 84176, 42088, 21044,
10522, 5261, 36828, 18414, 9207, 64448, 32224,
16112, 8056, 4028, 2014, 1007, 7048, 3524, 1762, 881,
6168, 3084, 1542, 771, 5396, 2698, 1349, 9444, 4722,
2361, 16528, 8264, 4132, 2066, 1033, 7232, 3616,
1808, 904, 452, 226, 113, 792, 396, 198, 99, 692, 346,
173, 1212, 606, 303, 2120, 1060, 530, 265, 1856, 928,
464, 232, 116, 58, 29, 204, 102, 51, 356, 178, 89, 624,
312, 156, 78, 39, 272, 136, 68, 34, 17, 120, 60, 30, 15,
104, 52, 26, 13, 92, 46, 23, 160, 80, 40, 20, 10, 5, 36,
18, 9, 64, 32, 16, 8, 4, 2, 1

The progression lengths for both the 3x+1 and the 7x±1
problems are shown in Fig. 2. Regarding the successive n,
the behavior of total stopping time is obviously irregular. De-
spite this, we can see regular patterns in graphs of these times
for both of the problems. Consecutive starting values tend to
reach the same total stopping time.

In order to compare the behavior of the 3x+1 and 7x±1
sequences, consider the following tables. Tabs. 4 and 5 show
the longest progression (total stopping time) for any start-
ing number less than the given limit. One can see that the
3x+ 1 sequences tend to have recognizably longer progres-
sions. Moreover, Tabs. 6 and 7 show that the maximum value
reached during a progression for any starting number below
the given limit. This value grows significantly faster in the
7x± 1 problem that in the 3x+ 1 case.

A lot of generalizations, e.g., [4–8], of the original Col-
latz problem can be found in the literature. In [5], the au-
thor also mentions the 7x + 1 problem. The definition of
such a problem is, however, different from the definition
discussed in this paper. To the best of my knowledge, the
7x± 1 function studied in this paper has never appeared be-
fore. I have computationally verified the convergence of the
7x± 1 problem for all numbers up to 1015.
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Fig. 1. 7x± 1 sequence starting at 235. Due to a very large number range, the sequence in the linear scale is shown at the top, and in the
logarithmic scale at the bottom
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Fig. 2. Numbers 1 to 10 000 and their total stopping time. The 3x+ 1 at the top, the 7x± 1 at the bottom
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Tab. 4. 3x + 1 problem. Longest progression for values less than
the given value

below peak steps start value

101 19 9

102 118 97

103 178 871

104 261 6 171

105 350 77 031

106 524 837 799

107 685 8 400 511

108 949 63 728 127

109 986 670 617 279

1010 1 132 9 780 657 630

Tab. 5. 7x ± 1 problem. Longest progression for values less than
the given value

below peak steps start value

101 18 7

102 326 70

103 1 011 801

104 1 144 9 087

105 1 551 98 003

106 2 799 775 533

107 3 480 7 632 037

108 5 025 61 475 411

109 5 444 983 358 845

1010 5 717 6 346 893 259

Tab. 6. 3x+ 1 problem. Maximum value reached in progressions

below peak value start value

101 52 7

102 9 232 27

103 250 504 703

104 27 114 424 9 663

105 1 570 824 736 77 671

106 56 991 483 520 704 511

107 60 342 610 919 632 6 631 675

108 2 185 143 829 170 100 80 049 391

109 1 414 236 446 719 942 480 319 804 831

1010 18 144 594 937 356 598 024 8 528 817 511

Tab. 7. 7x± 1 problem. Maximum value reached in progressions

below peak value start value

101 64 3

102 428 688 35

103 20 492 891 264 701

104 34 462 899 848 8 317

105 965 557 666 410 854 560 56 925

106 16 785 854 261 378 324 480 199 093

107 387 911 901 837 284 812 874 137 728 4 351 011

108 432 862 432 624 267 939 703 128 640 368 98 600 229

109 1 278 593 034 093 037 189 798 609 704 765 568 662 844 973

1010 421 614 662 439 923 712 249 655 593 962 998 304 9 725 365 821
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V. Final Remarks

• The paper presented a conjecture that the orbit of ar-
bitrary positive integer always returns to 1 under the
7x± 1 function.

• Although the conjecture has not been proven, there is
a heuristic argument that suggests the sequence should
decrease over time.
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