
ICS Virtual Testbed

Technical Report, FIT VUT

Petr Matoušek, Peter Grofčík

Technical Report no. FIT-TR-2021-02
Faculty of Information Technology, Brno University of Technology

Last modified: June 22, 2021

2

Contents

1 Introduction 1
1.1 Acknowledgement . 1
1.2 About . 1

2 Description of the framework packages 2
2.1 Running . 3
2.2 Relevant classes . 6

3 Building virtual devices 7
3.1 Information gathering . 7
3.2 Creating message itself . 9
3.3 Initialization stage . 10
3.4 HMI requests . 12
3.5 Cyclic communication . 13
3.6 Processing of unknown data 13

4 Data structure for virtual devices 15
4.1 Data package description . 15
4.2 Type of command classes . 16
4.3 IOA class . 17
4.4 Class dbWork . 17

5 Man in the middle attack 19
5.1 Ettercap plugins, brief info . 20
5.2 Vital attribute scenario . 21
5.3 Response value change scenario 23
5.4 Request value change scenario 24

A Installation 28

B Installation of Ettercap with created plugins 30
B.1 Required programs . 30
B.2 Required libraries . 30
B.3 Installation . 31

i

CONTENTS ii

C Captured PCAP files 32
C.1 MITM attacks . 32

Abstract

This paper describes a virtual environment for emulating IEC 104 traffic. Im-
plementation is based on the open framework developed by Peter Maynard,
Kieran McLaughlin and Sakir Sezer from Queen’s University of Belfast. The
framework implements behavior of Human Machine Interface (HMI), Re-
mote Terminal Unit (RTU) and Data Historian devices which are typical
components of IEC 104 network.

During our project we extended the framework by additional function-
ality of HMI and RTU so that we can build a large IEC 104 with more
components communicating independently each other. We also implemented
several scenarios representing attacks against IEC 104 control protocol. This
technical report describes the extended library, configuration of virtual en-
vironment and our experiments results.

Chapter 1

Introduction

1.1 Acknowledgement

This work is supported by Brno University of Technology project “Applica-
tion of AI methods to cyber security and control systems”(2020–2022), no.
FIT-S-20-6293.

1.2 About

ICS-TestBed-Framework [1] is a scalable java based framework that consists
of three types of virtual devices.

1. HMI (Human-machine interface) – periodically controlling other hosts

2. RTU (Remote Terminal Unit) – represents node for connection between
sensors, etc. and HMI

3. Data Historian

The framework itself uses protocol IEC104[2] to communicate between
its virtual machines (optionally with physical machines), even throughout
the non-virtual network.

The motivation for work with this framework is to create and observe
corresponding communication, abnormalities in the common flow of com-
munication or under attacks. Basically for the security analysis of IEC104
communication using virtual devices that correspond to physical hardware.

1

Chapter 2

Description of the framework
packages

The framework consists of three main and two secondary directories:

• Main directories:

1. j60870 - The directory containing a structure of source and build
files for the main functionality of a framework. Most of the files
were not made to be changed in any way, because it may cause
a malfunction of the framework, but in some cases, it might be a
good way to alter or add some helpful functions for the creation
of customized packets or even sequences.

2. node - This directory contains the source and built files that can
be used to change the flow of communication mentioned above.
A sub-directory src contains relevant classes to do so. A sub-
directory target contains build files as well as a file node-1.0.jar
that is of executable java type format for framework execution.

3. UA-Java - This directory contains "Unified Architecture Java
Stack and Sample Code to the community". To my understanding,
it was taken from another project repository and can be altered to
a user’s needs if needed, but will not be necessary for experiments
with devices created by this framework.

• Secondary directories:

1. attacks - This directory contains python scripts as well as logs
about attack experiments carried by the creators of the frame-
work.

2. scripts - This last directory contains script examples, that can
be loaded after the execution of the java executable file to start
single virtual devices.

2

CHAPTER 2. DESCRIPTION OF THE FRAMEWORK PACKAGES 3

Figure 2.1: Framework structure with relevant classes unrolled

2.1 Running

Each one of the virtual machines needs its shell terminal for deployment using
a target node jar created after the successful build (java -jar node/target/node-
1.0.jar). As for a default configuration, it is possible to use the default local-
host address 127.0.0.1 to deploy more virtual devices that will communicate
just over a single physical device. As for the deployment of multiple de-
vices that communicate over physical hardware, there is a need for correct
LAN connection with IP address for physical hardware. After that, the vir-
tual machine deployed on it can be started with a correct IP (that is set
by commands listed below) that corresponds to physical hardware for the
communication to be possible.

At the very beginning, there are commands RTU, HMI that is needed to
choose a form of virtual device to be started from the exact terminal. The

CHAPTER 2. DESCRIPTION OF THE FRAMEWORK PACKAGES 4

default configuration is loaded by framework after a form (HMI, RTU) is
chosen.

Figure 2.2: hmi-show command example for default settings

Default settings for the RTU machine are the same for the IP address and
port used in communication. The common address is not needed, because
it should be declared by the HMI machine in a form of an ASDU number.
Interval is as well used only for HMI to determine pause time before the next
cycle in communication is invoked.

An example of topology created with this framework might look just like
in a picture 2.3. I also used this topology in later steps after my changes
in a framework based on captured traffic example from real devices that I
used as a model sample of IEC104 communication between RTU and HMI
machine

.

Figure 2.3: Simple example of topology consisting of one HMI and two RTU
machines

Possible commands for HMI machine:

CHAPTER 2. DESCRIPTION OF THE FRAMEWORK PACKAGES 5

• hmi-iec104port [port number] – port number that HMI will connect to

• hmi-interval [number (ms)] – interval/timing for cyclic connection from
HMI to other devices

• hmi-common-address [number] – common ASDU address of origination
for connection

• remote-hosts [IP address] – IP address/addresses of devices that the
HMI will connect to (every single input will override the old one → for
more devices at the moment needs an input of all desired IP addresses
split by comma)

• hmi-show – shows current HMI configuration

Possible commands for RTU machine:

• rtu-iec104port [port number] – port number on which RTU will expect
connection

• rtu-listen [IP address] – IP address on which the RTU will expect con-
nection (as said for connection over physical hardware must correspond
with IP address of device of which it will be started on)

For both devices, there is a single command “run” when the configuration
is finished. HMI machine must be last to start because it requires listeners
on the other side, which means that it will fail as soon as there are none.

Already prepared code consist of four default interrogation com-
mand communication:

• Act – beginning of interrogation (C_CS_NA_1 - Clock synchroniza-
tion command)

• ActCon – reply to beginning of interrogation (C_CS_NA_1 - Clock
synchronization command)

• Inrogen – interrogation command (M_ME_NB_1 - Measured value,
scaled value)

• ActTerm – termination if interrogation (C_IC_NA_1 - (General-)
Interrogation command)

This sequence is just a simple example of IEC104 interrogation commu-
nication between HMI and RTU device, but it is not possible to change it
anyhow without the change of a corresponding machine code explained be-
low. As said, the framework does not consist of any sort of commands that
can change the flow of communication between virtual (physical) devices.

CHAPTER 2. DESCRIPTION OF THE FRAMEWORK PACKAGES 6

Change of flow in communication can be achieved by change on code inside
some of the relevant classes created for it, which are explained below.

C_CS_NA_1, M_ME_NB_1 and C_IC_NA_1 stands for ASDU
(Application Service Data Unit) types that can be used in communication
in the right order. Reference about possible combinations can be found for
example in a technical report Description and analysis of IEC 104 Protocol1.

2.2 Relevant classes

To alter the flow of communication itself there are few classes in sub-folder
/node/src/main/java/xyz/scada/testbed/node. The main classes for doing so
are HMI, HMIConnectInterrogate, and RTU.

HMI class consists of default settings that we can alter yet again just to
change IP address, port, etc. for communication, but also a sleep time that
separates a sequence of interrogation commands inside of the cycle.

On the other hand, the HMIConnectInterrogate class contains this so-
called cycle, inside of which we can add some interrogation command se-
quences. With the use of some inner logic even for more types of devices to
connect to.

RTU class is mostly one big logical switch that will make an RTU re-
sponse depending on the Act command. It is possible to consider other as-
pects of incoming activation, but this should always be the most important
one because it separates possible responses based on the IEC104 standard.

For most of possible interrogation commands or responses, there are
various classes in a sub-folder /j60870/src/main/java/org/openmuc/j60870.
Based on those and with them, I was able to alter the flow of communica-
tion to correspond with one that was captured from real devices. A problem
in this state is that it will create the corresponding “static” communication
that maps only a small-time on communication with static values to be sent
between virtual devices, and it’s also impossible to make it work with some
predefined physical hardware like that.

1Htps://www.fit.vut.cz/research/publication-file/11570/TR-IEC104.pdf

Chapter 3

Building virtual devices

3.1 Information gathering

Based on already captured traffic of real devices that communicate using
IEC104 it might be possible to automatically create corresponding code for
virtual devices by filtering important values such as:

• Cause of transmission (Act, ActCon, Init, etc.)

• TypeID of command (C_CS_NA_1,M_ME_NB_1, etc.)

• OA – Address of originate

• IOA – objects of interest for command send with all its different values

This approach will only work if it simulates all the devices because it
creates specific communication that will require specific responses from the
other side. It will not guarantee that if we use some real devices that it will
not fail. It might be possible if we map just an HMI side that will dictate
RTU devices (a real device used), but only if we use an exact device that was
used to capture from and yet it might still fail, because it’s not only getting
orders to do something but also obtain some other values from sensors and
so, in that case, it will respond with no mapped values.

7

CHAPTER 3. BUILDING VIRTUAL DEVICES 8

Figure 3.1: Example of captured packet activation from HMI machine

Based on captured traffic we can as a first step determine IP addresses of
HMI and RTU in communication, thanks to the type of commands used in
it. For example, Act command used in figure 3.1 means that this captured
packet was sent by the HMI machine because only HMI initiates communi-
cation (represented by Act or Init command). Then we can see that it used
OA (ASDU) of value 10 and TypeID of command C_RC_NA_1 as well as
all values used in ASDU itself. Also, each ASDU can contain any number of
IOA, so we need to parse all of them. These invocations of communication
are not conditional and will only be sent in a cycle after a certain time.

On the other hand in figure ?? we can see a reply from the RTU device,
generated after HMI invoked communication with TypeID (C_RC_NA_1),
which can be seen in ActCon reply. Based on that we can determine what
kind of reply takes place after what kind of invocation is received from the
HMI machine and use that to create a case in class RTU that will correspond
to it, also with parsing other information from ASDU as done for HMI. This
needs to be done for all ASDU received in a packet as well. ActTerm type
of command contains the same TypeID as had an invocation so it can be
parsed even if it came in a different packet then ASDU with ActCon type of
command, but Spont should and will be only right after ActTerm ASDU in
the same packet.

CHAPTER 3. BUILDING VIRTUAL DEVICES 9

Figure 3.2: Example of captured packet response from one RTU

3.2 Creating message itself

Each device does not need to create a whole packet as a response, because
packets are automatically generated on ASDUs that were sent to function
send in class Connection. New ASDU can be created as shown in figure 3.2,
where:

• TypeId (enum) - stands for TypeID of command

• CauseOfTransmission (enum) - stands for Cause of transmission

• commonAddress (number) - stands for ASDU number

• informationObject (class) - represents IOA with it’s address and infor-
mation elements (figure 3.2)

Figure 3.3: Manually created ASDU

CHAPTER 3. BUILDING VIRTUAL DEVICES 10

Figure 3.4: IOA and information elements

In some cases (mostly for HMI requests), it’s possible to use functions in
class Connection, that creates and sends ASDUs based on their input values,
but all of them got predefined usage. As shown in figure 3.2, it might not
be possible to change the information object address (or anything else in
others). Using these functions defined in the framework might lessen lines of
code if the simulation is fully static, but creating ASDUs manually is more
efficient if the same ASDU needs more IOAs or multiple IOAs requests the
same ASDU type.

Figure 3.5: Example of function that creates and sends ASDU

3.3 Initialization stage

Each communication between RTU and HMI starts with an initial stage
(C_IC_NA_1 - interrogation command). As said above, communication
starts with the HMI device as initiator issuing interrogation command, on
which RTU sends a corresponding response with information about all its
known assets (figure 3.3).

Figure 3.6: Initialization stage of communication

The framework itself does not consist of any way to store assets known

CHAPTER 3. BUILDING VIRTUAL DEVICES 11

by RTU, so in this stage, I used simple types of arrays that represented them
as shown in figure 3.3. These needs to be created in function newASDU in
class RTU, so that our virtual RTU can create responses to known_requests
as well as process unknown data described later in section 3.6.

Figure 3.7: Simple data usage

As said above, HMI devices can also have statically created arrays that
correspond to assets of RTU, but in this case, HMI could not even be used
with multiple RTUs of the same type that manages different information
objects or corresponding requests. That led me to the creation of dynamic
learning on the HMI side. This is not needed for normal communication
between RTU and HMI itself, but HMI must be able to correctly process
unknown data as well as for us to study anomalies of simple attacks in
communication.

Dynamic learning itself is done only in the initialization stage after the
first initiation interrogation command by the HMI device and ends when
HMI obtain Activation_Term command. Learning is done in a function
newASDU in class HMIConnectInterrogate. Each ASDU is obtained by the
HMI device until the termination command is parsed by the function shown
in figure 3.3. All important values (IOA, COT, TID) are simply added to
array-lists and can be used to check incoming ASDUs in cyclic communica-
tion between RTU and HMI.

Figure 3.8: Dynamic learning

CHAPTER 3. BUILDING VIRTUAL DEVICES 12

3.4 HMI requests

As initiator HMI creates several requests for RTU after the initial stage as
shown in figure 3.4. These requests ask an RTU to change corresponding
values for IOAs. This sequence corresponds to the initial configuration by
a real person behind the HMI device. In a real device scenario, these com-
mands should be carried by the RTU device on its own connected devices
that are represented by IOA (objects of interest - sensors for example).

Figure 3.9: Request sequence

This sequence of commands needs to be created in main function run
in class HMIConnectInterrogate, same as first initialization command. Each
of these commands needs to be "self-learned" by HMI because RTU will
respond with ACT_CON command, which is just a copy of the initiated
command with a different cause of transmission. These were not learned in
the initialization stage. These can not be carried from RTU when it’s stating
it’s known assets because these are request types of commands that should
be used only by HMI with an exception for ACT_CON command that is
carried as a confirmation of obtained request. This additional learning can
be done by the same function as stated in section 3.3, which should be called
after each generated ASDU request.

RTU device is represented by a finite automaton, that can provide in-
formation about its assets any time it’s asked for. Each response is created
based on obtained initiation and should consist of at least:

• Activation confirmation command,

• Activation termination command.

Both of these commands are copies of Activation command carried by HMI
with different causes of transmission. Activation confirmation command
states that corresponding Activation command was obtained by RTU (and
it’s a valid one 3.6). The activation termination command states that it’s
been carried on RTU assets, but this is carried by our RTU device immedi-
ately because the framework itself does not consist of any data structure for
RTU device assets.

In some studied scenarios, these commands were followed by Spontaneous
command, which stated the actual value of IOA from the last request with
the corresponding type of command (same type as in initialization state for
appropriate IOA).

CHAPTER 3. BUILDING VIRTUAL DEVICES 13

3.5 Cyclic communication

In all studied pcap files, the cyclic stage of communication mainly stands
for HMI issuing interrogation command (C_IC_NA_1) asking for all RTU
assets over a specified time. RTU should respond the same way as it did in
the initialization state, but with up-to-date values obtained from its assets or
configured during HMI requests before. As I said before, this is not possible
with the framework itself. RTU response for this cycle can be made with
correctly changed values of assets, but only using them statically in code,
because of a lack of data storage for them. Still, this way is sufficient for the
simulation of IEC104 messages between devices.

The creation of data structure for devices is not necessary for simulations
itself but might be good in later simulations of attacks. For example, issuing
a MITM attack to change some preset values in assets of RTU can be done,
but we would be only able to see its consequences in changed incoming single
ASDU on RTU device because RTU can not change values in communica-
tion with HMI device without data structure that saves actual values from
communication. (this stage is still in progress and will be added in chapter
4)

3.6 Processing of unknown data

The framework itself did not consist of any useful functions for processing
data that are not corresponding in the scenario. Taken from IEC104 specifi-
cations: Each device should be able to check incoming messages for unknown
data obtained. This was the reason for creating arrays of data in the first
place with addition to class Connection. I’ve created a simple function check-
Correct that will check an incoming ASDU against defined arrays created
during the initialization stage. This function needs to be called in function
newASDU for each device (HMI and RTU) with its arrays of assets (static
for RTU, learned for HMI).

CHAPTER 3. BUILDING VIRTUAL DEVICES 14

Figure 3.10: Unknown data responses

The function itself returns true if the ASDU request is a valid one, but
if it’s not it also sends a message corresponding to an unknown type of data
obtained based on IEC104 specification:

• UkCauseTx(45) - for unknown cause of transmission (Activation)

• UkTypeid(44) - for unknown type of command issued (C_IC_NA_1)

• UkComAdrASDU(46) - for unknown ASDU value (ASDU=3)

• UkIOA(47) - for unknown Information Object Address (IOA=0)

Chapter 4

Data structure for virtual
devices

The framework itself does not consist of any way to store data from various
communications. HMI or RTU device can send ASDUs over a network,
but all values are expected to be statically included in code commands. This
means that if a device was attacked and an attack was successful (eg. MITM
attack changed some values), these changes will not be seen in oncoming
cyclic communication. This fact led to the creation of a data structure for
Information Objects (IOA) so that each device can store either its known
assets (RTU) or assets provided by another side of the connection (HMI).

4.1 Data package description

Figure 4.1: Data package classes

Classes shown on figure 4.1 can be divided to two categories. Class IOA and
dbWork are bearing and used to create database of resources in a form of
wrapped objects. Other classes, such as singlePoint, doublePoint, etc. store
information about specific values for specific type of command for specified
IOA.

15

CHAPTER 4. DATA STRUCTURE FOR VIRTUAL DEVICES 16

4.2 Type of command classes

Each of these classes stores specific information/values for each type of com-
mand used in communication and requires enum type IOA.StoredInfo (type
of timestamp used if any) in the constructor. Based on timestamp enum a
response type of command is chosen for the generation of ASDU replies in
communication.

All these classes contain two main functions that are meant to be called in
during communication itself. Function singlePointElement (doublePointEle-
ment, stepPositionElement, etc.) generates information element array for
specific type of command reply. This helps to generate responses as it’s not
needed to obtain any stored information manually, but this will generate a
whole information array that is used in the creation of ASDU inside of a
framework.

Second function decodeMessage (same name for each class) has an oppo-
site effect. After we decide what type of command request RTU obtained
then decodeMessage function for a specific type of command class should be
called to decode the information stored in obtained ASDU and store it inside
our pseudo DB.

As an example of this process figure 4.2 shows requests obtained on RTU
device. From that request, we can see a request with the type of command
of Single Point requested on IOA 2. A value used and stored for this type is
the only qualifier shown in the figure and we can simply call decodeMessage
on singlePoint class to decode obtained ASDU and store qualifier. For each
class, a decodeMessage function is designed to decode and store values from
ASDU when called properly (type of command from request must correspond
to the proper type of command class on which a decodeMessage is called)
and it decodes and stores all important values for a specified type.

Figure 4.2: Obtained Single point request

CHAPTER 4. DATA STRUCTURE FOR VIRTUAL DEVICES 17

4.3 IOA class

Class IOA is used to create the information object itself. Its constructor
expects a simple number that represents the IOA object inside packets of
communication as well as a number representing ASDU. Also, there are
specified Enum that states for an IOA that uses (or does not use) any format
of timestamp.

Each IOA object also wraps all possible objects for each implemented
type of command class(singlePoint, doublePoint, etc.) as well as functions
to define them when needed. This means that each created IOA object is able
to store data for each implemented type of command class, that is needed in
cyclic communication. The class itself does not have any specific functions,
because it’s mainly used to connect all types of command classes with IOA
numbers and wrap them under created pseudo DB class dbWork.

4.4 Class dbWork

The class itself serves as a wrapper for other classes from created package and
it represents created pseudo DB for values, known information objects, and
possible (implemented) responses. In the constructor, it requires ArrayList
form of IOA objects that together represent known assets of RTU, but can
also be empty and each IOA can be added later so that even HMI can
have this sort of DB and add them dynamically in the learning phase of
communication and Connection object that is used inside of a framework so
that it can automatically generate responses from its functions.

Once an object of this class is created with all information objects in it,
then its main function rewriteSend can be used to communicate on a side of
RTU device and so it doesn’t require any manual creation of responses as long
as the communication itself contains only implemented types of command
requests and responses. Function contains simple switch that reacts based on
incoming type of command from obtained ASDU and separates three types
of commands and calls appropriate functions afterwards:

• Interrogation (C_IC_NA_1) - cyclic communication invoking the
command, called by HMI to obtain the current state of all assets

• Known requests - requests that have been implemented in the data
structure and can be searched for and processed if possible (any newly
implemented types needs to be added here)

• Unknown requests - simple unknown typeID ASDU is generated as a
response

Up to this date there are eight types of requests implemented and so
possible to use (created based on communication examples):

CHAPTER 4. DATA STRUCTURE FOR VIRTUAL DEVICES 18

• (C_IC_NA_1) - interrogation,

• (C_SC_NA_1) - single command,

• (C_DC_NA_1) - double command,

• (C_RC_NA_1) - regulating step command,

• (C_BO_NA_1) - bitstring of 32 bits,

• (C_SE_NA_1) - set point command (normalized value),

• (C_SE_NB_1) - set point command (scaled value),

• (C_SE_NC_1) - set point command (short floating point value).

Chapter 5

Man in the middle attack

For this attack, I was forced to create plugins for Ettercap software because
it proved to be impossible to use just Ettrcap filters for IEC104 communica-
tion. At first, I tried using Ettercap implementation1 that is linked with the
framework itself, but I was not successful with this either. For some reason,
there were many issues with dependencies and I was not able to correct them,
but the plugin they created inside their implementation proved to be useful
as I was able to create my plugins based on structures for IEC104 packets
that they have used.

Figure 5.1: MITM attack network example

For this type of attack, I created a simple connection between one RTU
and one HMI devices connected via wi-fi router with addresses shown in
figure 5.1, and I generated three scenarios of an attacker changing sniffed

1https://github.com/PMaynard/ettercap-104-mitm

19

CHAPTER 5. MAN IN THE MIDDLE ATTACK 20

packets to show what kind of outcome can these changes have on simulated
devices (change of):

• vital attribute in communication of HMI request (can be detected on
simulated device, change of cause of transmission),

• value (IOA attribute) inside a response generated by RTU device,

• value (IOA attribute) inside a request generated by HMI device.

For each of these scenarios, HMI and RTU device (physical) was set to
capture its IEC104 traffic that is captured in files:

• HMI_MITM.pcap

• RTU_MITM.pcap

5.1 Ettercap plugins, brief info

Ettercap plugin is a parser for packets spoofed by Ettercap. Each plugin
needs to consist from at least plugin_load function and plugin_ops struc-
ture. Function plugin_load is called by Ettercap on plugin load to register
created a plugin with its linked structure. Structure plugin_ops consists of
information strings that describe plugin (name, what it’s used for, basically
anything author want’s to state), but it also need a init and final function
pointer. Anything else inside of a plugin has no other restrictions and can
be created to a programmer’s desire to parse, change or inject new packets
based on packet obtained while spoofing desired communication.

CHAPTER 5. MAN IN THE MIDDLE ATTACK 21

Figure 5.2: IEC104 plugins structure

For plugins used in later described attacks, I’ve used structures used in
already mentioned Ettercap implementation2 shown in figure 5.1. These
structures can be simply used as retype options for a packet in the format
received from Ettercap and later based on the scenario used to change desired
values inside of the spoofed packet before it gets forwarded.

5.2 Vital attribute scenario

This scenario is based on a change of vital attribute in a transmitted mes-
sage as an example of a MITM attack that should be detected by the de-
vices themselves if the vital attribute has been changed to generate incor-
rect/unexpected value in the communication sequence. If the change by an
attacker is done properly then it may not be detected at all, but in this
example, I am trying to show a change that should end up being detected
by the other side of communication and end up as described in section 3.6.

Attack itself can be conducted on messages from each side of communi-
cation. For this example, I chose a message generated on the HMI device
that is creating cyclic requests to obtain an actual state of assets of the RTU
device (figure 5.2).

2https://github.com/PMaynard/ettercap-104-mitm

CHAPTER 5. MAN IN THE MIDDLE ATTACK 22

Figure 5.3: Vital attribute change communication example

In this example, I as an attacker changed the cause of transmission from
Activation to Spontaneous in a packet sent by an HMI device. The packet
shown in figure 5.2 is the one sent by the HMI device as a correct cyclic
request sent to the RTU device. Packet in figure 5.2 is a malicious packet
injected by an attacker that was received by the RTU device. This malicious
packet was marked as incorrect and RTU responded with UkCauseTx(45) as
shown in figure 5.2.

Figure 5.4: HMI generated packet (vital scenario)

Figure 5.5: RTU received packet (vital scenario)

CHAPTER 5. MAN IN THE MIDDLE ATTACK 23

Figure 5.6: RTU response (vital scenario)

Shown MITM attack was successful, but not a very discrete one. Attack
ended up prevented HMI device from getting requested a cyclic update on
assets owned by RTU device, but only as long as the attack itself is active
and as shown in the above figures, the outcome is an obvious major change
inside a cyclic communication that can be easily detected on both devices,
unless attacker changes also a response from RTU device.

5.3 Response value change scenario

This scenario is based on change of values inside IOA object in response
sent by RTU device. Attack itself is aiming on cyclic communication as it
did the previous scenario, but this time it aims on response generated from
RTU device. In this scenario attacker is not changing any attribute vital to
communication itself, but aims to change a single value inside IOA as shown
in figure 5.3.

Figure 5.7: Change inside RTU response example

In this example, I chose to change the value of element SIQ for IOA with
index 1 under TypeID of command M_SP_NA_1. Attack itself modifies
only responses sent by RTU device and does not disrupt any other communi-
cation, because there is no major change to any vital attributes. The packet
shown in figure 5.3 is generated and captured on the RTU device right after
its creation. Packet in figure 5.3 is supposed to be the same packet (during
not disrupted communication), but it has been changed during delivery.

CHAPTER 5. MAN IN THE MIDDLE ATTACK 24

Figure 5.8: RTU generated response

Figure 5.9: HMI received response

Attack itself was successful and is a bit more discrete than the attack on
vital attributes, but its effects are taking place only as long as the attack is
active. Meaning that the changed value of the SIQ element is present only as
long as the attacker is changing it whenever he can spoof a packet containing
update from the RTU device and its discretion is valid only as long as no
one tries to compare values present on RTU and HMI device.

5.4 Request value change scenario

This scenario is exploiting the database of assets on the RTU device and
actual requests of the HMI device to change any values inside of specified
assets. It changes the only request of changing specified values sent by HMI
device as shown in figure 5.4. This scenario is possible due to data structure
implementation described in chapter 4, because without it framework used
only static commands to create communication, but with it, it’s possible to

CHAPTER 5. MAN IN THE MIDDLE ATTACK 25

simulate a MITM attack that changes values of assets on RTU device.

Figure 5.10: Change inside HMI request example

In this example, I chose to change the value of element DCO for IOA
with index 1 under TypeID of command C_DC_NA_1. This attack aims
to change the value requested by the HMI device shown in figure 5.4. The
corresponding packet obtained by the RTU device was changed as shown in
figure 5.4. This information made RTU change its asset value to the one
required by the attacker without triggering any negative response by the
RTU device because the request itself was correct.

Figure 5.11: HMI generated packet

CHAPTER 5. MAN IN THE MIDDLE ATTACK 26

Figure 5.12: RTU received packet

Consequences created by this attack are ongoing even after it ends. HMI
device is provided with malicious value each time it requests new updates
as shown in figure 5.4 unless a new request to change is sent by the HMI
device. This attack requires changing only one transmitted packet which
makes it even more discrete as to generate the same consequences as in the
second scenario there is no need for the attacker to be constantly spoofing
connection between the two devices.

Figure 5.13: RTU cyclic responses (with malicious value)

Even tho constant spoofing is not necessary for this scenario, it still
might be useful, because it would make the HMI device to be unable to do
any changes to specified assets via requests as long as the attacker keeps
changing them to his desired value.

Bibliography

[1] P. Maynard, K. McLaughlin, and S. Sezer, “An open framework for de-
ploying experimental scada testbed networks,” 2018.

[2] “INTERNATIONAL STANDARD IEC60870-5-104,” tech. rep., Jun
2006. [Online; 25.03.2020].

27

Appendix A

Installation of framework
(based on Github repository1)

1. git clone –recurse-submodules Htps://github.com/PMaynard/ICS-TestBed-
Framework.git

2. JAV A_HOME variable is needed to be openjdk 1.8

• sudo apt install openjdk-8-jdk maven

• export JAV A_HOME = /usr/lib/jvm/jre−1.8.0−openjdk.x86_64/

3. add three dependencies to a pom.xml file in a root directory, because
in a development state they were propably included in maven standard
libraries, but got depreciated overtime

• <dependency>
<groupId>com.sun.xml.bind</groupId>
<artifactId>jaxb-core</artifactId>
<version>2.2.11</version>

</dependency>

• <dependency>
<groupId>com.sun.xml.bind</groupId>
<artifactId>jaxb-impl</artifactId>
<version>2.2.11</version>

</dependency>

• <dependency>
<groupId>javax.xml.bind</groupId>
<artifactId>jaxb-api</artifactId>
<version>2.2.11</version>

</dependency>
1Htps://github.com/PMaynard/ICS-TestBed-Framework

28

APPENDIX A. INSTALLATION 29

4. mvn package -DskipTests (-DskipTests just skips some internal frame-
work tests that end up failing in a wrong timezone)

5. Firewall - some problems migH occur with a firewall blocking virtual
machines and might need to be disabled

Appendix B

Installation of Ettercap with
created plugins

Command to easily install required dependencies on debian or debian based
distro:

• apt-get install build-essential debhelper bison check cmake flex groff
libbsd-dev libcurl4-openssl-dev libgeoip-dev libgtk-3-dev libltdl-dev libluajit-
5.1-dev libncurses5-dev libnet1-dev libpcap-dev libpcre3-dev libssl-dev

B.1 Required programs

• c compiler

• flex - lex-compatible parser generator for *.l files

• bison - yacc-compatible parser generator for *.y files

• cmake

B.2 Required libraries

• libpcap >= 0.8.1

• libpcap >= 0.8.1

• libnet >= 1.1.2.1 (>= 1.1.5 for IPv6 support)

• openssl >= 0.9.7

• libpthread

• zlib

30

APPENDIX B. INSTALLATION OF ETTERCAP WITH CREATED PLUGINS31

• libgeoip

• CMake 2.8

• Curl >= 7.26.0 to build SSLStrip plugin

B.3 Installation

1. git clone https://github.com/Ettercap/ettercap.git

2. cd ettercap

3. copy desired (created) plugins to plug-ins folder

4. mkdir build

5. cmake ..

6. sudo make install

Ettercap application should appear in system with pre-loaded basic as
well as inserted plugins once the installation is done. Then they can be used
either via Ettercap GUI environment or from console using in code specified
names to be linked to Ettercap (names also appear in GUI).

For example, command:

• sudo ettercap -T -q -i wlp3s0 -P COT_change_104 -M ARP
/192.168.1.100/ /192.168.1.102/"

starts MITM attack between two hosts in LAN with a usage of plugin
COT_change_104.

Appendix C

Captured PCAP files

File name Packet c.
IEC 104
packet c.

Length of
communication

No.
devices

IEC104 135298 67828 46 h 2
Scada_To_Sub 60126 30838 46 h 2
HMI_IEC104&Sub 195424 98666 46 h 3
HMI_MITM 258593 129943 75 h 2
RTU_MITM 258582 129958 75 h 2

Files IEC104, Scada_To_Sub and HMI_IEC104&Sub were created in
earlier stages using only framework capabilities. Communication captured
inside them is from topology shown in figure 2.3. File IEC104 was captured
on first RTU device that was programmed to communicate based on provided
iec104 file. The other file Scada_To_Sub was captured on the second RTU
device based on communication from provided SCADA_to_substation_normal
file. The last one is the file captured on an HMI device that was an initiator
for both RTU devices. Communication in these files is standard with no in-
terruptions as an example of longer IEC104 communication between created
virtual devices.

C.1 MITM attacks

Next table coresponds to files HMI_MITM and RTU_MITM. Table shows
occurances of attacks based on MITM scenarios described in chapter 5 and
captured on topology shown in figure 5.1. Each of them was created with
a predefined filter to capture only traffic over port 2404 to filter out any
unnecessary traffic related to a physical device running virtualized HMI or
RTU device.

32

APPENDIX C. CAPTURED PCAP FILES 33

Scenario Start End DurationPacket Time Packet Time
Vital attribute 34188 35632 s 35466 39742 s 68.5 min
Response value 63182 68432 s 67828 73373 s 82.35 min
Request value 201908 212597 s 208587 219547 s 115.83 min

Used values in the table correspond to the HMI_MITM file but are
almost the same for the RTU_MITM file they both were started just with
a difference of a couple of seconds on opposite HMI/RTU devices.

Request value scenario is a bit different in attack consequences as it re-
quires specific HMI request that occurs in communication only once an hour
(C_DC_NA_1). The attack happened to be effective 42 minutes after exe-
cution of attack at time 215167 on packet 204452 and lasts until time 222787
on packet 211827 (54 minutes after the end of attack). There are only two
packets directly affected during the ongoing attack (packet no. 204452 and
208154), but the effects of those packets can be seen in a window of 127 min-
utes after packet 204452 in cyclic updates in each C_IC_NA_1 Introgen
responses by RTU device.

	Introduction
	Acknowledgement
	About

	Description of the framework packages
	Running
	Relevant classes

	Building virtual devices
	Information gathering
	Creating message itself
	Initialization stage
	HMI requests
	Cyclic communication
	Processing of unknown data

	Data structure for virtual devices
	Data package description
	Type of command classes
	IOA class
	Class dbWork

	Man in the middle attack
	Ettercap plugins, brief info
	Vital attribute scenario
	Response value change scenario
	Request value change scenario

	Installation
	Installation of Ettercap with created plugins
	Required programs
	Required libraries
	Installation

	Captured PCAP files
	MITM attacks

