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Abstract

This technical report describes the implementation of selected methods for sensory data processing
on embedded HW. Outdoor 3D environment modeling provides volumetric space information that is
important in solving some robotic tasks, including unmanned areal vehicles with remote control but with
limited visual connection. To this end, accurate 3D occupancy maps and reliable flight control are key
to the task. This report represents the generation of a 3D occupancy map from a 3D point cloud and
its realization on embedded HW. In addition, the ZED2 stereoscopic camera is set up and tested to
generate a 3D point clouds. Finally, we expanded the HDR camera (High Dynamic Range) with a new
HDH deghosting algorithm, which enabled the integration of HDR shooting directly on the drone. This
algorithm reduces the adverse effects that can occur during the flight.
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1 Introduction

During the last years, robotic applications that require 3D models of the environment have been increasing.
These include, airbone underwater, mobile robots, Unnamed Aerial Vehicles (UAV), among others. Also,
several approaches for modelling 3D environments have been proposed [1], namely PointClouds, elevation,
multi-level surface and octree maps. In this context, PointClouds have been generated using different Simul-
taneous Localization and Mapping (SLAM) approaches [2]. Thus, one of the drawbacks of the PointClouds
is the increase of memory consumption in as much as the number of measurements increases, making this
approach not suitable for systems with limited memory. On the other hand, 3D OctoMap models of the
environment based on octrees [1] have the advantage of having efficient and probabilistic updates while keep-
ing the memory consumption at a minimum. Further more, OctoMap models the representation taking into
account the free, occupied and unknown areas in a probabilistic manner.

One of the middlware that has been commonly used lately for robotics is the Robot Operating System
(ROS) [3] that provides a broad collection of packages for sensor visualization, control, mobility, mapping,
networking among others. So then, there exists a big variety of packages that with a proper set up of
parameters according to the application are ready to be used. Thus, there are plenty of open source SLAM
approaches that can be used in ROS, e.g. GMapping, TinySLAM, Hector SLAM, ORB-SLAM2, RGBiD-
SLAM, Real Time Appearance Based on Mapping (RTABMap) and others. According to the relation of their
inputs: camera (stereo, RGB-D, multi, Inertial Measurement Unit (IMU), lidar (2D, 3D), odom and their
online outputs: pose, occupancy (2D, 3D), PointCloud. RTABMap, which is a graph-based SLAM, performs
better [4]. Then, in order to use RTABMap into ROS context, it has been integrated as a ROS package
called rtabmap_ros1 which gives support for both visual and lidar SLAM approaches. Similarly, OctoMap
has been integrated into a octomap_server2 ROS package.

In brief, Augmented Reality (AR) overlaps virtual objects over real images of objects when seen from a
smart device like a mobile phone, a tablet and a ground station. Moreover, UAV is a constant developing
field where applications are used more and more in many areas, including schools, public, medicine, rescue
and others. More specifically, these can go from, for instance, having a multi-view AR system that should
support predefined views, e.g. first and third person, and full manipulation of the drone/camera position and
viewing directions [5]. Or, future new buildings can be visualized and displayed how would they fit in the
existing urban environment by means of web based on AR 3. Also, some work using augmented reality - First
Person View - Third Person View (AR-FPV-TPV) in UAV has been carried out in [6], in which the user has
the possibility to have multiple-view, e.g. switching from FPV to TPV and back. What characterize this
work is the fusion of different maps, such as topography, elevation and also 3D building maps with a video
stream from a stereo vision source to allow the user to see and control the UAV remotely from a Ground
Control Station (GCS).

One of the common problems found when using 3D-OpenStreetMap4 in AR is that they may not be precise.
In other words, they may not match exactly the real buildings, houses, tress and other objects that are not
present in them. Since the 3D-OpenStreetMap used in AR can be seen as an approximation to the reality,
the suggestion is to insert and fuse 3D octree maps into the AR scenario. To this end, in order to strengthen
the fidelity, the sight of view and the abilities of the drone operator, the goal of this report is to generate 3D
octree maps that potentially can be inserted and fused into the AR-FPV-TPV.

At the time of purchasing and assembling the experimental flight platform, the ZED2 did not exist in the
market. Then, Stereolabs5 released the ZED2 camera. In brief, the ZED2 has improved the Field of View
(FoV), the optics and also some sensors have been integrated to enhance the estimation of the camera, e.g.
IMU, barometer and magnetometer. The ZED2 camera has been tested under rtabmap_ros to create a 3D

1http://wiki.ros.org/rtabmap_ros
2http://wiki.ros.org/octomap_server
3https://itechcraft.com/expertise/drone-software/drones-augmented-reality-future/
4https://wiki.openstreetmap.org/wiki/3D
5https://www.stereolabs.com/
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OctoMap map.

Moreover, a High Dynamic Range Camera (HDRC) that can capture images in greater detail in dark and
bright environments has been placed on the drone and connected to the NJTK2 over an Ethernet connector.
An executable file is available that can run the HDRC to record the surroundings, also a ROS node that
can start and stop the executable when the drone is armed and disarmed respectively has been created.
The camera has been tested in a real flight showing good results. We exploited the possibilities of using
HDR (High Dynamic Range) in a challenging drone environment (vibrations and a lot of movement). We
have improved the HDR merging algorithm (Ghost-free HDR merging), which has improved the quality of
recorded HDR video from the drone. This algorithm was published as a journal paper and also integrated
into HDRC.

Additionally, the rostopic of interest, e.g. camera, battery, drone status, Global Positioning System (GPS)
estimation among others have been converted into a Java Script Object Notation6 (JSON) format which are
then forward to a ViAn server over a RabbitMQ7 (RMQ) which is an open source message broker.

2 System Architecture

2.1 Embedded Hardware Specification

This section presents the hardware components of the Team Black Sheep Discovery8 (TBSD) which has been
chosen, assembled and equipped at the FIT laboratory.

Figure 1 shows the drone’s schematic hardware as well as the ground station where exteroceptive sensor
measurements of the environment are interpreted by a stereo vision ZED-camera9. Moreover, the ZED-camera
has been configured to use a Video Graphics Array (VGA)_resolution of 672 × 376 @30fps. Furthermore,
the images from the ZED camera are forward to the Nvidia JetsonTX210 (NJTX2) compound computer
which in turn runs the algorithms for computer vision, localization, control, 3D mapping and others. Also,
a HDRC have been placed as an extra camera to capture in more detail images in dark or illuminated
places. Additionally, the companion computer communicates bidirectionally with the PixHawk® 4 mini
Flight Control Unit (FCU)11. Alike, the GPS, Wireless Fidelity (WiFi) and the Radio Controller (RC)
receiver modules communicate with the FCU that contains the respective drivers for camera control, GPS,
IMU, RC input and gimbal drivers. Also, the FCU software, e.g. position controller, attitude estimator,
autonomous flight, output driver for Pulse Width Modulation (PWM), controls the 4× motors over the
Electronic Speed Control (ESC). Besides, a Lenovo ThinkPad L540 + Intel(R) Core(TM) i7-4712MQ CPU
@ 2.30GHz is used as a GCS. Figure 2 shows the equipped TBSD.

2.2 Software Framework

This section deals with the software used by the companion computer to establish communication with all
the devices mounted on the TBSD.

6https://www.json.org/json-en.html
7MQhttps://www.rabbitmq.com/
8https://github.com/NVIDIA-AI-IOT/redtail/wiki/Skypad-TBS-Discovery-Setup
9https://www.stereolabs.com/zed/

10https://developer.nvidia.com/embedded/jetson-tx2
11https://docs.px4.io/v1.9.0/en/assembly/quick_start_PixHawk4_mini.html
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Figure 2: The equipped TBSD.
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Figure 3 shows the diagram of the software architecture. In which, the NJTX2 runs Ubuntu Linux4Tegra
JetPack-L4T-3.2.1 with audivea-kernel-J90-J120-V1.6 firmware and the GCS has been adopted with Ubuntu
16.04.5 LTS where ROS-Kinetic run in both of them. The PixHawk® uses the PX4 software flight stack12

firmware to communicate with the NJTX2 via the micro air vehicle link (MavLink)13 protocol. Moreover,
communication between the drone with the GCS is handle over the IEEE-802.11 Wireless Local Area Network
(WLAN) at a frequency of 5.0 GHz and a bit rate of 144.4 Mb/s. Stereo vision camera processing is handle by
ZED_SDK v2.8.514 and CUDA 0915. Also, the Figure shows that ROS middlware uses the following nodes:
zed_wrapper for receiving data from the ZED_SDK and forward it to another nodes, rtabmap_ros for
wrapping the RTABMap and to generate 3D PointClouds of the environment, mavros for communicating with
PX4, octomap_server for building volumetric 3D occupancy maps based on octrees and rosbridge_websocket
for establishing bidirectional communication with Unity3d16 that is running on the GCS.

Additionally, the laptop runs the QGroundControl station17 (QGCS) v1.9.0 which is a Graphical User In-
terface (GUI) application that serves for controlling and configuring the PX4. Besides, Unity3d for Linux
v.2018.3.0f2 is used to visualize the drone in AR-FPV-TPV mode and ROS#18 which purpose is to commu-
nicate with ROS from .NET applications.

ViAn

Server

ROS#unity3d

QGCS

ros2json 

WiFiZED SDK

HDR

HDR card

octomap_serverzed_wrapper

websocket

rosbridge_

rtabmap_ros

mavros

MavLink

PX4 flight stack / PixHawk

cells

ROS

LapTop

ZED

HDR ros node

Figure 3: Software architecture.

12https://dev.px4.io/en/concept/architecture.html
13https://mavlink.io/en/
14https://www.stereolabs.com/developers/release/2.8/
15https://developer.nvidia.com/cuda-90-download-archive
16https://unity.com/
17https://dev.px4.io/v1.9.0/en/qgc/
18https://github.com/siemens/ros-sharp
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2.3 Sensors

2.3.1 ZED2

Figure 4 shows the ZED219 stereo camera that provides high definition 3D video and depth perception of
the environment. ZED2 is an improvement of the ZED20 camera in that, it has better optics and FoV.
Furthermore, it has a precise IMU which is an electronic device that mainly contains an accelerometer and a
gyroscope. The accelerometer provides information of the acceleration of the camera, in other words whether
the camera is getting faster or slower in any directions with a precise value in meter per second squared (m/s²).
In the other hand, the gyroscope gives the angular velocity of the camera in any direction in degrees per
second (deg/s). When both sensors are combined they can provide an estimation of the camera’s orientation
at high frequency. Moreover, the ZED camera uses the IMU information to calculate odometry estimation.

The magnetic field of the earth that surrounds the ZED2 camera is measured by the magnetometer in
microteslas (µT). Thus, giving absolute orientation of the camera according to the north magnetic pole
bringing a good estimation of the yaw angle. The previous sensor and other ones could be integrated by the
use of kalman filter, for example the integration of the magnetometer can provide a very good estimation of
the yaw of the camera.

Figure 4: ZED2 camera

Manufacturer StereoLabs
Model ZED2
Resolution 4416×1242 @15fps

3840×1080 @30/15fps
2560×720 @60/30/15fps
1344×376 @100/60/30/15fps

Depth range 0.2 to 20 m
Dimensions 175 × 30 × 33 mm
Baseline 120 mm
Interface USB 3.0
Weight 124 g
Field of View 110o(H) × 70o(V) × 120o(D) max
Power 380 mA / 5V (USB Powered)
Pixel size 2 µm
Temperature 0oC to +45oC
Sensors Accelerometer Gyroscope Barome-

ter Magnetometer
OS Windows 7,8,10, Linux

Table 1: Technical specifications.

2.3.2 High Dynamic Range Camera

As mentioned in section 2 a HDRC have been placed as an extra camera to capture video slightly different
than normal, this camera can capture in greater detail bright and dark areas. The HDR is a custom camera

19https://www.stereolabs.com/assets/datasheets/zed2-camera-datasheet.pdf
20https://www.stereolabs.com/zed/
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platform based on SoC Xilinx Zynq XC7Z02021. The Zynq SoC contains dual-core ARM Cortex-A9 and
FPGA on the same chip. Overall power consumption of camera is 8W. Also, the platform is equipped by
low noise global shutter CMOS sensor Python2000 from ON Semiconductor, connected directly to FPGA
through high-speed low voltage differential lines (LVDS) interface. The CMOS has a resolution of 1920 ×
1280 pixels and is capable of capturing up to 255 fps - this is the maximum speed of LVDS interface.

2.4 Integration to ViAn Server

The communication process between the TBSD and the ViAn server is shown in the schematic Figure 5.
To ease the communication task, a rosbag was recorded with the topics of interest. During the running of
the rosbag, rostopics are sent to the ros2json node which forwards the specific received topic to the sender
node that is in charge of converting the ROS topics into a (JSON) format. Then, the ViAn server receives
the JSON formatted topics over the RMQ listener which ensures correct data delivery to the server. RMQ
is a messenger broker that implements Advance Message Queuing Protocol22 (AMQP), it also standardizes
messaging using producers, broker and consumer. This process can be thought as a post office when some
one wants to deliver a mail to a recipient, then the mail is put a post box so after a period of time the mail
will be delivered to the recipient. In this analogy, RMQ is a post box, a post office and a postman. In the
other hand, the receiver node just checks if the transmission was successful and also save the entire formatted
JSON topics into memory.

topics node

node

ros2json

check
transmission

listener

receiver RMQ 

server
memory

sender

node

save ViAn

ROS

Figure 5: ViAn server schematic diagram.

21https://www.onsemi.com/products/sensors/image-sensors-processors/image-sensors/python2000fbclid=IwAR2Sqj_
4Rpbbl8JsAg1IDsCQOn6bbX-475VNd7sewvaSIsKB5aBQQUKLM5s

22https://www.amqp.org/ (AMQP)
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3 Occupancy Map Recontruction

3.1 OctoMap

OctoMap is a framework based on octrees which are the three-dimensional generalization of quadtrees [7].
In other words, an octree is a hierarchical data structure for spatial subdivision in 3D. They have been
successfully used to represent 3D maps [1, 8, 9, 10, 11]. It mainly consists of recursively subdividing the cube
into eight octans. Each octan in every division represents a node. The process ends when a minimum voxel
size is reached. Figure 6 shows a single occupied voxel and its octree representation.
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(a) (b)

Figure 6: (a) The cube has been subdivided into tree depths, where the black cube represents an occupied
voxel. (b) Octree representation.

3.2 Sensor Fusion

Probabilistic sensor fusion is used to update each node the occupancy grid tree [1, 10, 12, 13]. Equation 1
represents the probabilistic sensor fusion model.

In this equation, P (n∣z1∶t) represents the probability of an occupied voxel or a leaf node n given a sensor
measurement from z1 to zt, P (n) is the prior probability, zt is the current sensor measurement, P (n∣z1∶t−1) is
the previous estimate, and P (n∣zt) is the inverse sensor model which gets probability of a voxel being occupied
n given the measurement zt. According to [1], a common uniform prior probability value of P (n) = 0.5.

P (n∣z1∶t)
1 − P (n∣z1∶t)

= P (n∣zt)
1 − P (n∣zt)

P (n∣z1∶t−1)
1 − P (n∣z1∶t−1)

1 − P (n)
P (n) (1)
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Proof. Let P (n ∣ z1∶t) and Pc(n ∣ z1∶t) the probability of an occupied and free voxel n respectively. So,

P (n ∣ z1∶t) = P (n ∣ z1∶t−1, zt) =
P (n ∣ z1∶t−1)P (zt ∣ z1∶t−1, n)

P (zt ∣ z1∶t−1)
(applying Bayes rule)

Pc(n ∣ z1∶t) = Pc(n ∣ z1∶t−1, zt) =
Pc(n ∣ z1∶t−1)Pc(zt ∣ z1∶t−1, n)

P (zt ∣ z1∶t−1)
(applying Bayes rule)

P (n ∣ z1∶t)
Pc(n ∣ z1∶t)

= P (n ∣ z1∶t−1)P (zt ∣ z1∶t−1, n)
Pc(n ∣ z1∶t−1)Pc(zt ∣ z1∶t−1, n)

(dividing)

P (n ∣ z1∶t)
Pc(n ∣ z1∶t)

= P (n ∣ z1∶t−1)
Pc(n ∣ z1∶t−1)

P (zt ∣ n)
Pc(zt ∣ n) (P (zt) depends only of n)

P (n ∣ z1∶t)
Pc(n ∣ z1∶t)

= P (n ∣ z1∶t−1)
Pc(n ∣ z1∶t−1)

P (n ∣ zt)
Pc(n ∣ zt)

Pc(n)
P (n) (applying Bayes rule to the last term)

P (n ∣ z1∶t)
1 − P (n ∣ z1∶t)

= P (n ∣ zt)
1 − P (n ∣ zt)

P (n ∣ z1∶t−1)
1 − P (n ∣ z1∶t−1)

1 − P (n)
P (n)

Some multiplications are needed in order to evaluate Equation 1, however it is computational easier to do
summation instead. Therefore. a logarithm function multiplication can be turned into an addition. To this
end, Equation 2 represents the Odds function which is defined as the ratio of the probability of an event
divided by the probability of its complement. Whereas, Equation 3 shows the logOdds function which is the
logarithm of the Odds function.

P (x)
Pc(x)

= P (x)
1 − P (x) (2)

L(x) = Ln
P (x)

1 − P (x) (3)

Equation 4 represents the logOdd L radio of Equation 1.

L(n∣z1∶t) = L(n∣zt) +L(n∣z1∶t−1) (4)

Proof. Let L and Ln be the Odds and OddsLog functions respectively. So,

Ln[ P (n ∣ z1∶t)
1 − P (n ∣ z1∶t)

] = Ln[ P (n ∣ zt)
1 − P (n ∣ zt)

P (n ∣ z1∶t−1)
1 − P (n ∣ z1∶t−1)

1 − P (n)
P (n) ] (applying logarithm)

L(n ∣ z1∶t) = Ln[
P (n ∣ zt)

1 − P (n ∣ zt)
] +Ln[ P (n ∣ z1∶t−1)

1 − P (n ∣ z1∶t−1)
] +Ln[1 − P (n)

P (n) ] (logarithm property)

L(n ∣ z1∶t) = L(n ∣ zt) +Ln(n ∣ z1∶t−1) +Ln(1) (applying Oddslog)

L(n ∣ z1∶t) = L(n ∣ zt) +Ln(n ∣ z1∶t−1)
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A new sensor reading, introduces additional information about the state of the node n . This information
is done by the inverse sensor model P (n∣zt) and it is combined with the most recent probability estimate
stored in the node. It is worth noting that when initializing the map an equal probability to each node must
be assigned. In other words, the initial node prior probabilities are P (n) = 0.5.

3.3 Mapping

RTABMap is a graph base SLAM approach. Graph SLAM means that the algorithm recovers the entire
path, so then the full SLAM problem can be solved, allowing to work with the whole data to find an optimal
solution. Moreover, appearance base means that data vision is used by the algorithm to localize and to
build the map of the robot in the environment. Also, an important feature of the algorithm is the use of
loop closure to determine whether the robot has been at a certain location already [14]. In as much as the
complexity of the map increases the longer could take for the optimization, fortunately the algorithm has
some strategies for optimization for large scale and long term SLAM, e.g TORO, g2o and GTSAM [4]. To
this end, the aim of the graph SLAM is to create a graph with the whole poses and features and the most
probable map and path.

Besides, rtabmap_ros is the RTABMap ROS integration that tackles the mapping issue. Figure 7 shows in
more detail the rtabmap_ros node. The require inputs are: TF for the position of the sensors relative to the
base of the robot, odometry for estimation of the position change over time, one or multiple RGB-D images,
or a stereo image with its corresponding calibration file. The outputs are: Map Data that contains the
latest compressed sensor data and the graph, Map Graph with no data, OctoMap for octree representation,
a dense PointCloud and 2D Occupancy Grid. Figure 8 shows the output of the rtabmap_ros node as
well as the output of the octomap_server. Figure 8(a) depicts the Map Graph, Figure 8(b) presents the
rtabmap_ros_octomap, whereas the PointCloud can be seen in Figure 8(c) and finally the octomap_server
can be depicted in Figure 8(d).

cells

OctoMap

Map Data

Map Graph

RGB−D Image(s)

Stereo Image

TF

rtabmap_ros

node

2D Occupancy Grid

Odometry Node

Odometry

TF

Point Cloud

Figure 7: Scheme of the rtabmap_ros node.
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(a)
(b)

(c) (d)

Figure 8: (a) Shows the Map Graph. (b) Shows the rtabmap_ros_octomap (c) Shows the PointCloud. (d)
Shows octomap_server.
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The octomap_sever node can incrementally build 3D OctoMaps, for that it needs as an input a 3D Point-
Cloud. Also, rtabmap_ros can build an OctoMap of the occupied space for that it needs to be build up with
OctoMap installed. Therefore, the 3D map based on octrees has been achieved in two ways.

• Mode1, the octomap_server node subscribes to the PointCloud rtabmap_ros cloud_map topic and
publishes the occupied_cell topic.

• Mode2, the rtabmap_ros node publishes the octomap_occupied space topic.

In the first mode, the octomap_server node does not update accordingly to the cloud_map updating rate,
this can be seen in Figure 9 where the OctoMap kept appending new occupied cells to the existing ones despite
the cloud_map updates. In order to solve this issue, octomap_server node has to be manually cleared after
loop closure to clear all obstacles. Then, in the new update the OctoMap map shall be more clean without
the unnecessary appended voxels.

(a)
(b)

Figure 9: (a) Shows the top view of the 3D octomap_server map, (b) Shows the transversal view of the 3D
octomap_server map.

Figure 10 shows the implementation of themode1. The zed_wrapper node publishes two topics; depth_image
which produces the depth PointCloud of the environment. And, the zed_odom that gives absolute 3D position
an orientation relative to the odometry frame based on pure visual odometry algorithm.

The depth_filter node publishes the depth_filter topic which eliminates textureless areas due to ZED_SDK
has no option to filter them out. The depth can vary in the textureless areas that result in duplicated walls
in the PointCloud, improvement of the reduction of duplicated walls is achieved by filtering the depth image
cloud.

The rtabmap_node publishes two topics: cloud_map which contains the 3D PointCloud map of the outdoor
environment and it is constantly saved in memory. And, the loopClosure topic that has to do with the ID
loop closure detection that can be used to reset the OctoMap.

The turn OFF block reads the latest saved cloud_map when there is a Ctrl +C kill node action. This
map is the result after it has been updated by all loopClosures, meaning that the map is clean of append
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voxels that the octomap_server did clean out after loopClosure. This action solves the problem of the
octomap_server not clearing the map after loopClosure. So, the previous step allows to load the latest map
into the octomap_server node which in turn publishes two topics: point_cloud_centers and octomap_cells.

reset

save

Turn OFF

read

cells

octomap

rtabmap_ros

cloud_map

imu

mavros

memory server

centers

octomap

octomap

memory

point cloud

loopClosure

depth_image

zed_wrapper

zed_odom

depth

depth

filter

filter

Figure 10: Schematics of mode1.

Mode2 uses the OctoMap output of the rtabmap_ros node directly, i.e. the
/rtabmap_ros/octomap_occupied_space topic. In the process, the rtabmap subscribes to the camera
depth_filter topic and publishes two topics; the /rtabmap/cloud_map and /rtabmap/octomap_occupied_space,
also the OctoMap map is updating according to the frequency of the cloud map, moreover rtabmap will au-
tomatically update the full OctoMap on loop closure. The block diagram of the process can be depicted in
Figure 11.

3.4 Experiment Results

3.4.1 Octomap

A rosbag data set with a size of 1.8 GB and 60744 messages has been recorded at the inner yard of the
Faculty Information Technology (FIT) situated in Brno, Czech Republic which consists of the following ROS
topics:

∗ gps_global_position ∗ global_position_compass_hdg ∗ imu_data ∗ zed_right_image_rect_color_compressed
∗ occupied_cells_vis_array ∗ rtabmap_cloud_map ∗ rtabmap_mapData ∗ rtabmap_mapGraph
∗ rtabmap_octomap_occupied_space ∗ octomap_point_cloud_centers ∗ zed_odom

During the play of the rosbag, the data set is forward to the mode1 and mode2 respectively for evaluation
as shown in Figure 12. The mode1 and the mode2 delivers 68 and 404 cloud scans respectively, both
covering an approximate area of 1211m2 along a trajectory of 433m. Also, the mode1 and the mode2 delivers
a total of 162668 and 46193 end points respectively where the table 2 summarizes the data. Figure 13
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Figure 11: Schematics of mode2.

shows the outcome of the mode1 which is the result of the octomap_server after it has been updated every
loopClosureID. Whereas, Figure 14 shows the outcome of the mode2 which is the resulting OctoMap 3D map
that correspond to the rtabmap_node.

rosbag

data set

mode 2

3D mapmode 1

3D map

Figure 12: Shows the mode1 and mode2 with the rosbag data set as input and the octree 3D map as output.

Comparison
cloud scans area[m2] trajectory[m] points

mode1 68 1211 433 162668
mode2 404 1211 433 46193

Table 2: Comparison between mode1 and mode2.

2
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Figure 13: Shows the entire OctoMap after resetting manually every loopClosureID which correspond to
mode1

Figure 14: The resulting rtabmap_octomap 3D map which correspond to mode2.
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The computed maps by the two modes are compared each other by two different ways: bandwidth and
memory consumption.

The observed data in Figure 15(a) shows the bandwidth average in Kb/s of the topics /occupied_cells_vis_array
and /rtabmap/octomap_occupied_space with 400 and 68 scans that correspond to the output of the mode1
and the mode2 respectively versus the voxel cloud size. One can see that mode1 has bigger cloud voxel size
than the mode2. But, the loading time of mode2 is faster than the mode1. This comparison shows that
mode1 loads faster with less voxel cloud size than mode2.

Then, Figure 15(b) shows the evolution of memory consumption over the number of scans. It can be seen
that the memory grows rapidly in the mode1 whereas the memory consumption of the mode2 grows less and
more smooth with bigger number of scans.
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Figure 15: a) Shows the bandwidth of themode2 is higher than themode1. b) Shows the memory consumption
of the mode1 is higher than than the mode2.

3.4.2 ZED2 Camera

Figure 16 shows a schematic software diagram where the ZED2 camera is connected over a USB3 to a laptop
acer Nitro5 + Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz running Ubuntu 18.04.1. The following software
was installed on the laptop:

• ZED_SDK v3.2.223 for Ubuntu 18.04.

• RtabMap v0.20.424

• rtabmap_ros25

• Cuda v11.0 26

• zed_wrapper27

23https://www.stereolabs.com/developers/release/3.2/
24http://introlab.github.io/rtabmap/
25http://wiki.ros.org/rtabmap_ros
26https://developer.nvidia.com/cuda-11.0-download-archive?target_os=Linux&target_arch=x86_64&target_distro=

Ubuntu&target_version=1804&target_type=deblocal
27https://github.com/stereolabs/zed-ros-wrapper
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• octomap28
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Figure 16: .

The roslaunch used to test the ZED camera which is based on RtabMap v0.20.0 was used to test the recorded
ZED2fityard3.bag rosbag. During the running, a loop closure issue is found, e.g. the loop closure happens
some time after the camera has been at previous location, other times did not happen or just happens almost
at the and of the trajectory in contrast with the ZED loop closure that happens as soon the camera has
visited a previous location and the camera has the same point of view (looking at the same direction).

Since the ZED camera runs on Ubuntu 16.04 and the ZED2 runs on Ubuntu 18.04, one difference is the
version of OpenCV libraries linked to 16.04 that have access to all OpenCV’s features (even nonfree) because
ROS provides its own OpenCV version. In the other hand, on 18.04, ROS relies on the system version of
OpenCV, which has very limited features (not built with opencv_contrib or nonfree modules). Moreover,
with 16.04, GFTT/BRIEF is used by default, while on 18.04, GFTT/ORB is used. So then, GFTT is a
feature detector and BRIEF, ORB are feature descriptors [15]. Also, in RtabMap v0.20.4, a new parameter
has been added to change the way quantization of binary features is done (to use less RAM and processing
time). To use the older approach, Kp/ByteToFloat 29 shall be set to false, having the previous parameter to
true may affect the matching. Also, the Rtabmap/LoopThr parameter has to do with loop closing threshold.

In order to verify the previous mentioned statement or hypothesis, the database rtabmap.db, that correspond
to the rosbag ZED2fityard3.bag, is run with different combinations of feature detectors under RtabMap
v0.20.4 where Kp/DetectorStrategy corresponds to "6=GFTT/BRIEF and 8=GFTT/ORB".

Table 3 shows the combination GFTT/ORB and the parameters set up for Figures 17(a) and 17(b). It
can be seen in Figure 17 that a change from true to false in the parameter Kp/ByteToFloat has improved
significantly the loop closure which can be seen by the lines connecting the path.

Table 4 shows the combination GFTT/BRIEF and the parameters set up for Figures 18(a) and 18(b).
Figure 18(a) shows an improvement of loop closure compared with Figure 17(a) also Figure 18(b) shows an
improvement of loop closure compared with Figure 17(b).

28http://wiki.ros.org/octomap
29https://github.com/introlab/rtabmap/blob/master/corelib/include/rtabmap/core/Parameters.h
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GFTT/ORB combination
DetectorStrategy ByteToFloat LoopThr

Figure (a) 8 true 0.11
Figure (b) 8 false 0.11

Table 3

(a) (b)

Figure 17: (a) Data base with combination; Kp/DetectorStrategy=8, Kp/ByteToFloat=true
and Rtabmap/LoopThr = 0.11. (b) Data base with combination; Kp/DetectorStrategy=8,
Kp/ByteToFloat=false and Rtabmap/LoopThr = 0.11.

GFTT/BRIEF combination
DetectorStrategy ByteToFloat LoopThr

Figure (a) 6 true 0.11
Figure (b) 6 false 0.11

Table 4
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Table 5 shows the combination GFTT/ORB and the parameters set up for Figure 19. Figure 19 shows by
lowering the parameter Rtabmap/LoopThr to 0.06 an improvement of the loop closure has been carried out.

GFTT/ORB combination
DetectorStrategy ByteToFloat LoopThr

Figure (b) 8 false 0.06

Table 5

Based on the previous combinations the conclusion is that by setting Kp/ByteToFloat to false, a better
loop closure hypotheses can be gotten with binary descriptors. Also, Rtabmap/LoopThr can be lowered
to test more hypotheses with Kp/DetectorStrategy=8. Besides, rtabmap node receives IMU-ZED2 data
with Optimizer/GravitySigma to 0.3, so the map can be optimized with gravity and be aligned with the
ground. Since good map optimization and rejection of bad loop closures are wanted, a good zed’s odom-
etry covariance is needed, this can be fixed on rtabmap node with odom_tf_angular_variance=0.001 and
odom_tf_linear_variance=0.001.

Table 6 shows the final chosen parameters values and Figure 20(a) shows the 3D PointCloud map, whereas
Figure 20(b) shows the occupied probabilistic voxel space with a size of 0.06m.

(a) (b)

(c) (d)

Figure 18: (a) Data base with combination; Kp/DetectorStrategy=6, Kp/ByteToFloat=true
and Rtabmap/LoopThr = 0.11. (b) Data base with combination; Kp/DetectorStrategy=6,
Kp/ByteToFloat=false and Rtabmap/LoopThr = 0.11.
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Figure 19: Data base with combination; Kp/DetectorStrategy=8, Kp/ByteToFloat=false and
Rtabmap/LoopThr = 0.06.

(a)
(b)

Figure 20: a) 3D PointCloud map. b) 3D OctoMap map.
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parameter combination
GravitySigma DetectorStrategy ByteToFloat LoopThr Strategy

0.3 8 false 0.06 2

Table 6

4 Ghost-free HDR merging

HDR videos are typically acquired through multi-exposure by sensors with a limited (standard) dynamic
range [16, 17, 18], since this is both technologically and economically feasible as compared to other possible
alternatives. Unfortunately, such videos typically suffer from "ghosts" caused by individual exposures of
the motion objects taken at different times (and thus also capturing the objects in different positions) or
by camera motion. Alternatives include theoretically ghost-free approaches, such as systems using beam-
splitters with several CCD/CMOS sensors [19] or expensive and technologically demanding specific HDR
sensors [20, 21].

We proposed a novel ghost-free HDR acquisition method that is powerful yet well implementable even in
embedded systems (like HDR Camera) in real-time with low resource requirements. While de-ghosting has
been researched for a long time, the state-of-the-art methods with good performance are computationally very
demanding and so they are impossible to implement in smart cameras and/or embedded systems attached to
cameras. In [22] we proposed algorithm which was designed with respect to real-time processing in embedded
hardware.

Figure 21: Example of ghost artefacts and result of the proposed ghost free merging. Top left - stripes of
original images with a significant car motion. Top middle and top right - Images representing coefficients
used for the HDR merging (certainty maps, see Section 4.2). Bottom left - ghosted HDR image. Bottom
right - HDR image merged using the proposed method.

4.1 Novel ghost-free HDR merging algorithnm

The idea being similar to the solutions proposed by Grosch [23], Wu [24], and Wang [25] but with quite
different and improved processing. The exposure time of each image is known; therefore, it is possible to
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estimate and match pixel values in the adjacent images, except for the over or under-exposed patches where
the pixel values will obviously not match. Such estimation is not very precise, the captured image data is
affected by factors such as noise, sensor quantization errors, CRF, etc. The reviewed methods generally use
fixed or user-guided thresholds which must be employed in order to introduce user-defined tolerance to these
factors. These fixed or user-defined thresholds often cause adverse effects in the final HDR images, such as
visible transitions between static and motion areas etc. We propose a method to overcome such problems.

Figure 22: Two Certainty maps (bottom) obtained from the sequence on the top. The Certainty map on
the left was obtained from top left and top middle (reference) image, the Certainty map on the right was
obtained from top middle (reference) and top right image.

4.2 Certainty map computation

In our approach, every image Li is assigned a Certainty map Ci related to the reference image Lref , which
is generally considered to be the middle (exposure) image in the sequence. The Certainty map C contains
values representing the estimated level of certainty that the individual pixels contain the same patch of the
scene as the reference pixel, but obtained under a different exposure. Unlike ghostmaps, Certainty maps hold
not only the patches containing motion, but rather all patches inappropriate for merging - such as under and
over-exposed pixels.

The probability distribution of low level value pixels is Poisson [26] due to the discrete nature of the incoming
photons. With higher intensities, the distribution transforms into Normal (Gaussian). Therefore, we use the
Gaussian function to derive the certainty (estimated probability) that the two luminance levels, estimated
and measured, match. The Certainty map Ci (see Figure 22) replaces the binary ghostmap with soft assigned
values, obtained using the information from the reference image Lref , the estimated image Li, the exposure
times ti and tref , as well as the CRF. Note, please, that in this paper the inverse CRF was implicitly applied
to all images Li. Image Li is estimated by the following equation:

Li = Lref ⋅ (
ti
tref

) (5)

Consequently, the estimated value for image i is processed along with the actual value of Li to get the
probability based Certainty map Ci as:

Ci = e−
(Li−Li)

2

2σ2 (6)
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Figure 23: A scheme illustrating the proposed ghost-free merging of according to Equation 7 on a sequence
of three images.

where σ reflects the standard deviation of the pixel measurement (affecting the "softness" weight). The lower
σ is, the sharper or more strict the Certainty maps are, which results mainly in the dynamic range reduction.
On the other hand, a high σ causes "softer" Certainty maps, which may start to be ghosted. Ghost detection
generally, and indeed inherently, cannot work well for the over and under-exposed spots of an image; thus
the Certainty map algorithm contains a boundary condition: If the estimated value lies beyond the point of
saturation, the Certainty is assigned at maximum value.

4.3 Multi-exposure merging algorithm

Our modification of Debevec’s [16] merging algorithm incorporates the weights from the Certainty map,
obtained through Equation 6. The HDR image H is calculated as the weighted sum of pixels from n images
using the following equation:
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H =
Ci ⋅w(Li) ⋅Li ⋅ ti

tmin

∑n
i=1(Ci ⋅w(Li))

(7)

The Ci for reference image certainty is considered to be 1. The w(Lref) is considered to be 1, as the reference
image is a "pattern" with the desired object layout; it is not desirable to weight out the pixels, even if poorly
exposed. A scheme illustrating the Equation 6 is shown in Figure 23.

4.4 Dataset evaluation and comparison

We performed the evaluation on datasets [27, 28, 29], containing sequences of images of various scenes and
different types of motion. The results provide a comparison of the proposed method with generally more
precise and computationally demanding methods, commonly based on optical flow, which were not even
included into the related work due to their complexity and high computational demands.

Figure 24: Ghosted HDRs (top line) and HDRs merged using proposed ghost-free method (bottom line) on
sequences "Fast cars" [28] (left), "105" [29] (middle) and "117" [29] (right). Datasets contains 9 LDR (Low
Dynamic Range) images.

Tursun et al. [28, 29] published two datasets and proposed metrics for evaluation of HDR de-ghosting quality.
The evaluated samples from the datasets are shown in Figure 24 and the HDR quality metric [28] is evaluated
in Table 7. The metric evaluates the dynamic range achieved inside the motion regions, considering also the
correctness of the de-ghosting. The image sets, in which we got worse results than other algorithms, were
successfully de-ghosted anyway; however, the worse results were probably caused by losses in the dynamic
range. Evaluation of the proposed method on these datasets also proves that the proposed method is generally
usable for sequences larger than two/three images, commonly used in cameras. However, the proposed
method and also many HDR de-ghosting methods may yield artifacts in regions where the moving objects in
the reference image are poorly-exposed, as Tursun et al. concluded [28].

4.5 Experiments

HDR camera was initially designed as a static camera (e.g., traffic camera) but the integration of advanced
ghost free merging is key enabling technology for the recording (or even processing) of HDR video on the
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Table 7: Results of the "Dynamic Region Dynamic Range" metric proposed by Tursun [28] and evaluated
on their dataset. The metric evaluates the resulting dynamic range within regions containing movement; the
higher the value, the better.

Metric "DR" [23] [30] [31] none This work
Cafe 2.63 2.61 2.60 2.47 2.42
FastCars 1.12 1.18 1.10 1.10 1.38
Flag 1.40 1.50 1.49 1.45 1.59
Gallery1 1.59 1.59 1.56 1.55 1.70
Gallery2 2.41 2.56 2.14 2.29 2.05
LibrarySide 1.78 1.93 1.60 1.76 3.20
Shop1 2.20 2.39 2.00 2.10 2.42
Shop2 2.68 2.72 2.89 2.55 2.42
WalkingP. 1.94 2.07 1.83 2.05 1.58

drones. We performed several test flights with an installed HDR camera (see section 2.3.2). Example scenes
are shown in Figure 25.

Figure 25: Ghosted HDRs (top line) and HDRs merged using proposed ghost-free method (bottom line) on
sequences "Fast cars" [28] (left), "105" [29] (middle) and "117" [29] (right). Datasets contains 9 LDR (Low
Dynamic Range) images.

5 Conclusions and Future Work

In this report, an application of the OctoMap open source for three-dimensional mapping has been presented.
The approach is based on an efficient data structure base on octress where volumetric 3D models are repre-
sented in a probabilistic estimation that include occupied, free and unknown spaces. The octomap_server
and the rtabmap_ros which are the integrated ROS wrappers have been used to handle the mapping process.

26



The evaluation is carry out by recording a rosbag data set that consists of many rostopics. Two modes were
established; mode1 is based on octomap_server whereas mode2 is based on rtabmap_ros. The results had
demonstrated that mode2 has less memory consumption, scan numbers and faster data transmission over
mode1.

Also, the communication process between the TBSD and the ViAn server has been carried out. The data
transfer process is handled by a Rabbit MQ (RMQ) listener which ensures correct data delivery to the server.

Additionally, the ZED2 camera has been set up. During the testing, an issue of loop closure was detected.
To solve the issue, the GFTT feature detector and the BRIEF, ORB feature descriptors were tuned. The
results gave a reliable 3D octomap map.

We proposed and published a novel ghost-free HDR merging algorithm suitable for real-time implementation
in embedded devices. We intagrated this algorithm into HDR camera in order to improve the output quality
of HDR video captured directly from the drone. Finally, HDR Camera with ghost-free HDR merging has
been placed on the drone as an extra camera to capture video slightly different than normal, a flying test
was made at the yard of the faculty, the video showed acceptable result. This experiment showed additional
utilization of HDR processing directly on drones, where HDR can take place in difficult light conditions which
may occur during a drone flight.
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