
The architecture of Fitcrack
distributed password cracking system, ver. 2

Technical report

Radek Hranický, Lukáš Zobal, Vojtěch Večěra,
Matúš Múčka, Adam Horák, Dávid Bolvanský,

Tomáš Ženčák

Technical report n. FIT-TR-2020-05
Faculty of Information Technology,

Brno University of Technology

Last modified: February 24, 2021

Table of Contents

The architecture of Fitcrack distributed password cracking system,
version 2 . 4
Radek Hranický, Lukáš Zobal, Vojtěch Večeřa, Matúš Múčka, Adam
Horák, Dávid Bolvanský, Tomáš Ženčák
1 Introduction . 4
1.1 Terminology . 5
1.2 Structure of the document . 6

2 Overview . 8
2.1 Password cracking process . 8
2.2 The cracking network . 9
2.3 Task distribution . 10

2.3.1 Index-based distribution . 11
2.3.2 Jobs and workunits . 11
2.3.3 The keyspace in hashcat . 12

2.4 Adaptive scheduling . 12
2.5 The architecture of client and server . 15

3 Attack modes . 17
3.1 Dictionary attack . 18

3.1.1 Password-mangling rules . 18
3.1.2 Distributed dictionary attack . 19

3.2 Combination attack . 19
3.3 Brute-force attack . 23

3.3.1 Password mask . 23
3.3.2 Markov chains . 25
3.3.3 Distributed brute-force attack . 28

3.4 Hybrid attacks . 28
3.5 PCFG attack . 32

3.5.1 The use of probabilistic context-free grammars 33
3.5.2 Distributed PCFG attack . 34

3.6 PRINCE attack . 36
3.6.1 Basic algorithm components . 36
3.6.2 Distributed PRINCE attack . 38

4 Server-side subsystems . 40
4.1 Server directory structure . 41
4.2 WebAdmin . 41
4.3 WebAdmin frontend . 42

4.3.1 Job creation and management . 42
4.3.2 Asset library management . 43
4.3.3 System and user administration . 43

4.4 WebAdmin backend . 44
4.5 hashcat . 48

4.6 XtoHashcat . 49
4.7 hcstat2gen . 49
4.8 Monitoring System Usage . 50
4.9 PCFG Monitor . 50
4.10 PCFG Manager server . 50
4.11 Princeprocessor . 51
4.12 pwd_dist . 51
4.13 Generator . 51
4.14 Validator . 52
4.15 Assimilator . 54
4.16 Trickler . 54
4.17 Transitioner . 55
4.18 Scheduler . 56
4.19 Feeder . 56
4.20 File deleter . 56

5 Client-side subsystems . 57
5.1 BOINC Client . 57
5.2 BOINC Manager . 58
5.3 Runner . 58

5.3.1 Pre-compilation . 58
5.3.2 Basic operation . 59
5.3.3 Attack specific configuration . 60
5.3.4 Host specific configuration . 60

5.4 hashcat . 60
5.5 PCFG Manager client . 61
5.6 Princeprocessor . 61

6 Client-server communication . 62
6.1 Files transferred from server to client . 62
6.2 Files transferred from client to server . 67
6.3 Trickle messages . 69

7 MySQL database . 70
7.1 The overview of BOINC tables . 70
7.2 The overview of Fitcrack tables . 71
7.3 fc_batch . 71
7.4 fc_benchmark . 72
7.5 fc_bin . 72
7.6 fc_bin_job . 72
7.7 fc_charset . 72
7.8 fc_dictionary . 73
7.9 fc_hash . 73
7.10 fc_hcstats . 73
7.11 fc_host . 73
7.12 fc_host_activity . 74
7.13 fc_host_status . 74
7.14 fc_job . 74

7.15 fc_job_dictionary . 77
7.16 fc_job_graph . 77
7.17 fc_job_status . 78
7.18 fc_mask . 78
7.19 fc_masks_set . 78
7.20 fc_notification . 78
7.21 fc_pcfg_grammar . 79
7.22 fc_pcfg_preterminals . 79
7.23 fc_protected_file . 79
7.24 fc_role . 80
7.25 fc_rule . 80
7.26 fc_server_usage . 80
7.27 fc_settings . 81
7.28 fc_template . 81
7.29 fc_user . 81
7.30 fc_user_permissions . 82
7.31 fc_workunit . 82

8 Conclusion . 84
References . 84

3

The architecture of Fitcrack distributed password
cracking system, version 2

Radek Hranický, Lukáš Zobal, Vojtěch Večeřa, Matúš Múčka, Adam Horák,
Dávid Bolvanský, Tomáš Ženčák

Brno University of Technology, email:
{ihranicky,izobal,vecerav,muckamat}@fit.vutbr.cz,
{xhorak69,xbolva00,xzenca00}@stud.fit.vutbr.cz

Abstract. This updated technical report describes the architecture of
Fitcrack distributed password cracking system developed within the Inte-
grated platform for analysis of digital data from security incidents project.
Fitcrack serves as an open-source solution for recovering plaintext pass-
words from various cryptographic hashes, as well as a platform for re-
search and development of new password cracking methodologies. The
report documents both server and client sides of the system, provides
detailed description of all subsystems and their interfaces, and clarifies
the protocols used for communication between the server and clients.
In addition to the original report, this updated version contains the de-
scription of new modules and server daemons, PRINCE attack, PCFG
attack, and other enhancements.

1 Introduction

Fitcrack system was initially created as a proof-of-concept tool for demonstrating
the feasibility of using Berkeley Open Infrastructure for Network Computing
(BOINC)1 [2] as a task distribution platform for password cracking. The goal was
to create an efficient, flexible, and scalable GPU-accelerated solution which is not
limited to specific hardware and number of nodes. BOINC was initially designed
as a public-resource computing solution, however, in our previous research, we
have shown its applicability in password cracking even in private distributed
networks [7]. In our use-case, BOINC handles the authentication of computing
nodes, provides the distribution and automatic updates of executable binaries,
OpenCL2 kernels implementing the cryptographic algoritms for GPUs, and the
input/output data of each cracking task [7].

The original version used a custom OpenCL-based software solution for com-
puting hashes on the client side. The Fitcrack client was a C++ application ca-
pable of cracking password hashes from the following encrypted formats: PKZIP,
WinZIP, SecureZIP, 7z, RAR versions 3 and 5, PDF up to version 1.7 Extension
1 https://boinc.berkeley.edu/
2 https://www.khronos.org/opencl/

4

https://boinc.berkeley.edu/
https://www.khronos.org/opencl/

Level 3, and MS Office documents up to Office 2016. The algorithms for cracking
procedures were implemented in three variants: i. a CPU-only implementation;
ii. an OpenCL implementation for all formats; and iii. a CUDA3 implementation
for all formats except 7z and RAR. Some of the GPU kernels were adopted from
our single-machine tool Wrathion [10].

To achieve higher cracking speeds and get support for more hash formats, we
replaced the original Fitcrack client with hashcat4, a self-proclaimed “World’s
fastest password cracker”. Considering speed, team hashcat won 5 of 7 years
of Crack me if you can (CMIYC5) contest. Assessing features, hashcat supports
over 200 different hash formats, and several different attack types: brute-force at-
tack, dictionary attack, combinator attack and hybrid attacks; moreover, it sup-
ports the use of password-mangling rules including the ones used by popular John
the Ripper6 tool. All cracking algorithms are implemented using OpenCL which
allows computing all OpenCL-compatible CPUs, GPUs, FPGAs, and DSPs.

The report documents the hashcat-based version of Fitcrack, its architcture,
the distribution of cracking tasks, and the implementation of various hashcat-
compatible attack types. In addition to the original report [14], this updated
version documents:

• an improved adaptive scheduling algorithm (See Section 2.4.),
• the support for PRINCE attack (See Section 3.6.),
• the support for PCFG attack (See Section 3.5.),
• updated webadmin application with a detailed description of individual

REST API endpoints (See Section 4.2.),
• updates to existing server daemons (See Section 4.),
• new server daemons: PCFG Monitor, Manager, and sysUsage,
• enhanced Runner with improved benchmarking and a new global mutex that

provides native support for pipeline workunit processing (See Section 5.3.),
• an updated database scheme (See Section 7.).

1.1 Terminology

The document uses various terms which will be described in the following sec-
tions. Some of them may have different names in other cracking solutions. The
most important are:

• Fitcrack - a distributed hash cracking software developed by Fitcrack team.
• BOINC - a framework for distributed computing used in Fitcrack.
• hashcat - world’s fastest password cracker used for hash cracking in Fitcrack.
• Attack mode (or attack type) - the type of an attack signifying how the

candidate passwords are obtained. Fitcrack supports the same attack types
as hashcat:

3 https://developer.nvidia.com/cuda-zone
4 https://hashcat.net/
5 https://contest.korelogic.com/
6 http://www.openwall.com/john/

5

https://developer.nvidia.com/cuda-zone
https://hashcat.net/
https://contest.korelogic.com/
http://www.openwall.com/john/

◦ Dictionary attack - taking passwords from a text file,
◦ Combination attack - combining two dictionaries,
◦ Brute-force attack - the exhaustive search,
◦ Hybrid attacks - combine the previous types.

• Job - a single cracking task defined by a name, attack type, attack options
and one or more hashes to be cracked.
• Workunit - a single piece of cracking work assigned to a host. It is a chunk

created from keyspace by defining the range od password indexes.
• Host (client, cracking node) - computer used for the cracking.
• Targeting - a technique of creating concrete workunits for specific nodes

only.
• Password - a sequence of characters serving as the plaintext input of the

hash function.
• Hash - an output of the cryptographic hash function. The input for cracking.
• Hash type - a unique number7 representing the format of a hash.
• Input hash - a hash that serves as the input of a cracking task. The goal

is to find the plaintext string from which the hash was computed.
• Correct password - a password that we search for in a cracking task; the

hash of the correct password is the input hash.
• Candidate password - a password which we test for correctness.
• Candidate hash - a cryprographic hash of the candidate password. The
• Keyspace - the number of candidate passwords implicating the complexity

of a job. Higher keyspace means the job is more complex.
• Password index - a number within the keyspace representing a concrete

candidate password. In brute-force attack, each workunit is defined by a range
of password indexes signifying where to start and where to stop.

• Dictionary - a text file containing a password on each line.
• Password-mangling rule - a rule for modifying candidate password by

replacing, inserting, or deleting characters. The rules were introduced within
Jogn the ripper tool, and adopted to hashcat.

• Character set (charset) - a set of characters used for generating password
candidates. For hahscat, charset files have ‘.hcchr‘ extension.

• Mask - a sequence of characters defining how candidate passwords may look
like. Mask are used in brute-force attack and hybrid attacks.

• Markov chain - a stochastic mathematical model used for generating can-
didate passwords within a brute-force attack. Its states are represented by
probability matrixes stored within a ‘.hcstat2‘ file.

• User - A person having an account to access the Fitcrack webadmin.

1.2 Structure of the document

The technical report is structured as follows. Section 2 provides the overview
the password cracking process and the principles of work distribution used in
Fitcrack. It also includes the basic scheme of a distributed network and defines
7 https://hashcat.net/wiki/doku.php?id=example_hashes

6

https://hashcat.net/wiki/doku.php?id=example_hashes

two main participants: the server and clients. The subsystems implemented on
the server-side are described in section 4, while section 5 aims at the client-side.
The protocols used for communication between the two sides are described in
section 6. Section 7 describes the schema of the SQL database used on the server
to store all job-related information. Section 8 concludes the document.

7

2 Overview

This section describes the basic principles of password cracking followed by the
principles of task distribution used in Fitcrack. Least but not last, it describes
the architecture of a generic cracking network.

2.1 Password cracking process

The password cracking is based on systematic selection of candidate passwords
(passwords we want to try), while each selected candidate password is verified for
correctness. Eventually, the process ends with a correct password found, or with
an exhausted set of assumed passwords, i.e. no password found. An algorithm
or tool selecting the passwords could be called a password generator. Different
attack types (see section 3) use different types of generators. Depending on the
assignment, we have two types of cracking tasks:

• cracking a raw hash,
• cracking an encrypted medium.

Raw hashes are used for various purposes which include storing user passwords
in web services, operating systems, and other software. Cracking a raw hash is
quite straightforward. We continuously generate candidate passwords and from
each password, we calculate a cryptographic hash called candidate hash and
compared it with the hash we want to crack. Please note, that it is necessary to
know the hash function used. The complexity of a task depends on the number
of candidate passwords, as well as on the cryptographic function used. The speed
of cracking may differ notably between various existing algorithms. For example,
using hashcat and NVIDIA GTX 1080Ti GPU, the cracking speed8 (in hashes
per second: H/s) of MD5 [21] is about 31 GH/s, however the cracking speed of
Bcrypt [19] with 4 rounds is 20 kH/s, which is more than 1,000,000 times slower.

Encrypted media include documents (Office, PDF, etc.), archives (ZIP, 7z,
RAR, etc.), and other containers including disk partitions encrypted by Ver-
aCrypt9 or other software. The recovery process itself depends on the encrypted
media type, concrete format and algorithms defined by the format’s manufac-
turer. For most documents and archives only metadata is needed to verify the
password. For example, encrypted PDF documents store the hash of the (mod-
ified) password we are looking for. The hash is called a verification value [1].

This is the simplest case and is depicted in figure 1. From each generated
password, we need to compute one or more specific hash functions. Many formats
like Office Open XML use thousands of hashing algorithm iterations [26]. The
number of iterations is chosen to be high enough to make a possible attack more
difficult, but low enough to prevent delays of a regular content viewing a with
known password. The resulting hash is then compared with the verification value.

8 https://gist.github.com/epixoip/973da7352f4cc005746c627527e4d073
9 https://www.veracrypt.fr/

8

https://gist.github.com/epixoip/973da7352f4cc005746c627527e4d073
https://www.veracrypt.fr/

If they match, the password is considered correct. If not, another password is
tried.

In some cases, the hashing block has additional input called salt, which is
usually a random value located inside the document, and is a part of encryption
metadata denoted above. The simplest way of use is to concatenate the salt with
the password. The purpose of the salt is to make the attack harder and resistant
to the use of rainbow tables [22]. Before comparison with the verification value,
for some formats, the resulting hash is mixed with another value, often called
pepper. The purpose is again, to increase the difficulty of an attack.

Password
generator

password

=

hash

?

verification
value
(hash)

(salt)

encrypted medium

(pepper)

+

Specific hash function(s)

Fig. 1. Password cracking of encrypted media

2.2 The cracking network

The architecture of a distributed network consists of a project server and multi-
ple clients. A client may use one or more OpenCL devices. Each device may be of
a different type (CPU, GPU, FPGA, DSP), manufacturer (Intel, AMD, NVIDIA,
etc.), and model (e.g. NVIDIA GTX 1080 Ti vs. RTX 2080 Ti). An example of
such network is shown in figure 2.

If all nodes are equal, we say the network is homogenous; if they differ, teh
network is heterogenous. If there are nodes of different OpenCL-device types,
e.g. both GPU-equipped, and CPU-only nodes, we call this environment a hybrid
network [13].

In Fitcrack, the actual computation of cryptographic hashes (as mentioned
in section 2.1) is performed by the clients only. The server figures as a controller
of the cracking process. The main objective of the server is to distribute work.

9

Server

Clients

GPUs

Fig. 2. An example of a cracking network

2.3 Task distribution

In our terminology, a job represents a single cracking task added by the admin-
istrator. Each job is defined by an attack mode (See section 3.), attack settings
(e.g. which dictionary should be used), and one or more password hashes of the
same type (e.g. SHA-1). There are three basic approaches how to distribute a job
over multiple nodes:

• Hash distribution described by Pippin et. al. [18] uses the same candidate
passwords on all nodes, however each node is cracking a different hash. Since
hashcat is capable of cracking multiple hashes for each candidate password
while the candidate hash is only generated once, we assume this approach
ineffective.

• Static chunk distribution introduced by Lim et. al [15] divides the set of
all candidate passwords into a number of chunks and assignes a chunk to each
client. The division is done only once at the beginning. The method has low
overhead, but cannot handle changes in cracking network. If a chunk is lost,
it has to be recomputed from the beginning, if no method of checkpointing
is implemented.

• Dynamic chunk distribution does not divide the entire set of candidate
passwords at start. Instead, it generates and assigns smaller chunks called
workunits progressively. This method is used in Fitcrack since it better han-
dles dynamic and unstable environment. The dynamic approach allow to
create workunits which are fine-tailored for the current client speed (see sec-

10

tion 2.4). Moreover, losing the result of a workunit has lower impact due to
its size.

2.3.1 Index-based distribution

The total number of candidate passwords within a cracking task is called keyspace.
Let us assume that every candidate password p is a string over Σ alphabet, thus
p ∈ Σ∗. The set of all candidate passwords is P ⊂ Σ∗, and |P | is the keyspace
of the job. The cardinality and elements of P depend on the type of attack. For
the purpose of task distribution, let us assume that P is always a finite ordered
set.

Based on the definitions above, we define a password generator function g(i) :
N 7→ P , where i ∈ 〈0, |P | − 1〉 and i is called a password index.

Let us consider a simple incremental incremental brute-force attack (also
known as exhaustive search) [7], where we want to generate all password of
lenghts between 1 and 3 over alphabet Σ = {a, b, c, . . . , z}. Then:

g(0) = a, . . . , g(25) = z

g(26) = aa, . . . , g(701) = zz

g(702) = aaa, . . . , g(18277) = zzz.

(1)

Each workunit in Fitcrack is defined by the range of indexes: imin a imax while

0 ≤ imin ≤ imax ≤ (|P | − 1). (2)

The actual work lies in trying ever possible passwords given by generator g(i)
where i ∈ 〈imin, imax〉. The workunit may end in two ways:

• One of candidate passwords is correct (or more, if we crack multiple
hashes) - the client informs the server that it has found the correct password.
If all hashes are cracked, the client stops.
• No candidate password is correct - client tried every password within

the range, but none of them was correct.

The job may end in two possible ways:

• Sucess, if the correct password was found within a workunit.
• No sucess, if all workunits were processed, however the correct password

was not found.

2.3.2 Jobs and workunits

As mentioned above, a job in Fitcrack is a single cracking assignment. It has a
defined hash algorithm, attack mode (See Section 3.), and configuration options
(See Section 6). Each job in Fitcrack goes through a series of states. All possible
states are enlisted in Table 13, while each has a unique numeric identifier from
0 to 12. Numbers above 10 mean the job is not running. Historically, not all

11

are numbers are used; some are reserved for future use. The lifetime of a job
is illustrated in Figure 20. Three subsystems of Fitcrack are allowed to change
the state of the job: the Generator, when a host asks for a new workunit, the
Assimilator if a workunit result is received, and the Webadmin at an event of
user’s action. Every job starts in the ready state, created by a user, and added
to the database by the WebAdmin backend. Once the user launches it, the job
switches to the running state. All hosts assigned to a job also have status codes
defining the stage of their participation. The host codes are shown in Table 14.

Each job consist of one or more workunits. A workunit is a piece of work
assigned to a client. In Fitcrack, the creation of workunits is handled by the
Generator module (see section 4.13) which specifies the range of indexes for
each workunit. The size of the workunit is calculated using the adaptive schedul-
ing algorithm described in section 2.4. Hashcat tool used for the actual cracking
is controlled by Runner subsystem on the client side. For some attacks, the range
of indexes defined above can be set directly by hashcat’s --skip and --limit pa-
rameters. While --skip corresponds to imin, --limit defines the keyspace to be
processed within a workunit, i.e. should be equal to imax− imin. For dictionary-
based attacks or attacks that use an external password generator, Fitcrack uses
different distribution strategies (See Section 3.). However, the general principle
is the same, and with some abstraction, we can map every workunit to a range
of password indexes.

2.3.3 The keyspace in hashcat
While for dictionary attack without the use of password-mangling rules (see
3.1), hashcat’s keyspace equals the actual number of candidate passwords, for
other attack modes, it may not match. This unexpected behavior is used by the
internal optimization of hashcat. The hashcat’s cracking process is implemented
as two nested loops: i) the base loop and ii.) the modifier loop. While the base
loop is compute on host machine’s CPU, the modifier loop is implemented within
OpenCL GPU kernels. Hashcat’s keyspace is equal to the number of iterations
of the base loop.

For example, assume a brute-force attack using mask (see section 3.3) ?d?d
which stands for two digits. We can generate 10 different digits on each position,
so the keyspace of the mask should be 10 ∗ 10 = 100, however in hashcat, it
is only 10 since it computes 10 iterations within the base loop, and the other
10 within the nested modifier loop. In that case, running hashcat with --limit
1 causes to try 10 passwords, not only one. To overcome this obstacle, we let
hashcat calculate the keyspace on the server before the actual work is assigned
to the clients. And in our database (see 7), we store both hashcat’s keyspace
which is used for distributing work, and the actual keyspace, to inform the user
about the actual number of passwords processed.

2.4 Adaptive scheduling

A process called targeting defines which workunit is assigned to which host.
BOINC supports two types of workunits based on the targeting:

12

• non-targeted - the workunit is created without targeting, and will be as-
signed to any host who asks the server for work;

• targeted - the workunit is created for a specific host, and will be assigned
to this host only. This approach is used in Fitcrack, and will be described in
the following paragraphs.

In a dynamic heterogeneous environment, working nodes have different perfor-
mance, based on their hardware. They can also dynamically join and leave the
computing. In addition, the performance of a node can change over time. Our
goal is to propose a distribution strategy that maximizes efficiency of the com-
puting process. It means that the higher-performance clients would receive larger
workunits than the lower-performance clients

Therefore, Fitcrack uses of targeted workunits. Whenever a host asks for
work, it receives a workunit with keyspace calculated to fit its current perfor-
mance. The size of the workunit is chosen with respect to the desired processing
time.

More formally, let PR ⊆ P be the set of all remaining password candidates
that need to be verified. Next, let tp be the desired workunit processing time in
seconds. Finally, let vi be the current performance (cracking speed) of node i in
passwords per second. Then, the size si of a new workunit assigned to node i is
calculated as si = min(tp·vi, |PR|). Speed vi is determined from previously solved
workunit as vi =

sprev
tprev

where sprev is the size of a previous workunit assigned to
the node, and tprev is the time spent by its processing. Choosing vi for a newly
connected client is performed by running a special benchmark workunit on the
client to calculate its performance. The question is how to choose the workunit
processing time tp. This critical variable affects the distribution’s granularity.
By specifying tp, we define how long we want a host to process a workunit.
Concretely:

• Lower tp means more smaller workunits. Such a setting is more suitable for
an unstable environment where clients are more likely to fail, frequently dis-
connect or change their performance. And thus, the impact of a lost workunit
is lower, and the task can be assigned to another client. On the other hand,
lower tp implies higher overhead because more communication between the
server and clients.

• Higher tp results in a less number of larger workunits. It decreases commu-
nication overhead and clients spend more time by computing. In case of lost
connection, recovery is longer. Higher tp also causes less effective task distri-
bution, namely at the end of the project. E.g., suppose 20 clients where only
10 nodes are computing. These active nodes will be computing for another
hour while others stop working since there is no more task assigned to them.

Since the initial benchmark is often inaccurate, Fitcrack supports the ramp-
up technique that creates smaller workunits at the beginning of each job. The
technique also serves as a fail-safe mechanism to minimize the implications of
unexpected host behavior. Potential failures range from GPU overheating, lack

13

of memory, through network problems up to possibly compromised nodes. This
"suspicious" property of the algorithm does not let the host process full-sized
workunits before it proves the ability to resolve smaller ones. Another problem
may occur at the end of the job. Once all the remaining keyspace is distributed,
some nodes may compute while the others are done and meaninglessly wait for
the others. The problem is resolved by an optional ramp-down technique that
creates progressively smaller workunits at the end of the job.

When a user creates a new job in Fitcrack, they specify the seconds per worku-
nit value. The adaptive scheduling algorithm, however, applies the principles of
ramp-up and ramp-down described above. Moreover, the user may specify how
rapidly the techniques should affect the job, including options to disable both
ramp-up and ramp-down completely.
To effiently calculate tp, we define function proctime(tJ , |PR|, k). Parameter tJ
is an elapsed time of the computing, parameter |PR| is the number of remaining
passwords to be verified and k is a number of active hosts that participate on
the computing. Parameters sR and k change over time. The function proctime
is computed using algorithm 1. Based on remaining time tp, each node will be
assigned appropriate keyspace si = vi.tp. Thus, the remaining keyspace will be
distributed among working nodes according to their performance. In optimal
case, all nodes complete their tasks in tp as estimated.

Algorithm 1: Adaptive calculation of tp
Input: tJ , sR, k
Output: tp
1: vsum = 0
2: forall clienti ∈ {0, . . . , k} do
3: if clienti is active then
4: vi =

sprev
tprev

5: vsum = vsum + vi

6: tp = sR
vsum

· α
7: tprealmin = max(tpmin, tpmax · β)
8: if tp < tprealmin then
9: tp = tprealmin ; // minimal task time

10: else
11: tp = min(tp, tpmax) ; // maximal time
12: if rampup and (tJ <= tpmax) then
13: tp = min(tp, tJ) ; // ramp-up (initial phase)

14: return tp

Lines 2 to 5 of the algorithm compute the entire speed of all active nodes.
The following lines are a bit tricky. Normally, we would have calculated tp as

14

tp = |PR|
vsum

. Here, we add parameters α and and β, both ranging from 0 to 1.
Parameter α is called distribution coefficient and defines the maximum fraction
of the remaining keyspace that can be assigned in a single workunit. E.g., for
α = 0.1 means that maximally 10% of the remaining keyspace |PR| is assigned.
The goal is to make sure there is enough keyspace left for potential new nodes.
Next, β is the ramp-down coefficient. It ensures that the workunit size will be
at least tpmax · β to avoid excessively small workunits at the end of the job.
Increasing β reduces the ramp-down effect. Setinng β to 1 disables the ramp-
down completely, while 0 means full ramp-down where the workunit size is only
limited by tpmin.

The value of tp is limited by tpmin and tpmax. Parameter tpmin states, that
the computing shorter than this value is ineffective in distributed environment,
so the minimal task time is tpmin. Similarly, tpmax defines the maximal task
time so that also slower nodes can participate in the computing. Based on our
experiments, we recommend tpmin to be at least 1 minute and tpmax to be about
60 minutes. When creating a new job in Fitcrack WebAdmin (see section 4.3),
the administator can specify tpmax as the seconds per workunit option.

Finally, the boolean rampup variable defines if the ramp-up is on or off. If
enabled, it is performed in an initial stage of the job. This stage is defined as the
period before the elapsed time reaches the desired workunit time. For example,
the desired time for a single workunit is 15 minutes. But the full-size workunits
are not created in the first 15 minutes of the job. The algorithm reserves this
time for stabilization to withstand any benchmark inaccuracies or unexpected
host reactions. All the parameters, including α, β, rampup, and tpmin can be
customized in Fitcrack advanced settings through the WebAdmin interface.

2.5 The architecture of client and server

The server and clients are interconnected by a TCP/IP network, not necessarily
only LAN which makes it possible to run a cracking task over-the-Internet on
nodes in geographically distant locations. While the server is responsible for
management of cracking jobs, clients serve as “workers” who run the cracking
process itself. Clients communicates with the server using an RPC-based BOINC
scheduling server protocol10 over HTTP(S). The current architecture of Fitcrack
is shown in figure 3, and is fairy different from the original one described in [7].
Each side consists of multiple subsystems which will be defined in the following
sections.

10 https://boinc.berkeley.edu/trac/wiki/RpcProtocol

15

https://boinc.berkeley.edu/trac/wiki/RpcProtocol

Server

WebAdmin frontend

REST API

Assimilator

Transitioner

Scheduler

File deleter

Feeder

BOINC server built-in subsystems

hashcat
BOINC client

BOINC manager

Runner

OpenCL kernel

CoreCLI

TCP/IP + HTTP(S) + BOINC RPC

MySQL

Client(s)

Fitcrack-specific Related to hashcat BOINC

TCP/IP
+

HTTP(S)

GUI

Local
administrator

System
administrator

Trickler

PCFG Manager server #1

Matt Weir's work

princeprocessorExternal password
generators

PCFG Manager client
PIPE

passwords

Validator

hashcat

WebAdmin backend

PCFG Monitor

XtoHashcat hcstat2gen princeprocessor PCFG Trainer

Generator

Fig. 3. The architecture of Fitcrack

16

3 Attack modes

As a cracking engine, Fitcrack uses hashcat version 5.1.0. The attack mode of
hashcat is selected by by a number passed with the -a parameter. The allowed
attack modes are: dictionary (straight) attack (0), combination attack (1), brute-
force (mask) attack (3), hybrid attacks (6 and 7), PRINCE attack (8) and PCFG
attack (9). In this section, we show how we perform these attacks in the dis-
tributed environment of BOINC. In Fitcrack, we support all hashcat’s attack
modes, however, based on the attack configuration, we represent them inter-
nally by two numbers:

• attack_mode - corresponding to hashcat’s attack mode,
• attack_submode - further specifying the attack.

The numbering of modes and submodes is described by table 1.

mode submode description
0 0 Basic dictionary attack
0 1 Dictionary attack with password-mangling rules
1 0 Basic combination attack
1 1 Combination attack with left rule
1 2 Combination attack with right rule
1 3 Combination attack with left and right rule
3 0 Basic brute-force attack
3 1 Brute-force attack with custom hcstat file using 2D Markov
3 2 Brute-force attack with custom hcstat file using 3D Markov
6 0 Hybrid attack: wordlist + mask
6 1 Hybrid attack: wordlist + left rule + mask
7 0 Hybrid attack: mask + wordlist
7 2 Hybrid attack: mask + wordlist + right rule
8 0 PRINCE attack
8 1 PRINCE attack with password-mangling rules
9 0 PCFG attack
9 1 PCFG attack with password-mangling rules

Table 1. Attack modes and submodes in Fitcrack

For simplicity, we can merge the mode and submode together and define a unique
two-digit attack number, e.g. 13 stands for a combination attack with both rules,
32 stands for a brute-force attack with user-defined 3D Markov model, etc.

Since we consider users to be familiar with hashcat attack modes, the front-
end of Fitcrack WebAdmin (see section 4.3) provides an abstraction of Fitcrack’s
attack modes and thus the user controls the Fitcrack like hashcat.

17

The time and space complexity of the attacks is directly proportional to the
keyspace p = |P |, i.e., the number of all password candidates defined in section
2.3. A formula for the calculation of p will be shown for each attack mode.

3.1 Dictionary attack

A dictionary attack, also referred to as a wordlist attack or straight attack, uses
a text file called password dictionary. The dictionary contains password candi-
dates, each placed on a separate line. Hashcat successively reads the password
candidates, calculates their hashes, and compares the results with the input
hashes, i.e., those we are trying to crack, as described in section 2.1.

Such dictionaries may contain words from a native language, or real pass-
words obtained from various web service security leaks11. One of the most well-
known leaked dictionary is rockyou.txt containing over 15 milion passwords. The
dataset origins to the end of 2009 when user account information from RockYou
portal leaked due to an attack12.

Fitcrack supports the use of one, or multiple password dictionaries. From the
mathematical perspective, we can consider each dictionary as an ordered set D,
where the order is defined by the arrangement of passwords in the dictionary.
For n password dictionaries, the keyspace p can be calculated as the sum of their
cardinalities:

p =

n∑
i=1

|Di|

where Di is the i-th used dictionary.

3.1.1 Password-mangling rules

The attack can be enhanced by the use of password-mangling rules. The tech-
nique was first introduced in John the ripper tool, and further extended in hash-
cat- Password-mangling rules define various modifications of candidate pass-
words. Such alterations include replacing and swapping of characters and sub-
strings, password truncation, padding, etc. Hashcat currently include over 7013

different rules. Few examples of their practical use are illustrated in table 2.
To use password-mangling rules, the user has to define a file called ruleset which
contains one or more rules on each line. The rules are applied to all candidate
passwords in the following way: the first candidate password is modified by rules
on the first line of the ruleset; the result is used. Then, the rules on the second line
of the ruleset are applied to the original password; the result is used. Eventually,
the entire ruleset is processed. The same password-mangling principle is applied
to the second candidate password, third candidate password, until we eventually
reach the end of the password dictionary.

11 https://wiki.skullsecurity.org/Passwords
12 https://techcrunch.com/2009/12/14/rockyou-hack-security-myspace-facebook-passwords/
13 https://hashcat.net/wiki/doku.php?id=rule_based_attack

18

https://wiki.skullsecurity.org/Passwords
https://techcrunch.com/2009/12/14/rockyou-hack-security-myspace-facebook-passwords/
https://hashcat.net/wiki/doku.php?id=rule_based_attack

Rule Description Input Output
l Converts A–Z to lowercase p@SSw0rd p@ssw0rd
C Uppercases first letter, lowercases rest p@SSw0rd P@ssw0rd
t Makes lowercase uppercase and vice versa p@SSw0rd P@ssW0RD
r Reverses all characters p@SSw0rd dr0wSS@p
] Deletes the last character p@SSw0rd p@SSw0r
k Swaps last two characters p@SSw0rd p@SSw0dr

Table 2. An example of password-mangling rules

The rules enhance the repertoire of passwords, however, increase the total
keyspace of the job. This is because Fitcrack applies every rule from the rule
file to each dictionary password. The total keyspace is calculated as the sum of
dictionary keyspaces multiplied by the number of rules in the rule file:

p =

n∑
i=1

(r ∗ |Di|)

where r is the number of lines in the ruleset.

3.1.2 Distributed dictionary attack
In distributed cracking, it is necessary to distribute the password candidates
from the server to clients, i.e. the computing nodes. This effort has significant
overhead, and for less-complex hash algorithms could lead to an inefficient dis-
tributed attack [13].

While it would be possible to send the whole dictionary to all hosts together
with indexes, we chose another approach. The reason is the candidate lists might
be very large and sending the whole file would increase the cracking time largely,
as each host needs only a portion of the original list.

Therefore, a fragment of the original dictionary is created for each host
with each workunit, which size depends on the host’s current computing power.
What’s more, this number can vary in time, reflecting each hosts’ performance
changes. You can see a simplified scheme of this attack in figure 4.

3.2 Combination attack

A combination attack, also referred to as a combinator attack, uses two separate
password dictionaries: a left dictionary, and a right dictionary. Candidate pass-
words are crafted using a string concatenation: passwords from the left dictionary
are extended by passwords from the right one. The goal is to verify combina-
tions of all passwords in the two input dictionaries. An example of a combination
attack is shown in figure 5.
Let D1 be the left dictionary, and D2 the right dictionary. Keyspace p can be
calculated as:

p = |D1| ∗ |D2|

19

Fig. 4. Example of dictionary attack distribution

Fig. 5. Illustration of combination attack

20

When dealing with hashcat, we realized its keyspace computation doesn’t con-
sider the second dictionary. When hashcat is supposed to verify one password
in combinator attack, it, in fact, verifies 1 × n passwords. With possibly huge
dictionaries, the workunit size would be uncontrollable.

A simple solution to this problem would require generating all possible com-
binations to a single dictionary, proceeding with a dictionary attack, described
above. This would, however, increase the space complexity in the sense of the
transmitted passwords from linear, ideallym+n passwords, to polynomial,m×n,
rapidly increasing the time needed to transfer data to all computing nodes.

To deal with this issue, we came up with the following solution. The first
dictionary is distributed as a whole to all computing nodes in the first workunit,
also referred as a chunk. Then, with each workunit, only a small portion of the
second dictionary is sent. This way, we can control the number of passwords
in the second dictionary – n, while we can still limit the number of verified
passwords in the first dictionary – m, using the hashcat --skip and --limit
mechanism. Also, we keep the linear complexity of the whole attack. You can
see a scheme of such an attack in Figure 6.

Algorithm 2: Limiting the combination attack to the desired keyspace

Input: kdesired, kleft, kright, ileft, iright
Output: ileft, iright,

1: if ileft 6= 0 then
2: send irightth password from the right dictionary
3: send --skip parameter with ileft as the value
4: if kdesired < kleft − ileft then
5: send --limit parameter with kdesired as the value
6: ileft = ileft + kdesired
7: else
8: ileft = 0
9: iright += 1

10: else if kdesired > kleft/2 then
11: send kdesired/kleft passwords from the right dictionary, starting with

the irightth.
12: iright = iright + kdesired/kleft
13: else
14: send irightth password from the right dictionary
15: send --limit parameter with kdesired as the value
16: ileft = kdesired

Algorithm 2 describes the process of calculating workunit size. In a nutshell,
it decides how many passwords from the right dictionary to send and whether to
use the --skip and --limit parameters. The algorithm uses five inputs: kdesired

21

is the desired keyspace of the workunit, kleft and kright is the keyspace of the left
and the right dictionary, respectively. To indicate the current position in both
dictionaries, it uses two indexes: ileft and iright. The condition o line 10 is a
heuristic that adds some tolerance to prevent over-fragmenting. For example, if
the desired keyspace is 100 and there are 101 passwords remaining, it will assign
all 101 instead of creating two workunits with 100 and 1 password. Essentially,
there are three possible situations:

• The left dictionary is partially processed (ileft > 0). The algorithm uses the
--skip parameter to skip already-processed passwords.
• The left dictionary is small enough to be processed entirely. Only the right

dictionary is potentially fragmented.
• The left dictionary is too big for the desired keyspace. Therefore, the algo-

rithm uses the --limit parameter to specify the number of passwords to
process from the left dictionary. From the right dictionary, it takes only a
single password.

See that the proposed strategy iterates through the left dictionary over and over
until all passwords from the right one are processed. With each workunit, the
left dictionary is either processed entirely or partially, but when we reach its
end, we start over by setting ileft to 0.

Client	#1

Client	#2

.	.	.

Administrator Server

pass
#1–10

fragment
#1

dict2.txt

dict1.txt
(1st	WU)

size
100

fragment
#2

dict1.txt
(1st	WU)

size
100

pass
#11–60

size
1000

POWER
1000

POWER
5000

size
100

dict1.txt

Fig. 6. Example of combinator attack distribution

An example of the proposed strategy is illustrated in Figure 6. In this exam-
ple, we have two dictionaries, the left dictionary contains 100 passwords, while
the right one contains 1000 passwords. The first one is distributed to all nodes,
while for the second one, Fitcrack uses fragmentation. Client #1 can verify 1000
passwords per time unit, and thus with the first chunk, the client receives the
first 10 passwords from the second dictionary since 10 · 100 = 1000. Client #2
has five times higher performance and can verify 500 passwords per time unit.
Therefore, it receives the following 50 passwords since 50 · 100 = 5000. In this

22

case, everything was solved by fragmenting just the right dictionary. The --skip
and --limit parameters were not necessary.

In contrast, assume the same dictionaries but the desired keyspace of 40
passwords. This is less than half of the left dictionary’s keyspace, so the algo-
rithm sends only the first password from the right dictionary, sets the --limit
40 hashcat argument, and moves the ileft to 40. The next workunit is for a
more powerful host and requests 1050 passwords. However, the left dictionary
is fragmented, so it only receives one password from the right dictionary along
with hashcat argument --skip 40, the iright is advanced to 1 and ileft is re-
set to 0. The next workunit requests 1020 passwords. The left dictionary is not
fragmented so that this host can receive multiple passwords from the right dictio-
nary (for a total of 1000 candidate passwords). The host gets the second through
eleventh passwords from the right dictionary, and the iright is set to 11. This
way, Fitcrack eventually verifies the combinations of every password from the
left dictionary with every password from the right dictionary.

3.3 Brute-force attack

A brute-force attack is an exhaustive search for correct password(s) trying every
possible password candidate. In hashcat, the attack is based on password masks.
The mask is a pattern defining the allowed form of candidate passwords - i.e.,
how candidate passwords “may look like”. The user may define one or more mask
for an attack. The cracking process then consist of generating every possible
sequence of characters upon each mask.

3.3.1 Password mask

A password mask is a template defining allowed characters for each position of
the password candidates. The mask has the form of a string containing one or
more symbols. A password mask m of length n is defined as:

m = s1s2...sn

where si is the i-th symbol of the mask, and i ∈ [1, n]. Such a mask can be
used to generate candidate passwords in the form of c1c2...cn where ci is the i-th
symbol of the candidate password. Obviously, the candidate passwords have the
same length n as the mask. For all i, the si symbol in the mask is:

• a concrete character (ci) - which is directly used in generated candidate
passwords at position i, or
• a substitute symbol (Si) for a character set (Ci) - which defines the

allowed characters at position i in the generated candidate passwords.

A character set (or simply charset) is an order set of characters. In masks, we
use substitute symbols, each corresponding to a different character set. Table 3
lists the substitute symbols supported by hashcat with corresponding character
sets. Besides the standard character sets (?l, ?u, ?d, ?s, ?h, ?H, ?a, ?b), hashcat

23

symbol description characters in set
?l lowercase Latin letters abcdefghijklmnopqrstuvwxyz
?u uppercase Latin letters ABCDEFGHIJKLMNOPQRSTUVWXYZ
?d digits 0123456789

?s special characters (space)!"#$%&’()*+,-./
:;<=>?@[\]^_ ‘{|}~

?h hexadecimal digits with small letters 0123456789abcdef
?H hexadecimal digits with big letters 0123456789ABCDEF
?a all standard ASCII characters: ?l, ?u, ?d, ?s
?b binary - all bytes with values between 0x00 and 0xFF
?1 user-defined character set no. 1
?2 user-defined character set no. 2
?3 user-defined character set no. 3
?4 user-defined character set no. 4

Table 3. The substitute symbols and corresponding character sets

supports up to four user-defined character sets (?1, ?2, ?3, ?4). Custom character
sets may contain both ASCII and non-ASCII characters - i.e., may be used in
combination with various national encodings.

An example of generating passwords using a mask is illistrated by Figure 7. If
there are concrete characters in a mask, the same characters at the same positions
are used in the generated candidate passwords – i.e., if for all i ∈ [1, n], if si = ci,
character ci is used at the i-th position in all generated passwords. For substitute
symbols, all possible characters from corresponding character sets are eventually
used. If there is more than one one substitute symbol, candidate passwords are
generated as a cartesian product of all used corresponding character sets.

For example, in mask Hi?u?d?d, the first two symbols are concrete characters
c1 = H and c2 = i. The rest is made of substitute symbols: S3 = ?u which
substitutes Cu = {A, ..., Z}, and S4 = S5 = ?d which substitutes Cd = {0, ..., 9}.
Therefore, the prefix of candidate passwords is fixed (Hi), the rest is generated
as Cu×Cd×Cd or {A, ..., Z}×{0, ..., 9}×{0, ..., 9}. So that, the mask generates
the following candidate passwords: HiA00, HiA01, ... HiA09, HiA10, HiA11, ...
HiA99, HiB00, HiB01, ..., HiZ99. In a brute-force attack, the number of possible
candidate passwords can be calculated as:

p =

ns∏
i=1

|Ci|

where ns is the number of substitute symbols in the mask, and Ci is the character
set substituted by symbol Si. For the previous mask Hi?u?d?d:

p =

3∏
i=1

|Ci| = |Cu| ∗ |Cd| ∗ |Cd| = 26 ∗ 10 ∗ 10 = 2600

24

we have 2600 possible password candidates.

Fig. 7. Illustration of a brute-force mask attack

3.3.2 Markov chains

In hashcat, the candidate passwords are not generated by the lexicographical
order of the character sets. Instead, an algorithm based on Markov chain [17,
4] mathematical model, is used. The entire idea behind Markov chains is to use
knowledge obtained by learning on existing wordlists to generate more prob-
able passwords first. The difference between the two approaches is illustrated
in figure 8 which shows examples of generated candidate passwords.

Markov model uses a matrix with character order statistics, saved inside
a .hcstat file. Starting from hashcat 4.0.0, hashcat uses14 LZMA15 compression,
and the extension changed from .hcstat to .hcstat2. The default file used for
brute-force attack is hashcat.hcstat, respectively hashcat.hcstat2. However,
--markov-hcstat option allows the user to specify a custom file.
An example of the Markov chain matrix is shown in figure 9. In each row,
the matrix shows different characters from the character set in order from the
most probable, to less probable. The first row entitled with ε shows the most
probable characters on the first position in the password. In the example, the
most probable character on the first position is n, the second most probable is
p, etc. The other rows show characters which will most probably succeed after
a certain character (entitling the row). In the example, a will be most probably
followed by y. The second most probable successor of a is a, the third one is e,
etc.
The matrix defines how the candidate passwords are generated. At the first
position, characters from ε row are used. The order is defined by position in the
matrix. In the matrix from figure 9, the first sequence of candidate passwords
14 https://hashcat.net/forum/thread-6965.html
15 https://www.7-zip.org/sdk.html

25

https://hashcat.net/forum/thread-6965.html
https://www.7-zip.org/sdk.html

Fig. 8. Candidate password order using Markov chains

Fig. 9. Markov chain probability matrix

26

would start with letter n. Once all passwords starting with n are generated, the
next sequence contains passwords starting with letter p, etc. For each character
c generated, the algorithm looks at the row entitled by c, and the next character
will be generated from that row.

In standard case, on each position, all possible characters are used, and the
keyspace is calculated as shown in section 3.3.1. In hashcat, however, it is possi-
ble to define a threshold value which can be used to limit the depth of character
lookup. The threshold says how many characters from each row are used. Natu-
rally, using the treshold affects the keyspace. If threshold is used, the least
probable passwords are not generated. If many cases, thresholding can save
processor time without bigger influence on success [4].

For now, let us ignore the keyspace optimization used by hashcat, described
in section 2.3 – i.e., assume the keyspace is the actual number of password
candidates. Figure 10 shows a matrix with threshold set to 3. In case of mask
?l?l?l, the keyspace would be 26 ∗ 26 ∗ 26 = 17576, since |Cl| = 26. However,
which threshold set to 3, the keyspace is 3 ∗ 3 ∗ 3 = 27, since on each position,
only three characters are used.

ε
a
b
c
d
e
...

b n e g a u . . .
d t r n d v . . .
e a r u o i . . .
k i e o u a . . .
o m a y r p . . .
d c t z d n . . .
...
...
...
...
...
...
. . .

Fig. 10. Example of Markov matrix with threshold set to 3

The candidate passwords for mask ?l?l?l and threshold 3 are generated in
the following order: bed, bec, bet, bad, bat, bar, ... Note that password bez
is not generated since z is on the position 4 in e-row, and 4 > 3. In hashcat,
the threshold can be specified using the --markov-threshold option. For brute-
force attack with Markov chains, hashcat support two different models:

• 2D Markov model (classic) - uses a single matrix for a character set,
and works as described above. The technique is used if hashcat is run with
--markov-classic option.

• 3D Markov model (per-position) - is used by default in brute-force attack.
It utilizes the idea that character probability is influenced not only by the
previously generated character, but also by the position in the password.
The model uses multiple matrixes, one per each password position. If the
first character is generated, the first matrix is used, for second chracter,
second matrix is used, etc.

27

3.3.3 Distributed brute-force attack

One of the biggest challenges of distributing the mask attack in hashcat was
the way hashcat computes the keyspace of each mask. This number depends
on many factors, which in result doesn’t inform you about the real keyspace at
all. However, the real keyspace is needed to compute the size of each workunit,
depending on each host’s current performance measured in hashes per seconds.

To overcome this obstacle, the real keyspace is computed from the mask
before the attack starts, using our own algorithm. Comparing this number with
hascat keyspace, we can determine how many real passwords are represented by a
single hashcat index. With this knowledge, sending the mask with corresponding
index range to verify is no longer a problem.

For each workunit, the only information we need to distribute is the mask
with new index range. This makes a mask attack, in contrast with previously
described attacks, very efficient in a distributed environment.

3.4 Hybrid attacks

Hybrid attacks combine the dictionary attack (see section 3.1) with brute-force
attack (see section 3.3). There are two variations of hybrid attack supported by
hashcat. The first combines a dictionary on the left side with a mask on the
right side. The second hybrid attack works the opposite way, with the mask on
the left and dictionary on the right side. Both cases are illustrated in figure 11.

Fig. 11. The principle of hybrid attacks

For the dictionary-based part, passwords are taken from a password dictionary.
For the mask-based part, the passwords are generated using the brute-force tech-

28

nique. The generated candidate passwords are created using string concatenation
over the two parts. The resulting keyspace is:

p = |D| ∗
ns∏
i=1

|Ci|

where D is the dictionary used, ns is the number of substitute symbols in the
mask, and Ci is the character set substituted by symbol Si. So that, the com-
plexity equals to m × n, where m represents the size of the dictionary while n
is the number of passwords generated by the mask. Similar to the combinator
attack, hashcat does not provide us with the keyspace of the whole attack but
with the keyspace of the left part only. When instructed to verify one password,
hashcat, in fact, checks the combination of one string from the left side and all
strings from the right side.

The early hashcat-based versions of Fitcrack used a compromise. With the
high-performance maskprocessor16 utility, the server created a dictionary of all
possible strings from the given masks. Then, the attack was transformed into a
combination attack, and the distribution followed the same strategy as proposed
in Section 3.2. With the two dictionaries, it was possible to control the size of
workunits relatively precisely. An advantage of the solution was that Fitcrack
supported the use of left and right password-mangling rules (see Section 3.1.1.)
in the same way as with the combination attack. The solution worked well with
smaller masks. However, with complex high-keyspace masks, the initial overhead
and the space requirements were not acceptable.

To allow using more complex masks and eliminate the overhead, starting
from version 2.2.0, Fitcrack uses an entirely different strategy. Hashcat runs in
the native hybrid attack mode, and there is no need for the maskprocessor utility
since no strings are pre-generated anymore. The workunits are created as follows:

• For the hybrid mask + wordlist attack, the dictionary on the right side
is fragmented in the same manner as in the combination attack. If necessary,
the mask is limited using the –skip and –limit parameters using Algorithm 2.
This is entirely safe since, for the hybrid attack mode, hashcat does not use
the optimization described in Section 3.3. The limit parameter thus precisely
specifies the exact number of strings generated from the mask. An example
of the workunit distribution is shown in Figure 12.

• For the hybrid wordlist + mask, the mask on the right is transformed into
multiple masks with lower keyspace using the newly-proposed Algorithm 4.
To allow precise control of the keyspace, it uses creates custom character sets
on-the-fly using the new GetCharsetSlice() function defined by Algorithm
3. If necessary, the dictionary on the left is limited using the –skip and –
limit parameters using Algorithm 2. An example of workunit distribution
with mask slicing is shown in Figure 12.

16 https://github.com/hashcat/maskprocessor

29

https://github.com/hashcat/maskprocessor

Algorithm 3: GetCharsetSlice() function for limiting character sets

Input: desiredSize, charset
Output: charsetSlice

1: if desiredSize > |charset| ∗ 0.75 then
2: desiredSize = |charset|
3: else if desiredsize > |charset|/2 then
4: desiredSize = |charset|/2
5: if desiredSize ≤ 1 then
6: return charset[0]
7: else
8: return charset[0:desiredSize]

Algorithm 4: Algorithm to build a mask with close to the desired
keyspace. It assumes no fragmentation of the dictionary.

Input: mask, startIndex, desiredKeyspace
Output: maskSlice

1: adjustedStartIndex = startIndex
2: resultKeyspace = 1
3: maskSlice = []
4: forall symbol ∈ mask do
5: if ¬IsCharset(symbol) then
6: continue
7: charset = symbol
8: charIndex = adjustedStartIndex mod |charset|
9: adjustedStartIndex /= |charset|

10: if charIndex > 0 then
11: charset = charset[charIndex :] ; // forced split here
12: if desiredKeyspace ≤ resultKeyspace then
13: maskSlice += charset[0] ; // Desired keyspace reached,

add single char
14: continue
15: remainingKeyspace = desiredKeyspace/resultKeyspace
16: if charIndex == 0 && remainingKeyspace ≥ |charset| then
17: maskSlice += symbol
18: resultKeyspace ∗= |charset|
19: else
20: maskSlice += GetCharsetSlice(remainingKeyspace, charset)
21: desiredKeyspace = resultKeyspace ; // Only added piece of

charset do not add any more

22: return maskSlice

30

Client	#1

Client	#2

.	.	.

mask
Operator Server

fragment	#1

dict2.txt

mask

?d?d

fragment	#2

mask

?d?d
pass

#11–60

?d?d

POWER
1000

POWER
5000

size
1000

pass
#1–10

Fig. 12. Example of hybrid (mask+wordlist) attack distribution

Client	#1

Client	#2

.	.	.

maskOperator Server
dict1.txt

mask
fragment	#1

?d00

mask
fragment	#2

?d?10

?d?d?d

POWER
5000

size
100

dict1.txt
(with	1st
WU)

size
100

dict1.txt
(with	1st
WU)

size
100 POWER

1000

Fig. 13. Example of hybrid (wordlist+mask) attack distribution

31

The example from Figure 12 is relatively simple. The mask produces 100 differ-
ent strings, and the dictionary has 1000 passwords. The first host needs 1000
passwords. Therefore, it receives a workunit with the mask ?d?d without limit-
ing, and the first ten passwords from the right dictionary: 100× 10 = 1000. The
second host needs 5000 passwords, so it gets the same unlimited mask and 50
dictionary passwords: 100× 50 = 5000.

The hybrid wordlist + mask attacks, on the other hand, use the mask slicing.
The principle is illustrated using two examples. Consider a hybrid attack with
mask ?d?h?l on the right side. Suppose that we want to send a mask with 20
passwords. The first substitute symbol C1 is ?d with 10 different possibilities for
the first character: |C1| = 10. The desired keyspace is two times higher, so we
leave the first symbol intact and proceed to the second one. The second symbol
is C2 = ?h, which stands for the character set containing 23456789abcdef.
Thus |C2| = 16 options. Nevertheless, the current keyspace is 10, and to get 20,
we only want to multiply the keyspace by 2. Therefore, we take the first two
characters from ?h and create a custom character set ?1 containing 01. After
that, we reached the desired keyspace of 20. Hence, no more multiplication is
needed. Therefore, from the next substitute symbol C3 = ?l we take only the
first character a. The slicing is completed, and we send the mask ?d?1a.

For the next workunit, suppose that we want a mask with keyspace 150. We
already processed 20 passwords from the mask because we used the first substi-
tute symbol ?d with keyspace 10 with the first two characters of ?h. From the
?h, 14 characters are remaining. To avoid unnecessary complexity, the heuris-
tic from algorithm 3 forces Fitcrack to finish the fragmented character set first.
Therefore, the resulting mask is ?d?1a with the custom character set ?1 con-
taining 23456789abcdef. The workunit has a keyspace of 140, which is as close
to 150 as allowed in the current case.

Assume the third workunit should have the keyspace of 160. Therefore, we
leave the first two symbols ?d?h intact because they produce exactly the desired
number. Since the first 160 strings were already generated, we only need to
change a for b as the next symbol from the ?l character set. In this case, no
custom character is necessary, and the resulting mask is ?d?hn.

The second example follows the situation in Figure 13. Both the dictionary
and mask have a keyspace of 100. In this case, there are two options: either
fragmenting the left dictionary or slicing the mask. The illustration shows the
slicing option. The first host needs a workunit of 1000 passwords. Therefore, it
receives the entire dictionary of 100 words and the slice ?d00 of the mask that
produces ten strings: 100 × 10 = 1000. The second host needs 5000 passwords.
The sliced mask is ?d?10 where ?1 is the custom character set containing 12345:
100× 50 = 5000.

3.5 PCFG attack

The attack is based on the previous knowledge of user passwords whose structure
is represented by a grammar. The use of probabilistic context-free grammars
(PCFG) for password cracking was originally proposed by Weir et al. [25] and

32

implemented in the form of a Python-based tool17. The tool consists of two
scripts: the PCFG Trainer that performs an automated analysis of an input
dictionary and creates a PCFG; the second script is called PCFG Manager which
generates password guesses from an existing PCFG. Using the same concept,
we created a fast, parallel, and portable alternative for the original password
generator. Our tool18, written in Go19 compiled language, is currently employed
in Fitcrack on both server and client side, and enables to perform a PCFG attack.
The details of the tool are described by a seperate paper [9] and a technical report
in czech [11].

3.5.1 The use of probabilistic context-free grammars

The mathematical model is based on classic context-free grammars [5] with the
only difference that each rewriting rule is assigned a probability value. The gram-
mar is created by training on an existing password dictionary. Each password
is divided into continuous fragments of letters - the apha symbols (A), digits
(D), and other characters (O). For fragment of length n, a rewriting rule of the
following form is created: Tn → f : p, where T is a type of the character group
(A, D, O), f is the fragment itself, and p is the probability obtained by dividing
the number of occurrences of the fragment by the number of all fragments of the
same type and length. In addition, we add rules that rewrite the starting symbol
(S) to base structures which are non-terminal sentential forms describing the
structure of the password [25]. For example, password “p@per73” is described by
base structure A1S1A3D2 since it consist from a single letter followed by a single
special character, three letters, and two digits. Table 4 shows rewriting rules of
a PCFG generated by training on two passwords: “pass!word” and “love@love”.
There is only one rule that rewrites S since both passwords are described by
the same base structure. By using PCFG on MySpace dataset (split to training
and testing part), Weir et al. were able to crack 28% to 128% more passwords
in comparison with the default ruleset from John the Ripper (JtR) tool20 using
the same number of guesses.

The proposed approach, however, does not distinguish between lowercase and
uppercase letters. Weir extended the original generator by adding capitalization
rules like “UULL” or “ULLL” where “U” means uppercase and “L” lowercase. The
rules are applied to all letter fragments which increases the number of generated
guesses [24]. The current version also contains numerous enhancements. Housh-
mand et al. introduced keyboard patterns represented by additional rewriting
rules that helped improve the success rate by up to 22% and proposed the use
of Laplace probability smoothing [6].

17 https://github.com/lakiw/legacy-pcfg
18 https://github.com/nesfit/pcfg-manager
19 https://golang.org/
20 https://www.openwall.com/john/

33

https://github.com/lakiw/legacy-pcfg
https://github.com/nesfit/pcfg-manager
https://golang.org/
https://www.openwall.com/john/

left → right probability
S → A4O1A4 1
A4 → pass 0.25
A4 → word 0.25
A4 → love 0.5
O1 → @ 0.5
O1 → ! 0.5

Table 4. An example of PCFG rewriting rules

3.5.2 Distributed PCFG attack

To perform a PCFG attack, it is necessary to have a probabilistic grammar in the
format used by Weir’s PCFG trainer. Fitcrack supports two ways of obtaining
the grammar. The WebAdmin either allows the user to upload a ZIP archive
containing the grammar, or to select a password dictionary while the WebAdmin
will let the PCFG Trainer analyze it and create a grammar automatically.

The PCFG attack in Fitcrack is based on the distribution of preterminal
structures, i.e., sentential forms representing partially generated passwords. The
idea utilizes the fact that each preterminal structure produces passwords with
the same probability. The server only generates the preterminal structures (PT),
while the terminal structures, i.e., the candidate passwords, are produced by the
cracking nodes.

For distributed computing, our PCFG Manager can be run either as a stan-
dalone server that generates PTs, or as a client that generates the final password
guesses. Both sides can communicate via gRPC21 and Protocol buffers22, as de-
scribed in the tool’s documentation [11]. The concept is utilized in Fitcrack as
well with slight modifications. Since the client-server communication in BOINC
is based on passing input/output files, we added a new workunit input template
pcfg_in (see table 7) with two extra input files:

• preterminals - the file contains one or more preterminal structures that are
used for generating password guesses within the workunit.

• grammar - the PCFG grammar in a marshalled (serialized) form. The se-
rialization is performed by the Pcfg endpoint in WebAdmin backend (see
section 4.4) at the time the grammar is created. The file is intentionally
marked as sticky which implies that BOINC will only send it once - with the
first workunit.

When a user launches a PCFG attack, the PCFG Monitor daemon (See Section
4.9.) starts the PCFG Manager server to listen at a TCP port calculated as:

50050 + (jobId % 1000)

21 https://grpc.io/
22 https://developers.google.com/protocol-buffers

34

https://grpc.io/
https://developers.google.com/protocol-buffers

where JobId is the ID of the corresponding job. This allows to run multiple
PCFG attack at the same time. Using the Connect() call, the Generator (see
section 4.13) then connects to the running instance of the PCFG Manager server.

When creating a workunit, the Generator invokes GetNextItems() call to
obtain one or more preterminal structures. With the call, the Generator also
specifies a keyspace value that is necessary to enable the adaptive scheduling (see
section 2.4). In response, the PCFG Manager server will then give the Generator
a chunk of as many PTs as necessary to generate as least the desired amount of
password, and no more. An example is illustrated in Figure 14. The exact match
can not be guaranteed because different PTs may generate different number of
password guesses. The generator creates a preterminals file with all obtained
PTs. The preterminals file together with the grammar file represent the input
data for the new workunit.

On the client side, the Runner (see section 5.3) launches an instance of PCFG
Manager client and passes it the grammar and preterminals file. Using a pipe,
the Runner then connects standard output of the PCFGManager to the standard
input in hashcat. The hashcat is started in wordlist attack mode without the
specification of a concrete dictionary, so that it reads all the passwords guesses
directly from the pipe. For cracking more complex hash algorithms, the PCFG
Manager may generate guesses faster than the hashcat manager to verify them.
Thus, the Runner sets the pipe as buffered and blocking to make the PCFG
Manager wait if necessary.

Client	#1

Client	#2

.	.	.

Operator

Server

chunk	of	PTs

PCFG

POWER
1000

POWER
5000

PCFG Manager server

PCFG chunk	of	PTs
(keyspace	5000)

chunk	of	PTs
(keyspace	1000)

PCFG

PCFG

.	.	.

#1

#2

#1

chunk	of	PTs

#2

PT with keyspace 1500
PT with keyspace 3000
PT with keyspace 500

Fig. 14. Example of PCFG attack distribution

35

3.6 PRINCE attack

PRINCE (PRobability INfinite Chained Elements) is a modern password gener-
ation algorithm that can be used for advanced combination attacks. Jens Steube
designed this algorithm to use only one vocabulary instead of two different dic-
tionaries and then generate all possible combinations of words to form chains
of combined words. These chains can contain one to N words derived from the
input dictionary and concated together. The reference implementation of the
algorithm - princeprocessor - is available23 under MIT license.

3.6.1 Basic algorithm components

PRINCE algorithm are based on following components: elements, chains and
keyspace.

• Element
An element is the smallest entity representing unmodified item (line, word)
of the input dictionary. All elements should be sorted by their relevance /
frequencies and group by the length into the database of elements. Some
examples of elements are presented in table 5.

Word Table
123456 6
password 8
1 1
qwerty 6
.

Table 5. Examples of elements

• Chain
A chain with the length L is sorted sequence of element lengths and is equal
to L. For example, a chain with its length 8 can be (1, 6, 1) or (8). For the
length L there are 2(L−1) different chains.
Example: chain with length 4 can be split to following elements:
◦ 4 letter word
◦ 2 letter word + 2 letter word
◦ 1 letter word + 3 letter word
◦ 1 letter word + 1 letter word + 2 letter word
◦ 1 letter word + 2 letter word + 1 letter word
◦ 1 letter word + 1 letter word + 1 letter word + 1 letter word
◦ . . .

23 https://github.com/hashcat/princeprocessor

36

https://github.com/hashcat/princeprocessor

• Keyspace
Keyspace of the chain is equal to number of all candidate passwords which
are created by combination of all available elements according to sorted
sequence of lengths.
For example, if we have X elements of length 2 and Y elements of length 6
in our input dictionary, then keyspace of chain (6, 2) is X ∗ Y . Keyspaces of
some chains from the rockyyou dictionary are shown in table 6.

Chain Elements Keyspace
3 + 1 335 * 45 15 075
1 + 3 45 * 335 15 075
4 17 889 17 889
2 + 2 335 * 335 112 225
2 + 1 + 1 335 * 45 * 45 678 375
1 + 2 + 1 45 * 335 * 45 678 375
1 + 1 + 2 45 * 45 * 335 678 375
1 + 1 + 1 + 1 45 * 45 * 45 * 45 4 100 625

Table 6. Keyspace of chains with length 4 (passwords from rockyyou)

The total keyspace p is then computed as the sum of chain keyspaces:

p =

n∑
i=1

keyspace(chaini)

where n is the number of generated chains.

37

Algorithm 5: Pseudocode of the PRINCE algorithm
Input: input dictionary (D), minimal number of elements in chain

(EMIN), maximal number of elements in chain (EMAX),
minimal length of passwords (PASSMIN), maximal length of
passwords (PASSMAN), case permutation (CASEPERM)

Output: candidate passwords
1 elements = read_elements(D);
2 chains = [];
3 chain_keyspaces = [];
4 while new_chain = combine_new_chain(elements, EMIN, EMAX,

PASSMIN, PASSMAX, CASEPERM) do
5 chains.append(new_chain);

6 for i← 0 to size(chains) by 1 do
7 chain_keyspaces[i] = compute_keyspace(chains[i]);

8 sorted_chains =
sort_chains_by_keyspace(chains, chain_keyspaces);

9 print(sorted_chains, stdout);

3.6.2 Distributed PRINCE attack
The our idea behind PRINCE attack distribution is illustrated in Figure 15.

Client	#1

Client	#2

.	.	.

dict.txtAdministrator

Server

PRINCE
config,
keyspace
range

#101–600

size
100	000

POWER
50

POWER
10

PRINCE
config

princeprocessor

dict.txt,
PRINCE
config

PRINCE
config,
keyspace
range
#1–100 princeprocessor

PRINCE
config,
keyspace
range
#1–100

PRINCE
config,
keyspace
range

#101–600

candidate	passwords

candidate	passwords

com
puted	keyspace

Fig. 15. Scheme of PRINCE attack distribution

An user creates a new PRINCE attack job. The server receives the configuration
of created PRINCE attack job together with the user-selected dictionary. To

38

get a total keyspace of this job, the server needs to run princeprocessor with
this dictionary and specific flags according to the configuration of this PRINCE
attack job. Then, the Generator on the server side assigns a keyspace range
to every active client according to the benchmarked “power” of the client. This
range info is a part of the config of every workunit with PRINCE attack. An
example of attack distribution is shown in Figure 16.

Fig. 16. An example of PRINCE attack distribution

PRINCE attack on the client side relies on two options of the princeprocessor
as the external password generator:

• --skip=X
princeprocessor will skip first X generated passwords from the start.

• --limit=Y
princeprocessor will generate only Y passwords on the output.

Runner on the client side launches princeprocessor with options --skip and --limit
to generate assigned keyspace range of candidate passwords using the PRINCE
algorithm. Runner internally connects princeprocessor with hashcat using pipes,
so hashcat can crack the candidate passwords as soon as they are generated by
princeprocessor.

39

4 Server-side subsystems

The server is responsible for the management of cracking jobs, and assigning
work to clients. In terms of the client-server architecture, the service offered by
the server is a workunit assignment.

Server

WebAdmin frontend

REST API

Assimilator

Transitioner

Scheduler

File deleter

Feeder

BOINC server built-in subsystems

Connection to hosts

MySQL

TCP/IP
+

HTTP(S)

System
administrator

Trickler

PCFG Manager server #1

Validator

hashcat

WebAdmin backend

PCFG Monitor

XtoHashcat hcstat2gen princeprocessor PCFG Trainer

Generator

Fig. 17. The architecture of Fitcrack server

While for the client, we support both Windows, and Linux nodes, the server has
a Linux-only implementation. As illustrated in figure 17, Fitcrack server con-
sist of multiple subsystems: Generator (see section 4.13), Validator (see section
4.14), Assimilator (see section 4.15), and Trickler (see section 4.16) are the main
scheduling-related daemons implemented within Fitcrack. They closely relate to
BOINC built-in subsystems which are: Transitioner (see section 4.17), Scheduler
(see section 4.18), Feeder (see section 4.19), and File deleter (see section 4.20).
To perform basic operations and remotely manage the entire system, Fitcrack
provides a web-based user interface called Fitcrack WebAdmin (see section 4.2).
WebAdmin uses a set of external tools as depicted in figure 17: hashcat, Hash-
validator, XtoHashcat, and hcstat2gen.

For storing all cracking-related information we use a MySQL24 database.
The structure of the database is described in section 7. Since both the system
administrator, and BOINC client (on client-side) communicate via HTTP(S), we
use Apache25 HTTP server. Apache runs two applications: Fitcrack WebAdmin,
and the set of CGI scripts of the Scheduler subsystem. All subsystems are run
by one of two Linux users:

• Apache user (apache, or www-data by default) runs the Apache-based
subsystems: WebAdmin and Scheduler,
• BOINC user (boincadm by default) runs the rest.

24 https://www.mysql.com/
25 https://httpd.apache.org/

40

https://www.mysql.com/
https://httpd.apache.org/

4.1 Server directory structure

The subsystems are located in various directories:

• PROJECT_ROOT - the directory od BOINC Fitcrack project, by default:
/home/boincadm/projects/fitcrack
◦ apps - binaries of client applications: hashcat, and Runner
◦ bin - binaries of server daemons (Generator, Assimilator, ...)
◦ cgi-bin - CGI scripts of Scheduler,
◦ log_<hostname> - logs of server daemons,
◦ pid_<hostname> - PID files of server daemons,
◦ download - data to be downloaded by client,
◦ html - BOINC project website files,
◦ keys - encryption keys,
◦ upload - directory for client uploads,
◦ templates - templates defining workunits,

• APACHE_ROOT - the document root of Apache HTTP server, by default:
/var/www/html
◦ fitcrackFE - frontend of WebAdmin,
◦ fitcrackAPI - backend of WebAdmin with tools,
− src - Python scripts of backend,
− hashcat-5.1.0 - hashcat binaries,
− hashcat-utils - hashcat-related utilities,
− hashvalidator - the Hashvalidator tool,
− princeprocessor - the princeprocessor tool,
− pcfg_manager - the pcfg_manager tool,
− pcfg_trainer - the pcfg_trainer tool,
− pcfg_mower - the pcfg_mower tool,
− xtohashcat - XtoHashcat hash extraction tool,

• COLLECTIONS_ROOT - the directory for shared data, by default:
/usr/share/collections.
◦ charsets - user-defined character sets,
◦ dictionaries - dictionaries for attacks,
◦ encrypted-files - the inputs of XtoHashcat,
◦ markov - user-defined Markov statistics files,
◦ masks - files with password masks,
◦ rules - files with password-mangling rules.

4.2 WebAdmin

We created a completely new solution for remote management of Fitcrack. The
application is called WebAdmin and consist of two separate parts: frontend de-
scribed in section 4.3 and backend described in section 4.4. The two parts com-
municate using a REST API.

41

4.3 WebAdmin frontend

The front end is a web application built on the Vue26 web framework and using
the Vuetify27 user interface component framework. As the user-facing part of
WebAdmin, it is made to be a user-friendly way of controlling most aspects of
the Fitcrack system.

The application supports multiple users with different roles, allowing for gran-
ular control over permissions. Remote access is available by simply exposing the
server to the internet. Users also receive notifications about events in the system.

Fig. 18. The dashboard of Fitcrack WebAdmin

A dashboard, pictured in fig. 18, serves as the homepage, aggregating infor-
mation and statistics from multiple areas for easy overview of the system. All
other functionality is separated into distinct views, accessible at their own URIs
via a navigation menu, thanks to the Vue router and the use of components.
These sections can be categorized into three groups:

4.3.1 Job creation and management

The cracking jobs and their creation, management, and monitoring are the main
focus of WebAdmin and a crucial part of the system as a whole. To help create
new jobs easily, WebAdmin offers a four step interactive input form, allowing the
26 https://vuejs.org
27 https://vuetifyjs.com

42

https://vuejs.org
https://vuetifyjs.com

user to set up the job in detail, while also making it possible to save the settings
into named templates. The form guides the user through entering the job input,
setting up an attack by way of a graphical interface mirroring Hashcat’s attack
settings, assigning the job to host nodes, and more.

All jobs added to the system can then be controlled and monitored via various
listings, including user defined bins. The listing view implements a search and
filter function as well as quick access to most used functions for each job and an
overview of the most important information.

The job detail view shows all information about a job and affords further
control over it. It also shows various charts with statistics, graphing the job’s
progress and showing how it’s being distributed. From here, the user can even
see detail about each workunit and access logs from its run.

4.3.2 Asset library management

Many different assets used by the system in creating or running jobs can be
managed via their WebAdmin pages. The system comes with some by default,
but most anything can be changed or deleted to suit the user’s preference. Some
of the assets can also be edited in place. The asset management pages include:

• hash cache – stores every hash and its associated password, if one was
found, for future reference by the system as well as by the user

• dictionaries – allows adding or removing password dictionaries, upload via
HTTP or import from server directory

• charsets – stores custom non-ASCII character set files
• rules – stores text files with rule sets for password mangling
• masks – stores text files with masks, which can be loaded into a brute force

attack setup
• markov chains – stores hcstat2 files with character statistics, and provides

a way to generate them from an existing dictionary
• PCFG – stores PCFG assets in directories and accepts premade ones in zip

archives or generates from dictionaries

4.3.3 System and user administration

The host nodes connected to the system can be viewed on the hosts page. While
adding and removing hosts is not in WebAdmin’s scope, as that is handled by
the BOINC framework, the user can still access information about the hosts’
hardware, work done, and their status.

Each user can see their own information and change their password on the
account page. With the permission to manage users, another view becomes avail-
able, in which the user can create and manage accounts, assign them a role, and
also create or remove roles and grant or revoke permissions they possess.

The server monitor shows hardware usage of the main server over time. It
allows the user to specify a time frame to examine. It also shows which of the
server services are running.

43

On the settings page, the user can configure various aspects of WebAdmin
as well as change global system settings that are taken into account by other
modules.

4.4 WebAdmin backend

The backend, written in Python 3, is based on Flask28 microframework, com-
municating with Apache or NGINX HTTP server using Web Server Gateway
Interface (WSGI). It implements all necessary endpoints of the REST API used
by the frontend, e.g. handles requests for creating new jobs, and others. Using
SQLAlchemy29, the backend operates a MySQL database which server as a stor-
age facility for all cracking-related data. For selected operations, the WebAdmin
uses a set of external utilities and programs:

• hashcat - for verifying hash format and calculating the keyspace of masks
(see section 5.4),

• XtoHashcat - for hash extraction (see section 4.6),
• hcstat2gen - for generating Markov statistics (see section 4.7),
• princeprocessor - for calculating PRINCE keyspace (see section 4.11),
• pwd_dist - for calculating password length distribution (see section 4.12),
• PCFG Trainer - for creating probabilistic grammars (see section 3.5).

For handling frontend requests, the backend exposes the following API:

Charset

Endpoints for work with charset files.

• GET /charset – Ruturns collection of HcStats files
• POST /charset/add – Uploads charset file on server
• GET /charset/{id} – Returns information about charset with data
• DELETE /charset/{id} – Deletes charset
• GET /charset/{id}/download – Downloads charset

Dictionary

Endpoints for work with charset dictionary.

• GET /dictionary – Returns collection of dictionaries
• POST /dictionary/add – Uploads dictionary on the server
• POST /dictionary/fromFile – Makes dictionary from file
• GET /dictionary/{id} – Returns information about dictionary
• DELETE /dictionary/{id} – Deletes dictionary
• GET /dictionary/{id}/data – Returns first 25 rows from dictionary
• GET /dictionary/{id}/download – Sends zipped PCFG as attachment

28 http://flask.pocoo.org/
29 https://www.sqlalchemy.org/

44

http://flask.pocoo.org/
https://www.sqlalchemy.org/

Directory

Endpoinsts for browsing filesystem of server.

• GET /directory – Returns list of files in directory

Graph

Endpoints for graph presentation

• GET /graph/hostPercentage/{id} – Returns 2D graph representing ratio
of host’s computing power

• GET /graph/hostsComputing – Returns 2D graph representing computing
power of active hosts

• GET /graph/hostsComputing/{id} – Returns 2D graph representing com-
puting power of active host

• GET /graph/jobsProgress – Returns 2D graph representing progress of
started jobs

• GET /graph/jobsProgress/{id} – Returns 2D graph representing progress
of started job

Hashcat

Endpoints for hashcat usage.

• GET /hashcat/attackModes – Returns list of supported attacks
• GET /hashcat/hashTypes – Returns list of supported hashes

Hashes

Operations with hashes.

• GET /hashes – Returns list of hashes

Hosts

Operations with hosts.

• GET /hosts – Returns list of hosts
• GET /hosts/info – Returns information about hosts
• GET /hosts/{id} – Returns exact host
• DELETE /hosts/{id} – Removes host from table

45

Job

Operations with jobs.

• GET /job – Returns list of jobs
• POST /job – Creates new job
• GET /job/crackingTime – Calculates cracking time
• GET /job/info – Returns information about jobs
• GET /job/lastJobs – Returns the last jobs at which there were changes of

the state
• POST /job/verifyHash – Verifies format of uploaded hash
• GET /job/{id} – Returns job
• DELETE /job/{id} – Deletes job
• PUT /job/{id} – Changes created job
• GET /job/{id}/action – Operations with job(restart, start, stop)
• GET /job/{id}/host – Returns list of hosts that are working on job
• POST /job/{id}/host – Mapping of hosts to job
• GET /job/{id}/job – Returns workunits to which job was devides

Log

Endpoints for log operations.

• GET /log – Returns logs
• GET /log/new – Returns new logs

MarkovChains

Endpoints for work with HcStats files.

• GET /markovChains – Returns collection of HcStats files
• POST /markovChains/add – Uploads HcStats files on server
• POST /markovChains/makeFromDictionary – HcStat from dictionary
• GET /markovChains/{id} – Downloads HcStat file
• DELETE /markovChains/{id} – Deletes HcStat file

Masks

Endpoints for work with mask files.

• GET /masks – Returns collection mask files
• POST /masks/add – Uploads mask file on server
• GET /masks/{id} – Returns information about maskset with data
• DELETE /masks/{id} – Deletes mask
• GET /masks/{id}/download – Downloads maskset
• POST /masks/{id}/update – Exchanges maskset with new string

46

Notifications

Endpoints for graph representation.

• GET /notifications – Returns user’s notifications
• GET /notifications/count – Returns number of unreaded notifications

Pcfg

Endpoint for pcfg operations

• GET /pcfg – Returns collection of pcfg
• POST /pcfg/add – Upload pcfg on server
• POST /pcfg/makeFromDictionary – Creates pcfg from the dictionary
• GET /pcfg/{id} – Sends zipped PCFG as attachment
• DELETE /pcfg/{id} – Deletes pcfg

ProtectedFiles

Endpoints for operations with files with passwords.

• GET /protectedFiles/ – Returns collection of hashed files
• POST /protectedFiles/add – Uploads hashed files on server
• GET /protectedFiles/{id} – Downloads hashed file

Rule

Endpoints for work with rule files.

• GET /rule – Returns collection of HcStats files
• POST /rule – Uploads rule file on server
• GET /rule/{id} – Returns information about rule file
• DELETE /rule/{id} – Deletes rule file
• GET /rule/{id}/data – Returns first 25 rows from dictionary
• GET /rule/{id}/download – Downloads rule
• POST /rule/{id}/update – Replaces rule with new string

ServerInfo

Operation with server.

• GET /serverInfo/actualUsageData – Returns last record from table fc_server_usage
• GET /serverInfo/control – Operations with server(restart, start, stop)
• GET /serverInfo/getUsageData – Returns data from table fc_server_usage

according to a given time
• GET /serverInfo/info – Information about server
• GET /serverInfo/saveData – Function for saving of new data into the table

fc_server_usage

47

Settings

Endpoints for manipulating system settings.

• GET /settings – Returns all system settings
• POST /settings – Sets all system settings

Status

Endpoints for reading changes in job status.

• GET /status – Returns collection of all job statuses
• GET /status/{id} – Returns collection of all job statuses

Template

Endpoints for job templates.

• GET /template – Returns collection of job templates
• POST /template – Add a job template
• GET /template/{id} – Returns a template with its job settings
• DELETE /template/{id} – Deletes a template

User

Endpoints for authorization.

• GET /user/ – Returns list of users
• POST /user/ – Adds new user
• GET /user/isLoggedIn – Finds out if user is logged in and returns him
• POST /user/login – User login
• GET /user/logout – User logout
• POST /user/password/change_my_password – Changes user’s password
• GET /user/role – Returns list of roles
• POST /user/role – Changes user’s role
• POST /user/role/new – Adds new role into DB
• DELETE /user/role/{id} – Deletes role
• POST /user/role/{id} – Changes one property in user’s role
• DELETE /user/{id} – Deletes user

4.5 hashcat

Since the keyspace computed by hashcat may differ form the actual number of
checked passwords, as described in 2.3, we need hashcat on the server-side as well.
Every time the WebAdmin needs to calculate the keyspace for a given attack,
it runs hashcat with the --keyspace argument. Another use for hashcat is to
verify the format of input hashes. For that purpose, WebAdmin runs hashcat
with the --show argument. For more about hashcat see section 5.4.

48

4.6 XtoHashcat

To get a password securing an encrypted container, it is necessary to extract all
cracking-related metadata, as described in section 2.1. For using hashcat, users
need to extract hashes manually, e.g. using third-party scripts. For easier use,
Fitcrack provides an abstraction over this process, and thus accepts even the
original encrypted containers as an input.

This is, where XtoHashcat comes to use. XtoHashcat is our custom tool
written in Python 3. The tool can automatically detect the format of input
encrypted media, and extract the hash necessary for cracking. For detection, it
scans file signatures and optionally file extensions. Once the format is detected,
one of the open-source scripts30,31 is used to extract the hash.

Thanks to this approach, the uploading and cracking of the supported file is
transparent for the user. The hash is extracted in the background without the
need of entering the format number or running external extraction scripts. The
usage is defined as follows:

./ XtoHashcat.py <path > [-f <hash_type >]

The first argument, path, describes the location of the encrypted input file. The
second argument, hash_type is optional, and can be used to specify the format
in hashcat hash type format (see section 1.1). At the time of writing this report,
XtoHashcat supports the following input formats:

• MS Office documents (-f 9400-9800) [26, 27],
• PDF documents (-f 10400-10700) [1],
• RAR archives (-f 12500/13000) [20, 16],
• ZIP archives (-f 1300) [3],
• 7z archives (-f 11600) [23].

If the inputs are processed successfully, the output has two lines. The first one
contains the extracted hash, and the second contains a number representing the
detected hash type.

4.7 hcstat2gen

As described in section 3.3, brute-force attack uses Markov chains to generate
symbols in password candidates. The technique requires a .hcstat2 file with
Markov statistics in the form of character probability matrixes. The user can
either use a default hashcat.hcstat2 one, or select a custom statistics file.

Fitcrack WebAdmin supports automatic creation of new .hcstat2 files by
processing existing dictionaries. For this purpose, it uses a utility called hc-
stat2gen32. This tool generates a custom Markov statistics file from selected
dictionary. The usage is:
30 https://github.com/stricture/hashstack-server-plugin-hashcat
31 https://github.com/magnumripper/JohnTheRipper/
32 https://hashcat.net/wiki/doku.php?id=hashcat_utils#hcstat2gen

49

https://github.com/stricture/hashstack-server-plugin-hashcat
https://github.com/magnumripper/JohnTheRipper/
https://hashcat.net/wiki/doku.php?id=hashcat_utils#hcstat2gen

./ hcstat2gen.bin hcstat2_output_raw.bin < dictionary.txt

Starting from version 4.x, hashcat requires the file to be LZMA-compressed33

compression. . The compression can be done in the following way:

lzma --compress --format=raw --stdout -9e
hcstat2_output_raw.bin > output.hcstat2

4.8 Monitoring System Usage

We use a stand-alone script, measureUsage, to monitor server resources. This
script checks periodically for CPU and memory usage on the server and reports
the results every minute to REST API. The network usage is monitored as well.
The results are stored in the database and visualized to user through WebAdmin
frontend.

4.9 PCFG Monitor

PCFG monitor is our custom daemon that periodically checks for new running
PCFG jobs. When it detects such a job with no PCFG Manager assigned to
generate preterminal structure, the daemon launches it. Checking for running
PCFG jobs is done using periodic database polling every 2 seconds. The existence
of assigned PCFG Manager is realized by checking for a process with a correct
name, listening on a correct port computed with given job ID as described in
subsection 3.5.2

While this functionality was governed by WebAdmin before, because of the
new features like automatic starting of batch jobs, we created a simple stand-
alone daemon for this.

4.10 PCFG Manager server

The PCFG attack is the only mode where the server actively contributes to
the password guessing process. For each job, the PCFG Monitor runs a single
instance of the PCFG Manager34 in server mode. The running instance generates
preterminal structures (PT) from a given grammar and communicates with the
Generator via gRPC and Protocol buffers technologies [12, 9].

When the Generator creates a workunit for a host within a PCFG attack
job, it asks the PCFG Manager for a chunk containing one or more preterminal
structures. The newly created chunk is transferred with the workunit to the
host machine with a running PCFG Manager client that uses it for generating
password guesses.

33 https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Markov_chain_
algorithm

34 https://github.com/nesfit/pcfg-manager

50

https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Markov_chain_algorithm
https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Markov_chain_algorithm
https://github.com/nesfit/pcfg-manager

4.11 Princeprocessor

The PRINCE attack requires princeprocessor tool on the server side to compute
a job based on an input dictionary and configuration options of the PRINCE
algorithm. Configurations options are converted to princeprocessor arguments.
Fitcrack server runs princeprocessor with an input dictionary, converted ar-
guments and option --keyspace. The princeprocessor tool then computes the
keyspace and prints it to the standard output stream.

4.12 pwd_dist

The tool calculates password length distribution for dictionary file passed as first
argument. When user uploads new dictionary, Fitcrack server uses this tool to
compute password length distribution of upload dictionary. For example, if we
have three passwords with length 8, two passwords of length 6 and one password
of length 12, tool prints: 6:2;8:3;12:1. Computed password length distribution
is stored as password_distribution in the table fc_dictionary.

4.13 Generator

The Generator is a server daemon responsible for creating new workunits for
hosts. To achieve an efficient use of network’s resources, it employs our Adaptive
scheduling algorithm [7] described in Section 1. The algorithm tailors each worku-
nit to fit the client’s computational capabilities based on the current cracking
speed, which could change over time. To get the initial speed, at the begin-
ning of each cracking job, the clients receive a benchmark job which measures
their cracking speed for a given hash type. For the attack modes, the Generator
implements the distribution strategies described in Section 12. For example, it
performs the fragmentation of dictionaries, calculates the appropriate password
index boundaries, loads the preterminal structures for the PCFG attack, etc.

The Generator daemon runs in a loop illustrated by Algorithm 6. It takes
care that for each running job, there is always at least a single workunit assigned.
And if possible, all participating hosts have a workunit. There are two types of
workunits – benchmark and normal cracking tasks. The details of workunit types
and parameters are described in section 6. The benchmark can be run for one
format only or for all supported formats. The second case is called a complete
benchmark, and is performed only once whenever a new client is connected to the
server. The goal of the complete benchmark is to measure client’s capabilities,
i.e. achieveable cracking speeds for all supported hash algorithms.

The classical benchmark for a single format is run always at the start of the
job to measure the current speed of connected hosts. The complete benchmark is
run automatically after new host connects to server, when default_bench_all
flag is set in fc_settings table. Results are saved and then used for computing
the expected attack duration before the attack itself starts. Each job in Fitcrack
goes through a series of states. All possible states are enlisted in Table 13, while
each has a unique number from 0 to 12. Numbers above 10 mean the job is

51

not running. Historically, not all are numbers are used; some are reserved for
future use. The lifetime of a job is illustrated in Figure 20. Once created, the job
is in the Ready state. Clicking the start button changes the state to Running.
The following transitions depend on the conditions. If there is at least one non-
cracked hash and no error or user action occurs, the job eventually proceeds to
the Finishing state. In this state, the entire keyspace is distributed, but some
hosts are still processing. Once all hosts are done, the job switches to either
Finished or Exhausted state, depending on the results. A user may optionally
specify a deadline for the job. If exceeded, the job ends in the Timeout state.
In case of a non-recoverable error (e.g., the database gets corrupted), the job
switches to the Malformed state. Three subsystems of Fitcrack are allowed to
change the state of the job: the Generator, when a host asks for a new workunit,
the Assimilator if a workunit result is received, and the Webadmin at an event
of user’s action. Every job starts in the ready state, created by a user and added
to the database by the WebAdmin backend. Once the user launches it, the job
switches to the running state. All hosts assigned to a job also have status codes
defining the stage of their participation. The host codes are shown in Table 14.

If possible, there are always two cracking workunits ready for each host within
the job. One is sent to the host. The second one is generated beforehand, so the
host can start working on it right after the first one is completed. This way, we
minimize the communication overhead.

This daemon also deals with disconnected hosts and computation errors.
When an incorrect result is delivered by a host or a workunit deadline is reached,
this workunit is tagged with retry flag and a new copy is generated.

Another feature is job purging. When the user wants to purge the job, revert
all the work done and delete the progress, Generator sends signal to all connected
clients to abort the current task. When the purged job is running, Generator also
reverts its state back to Ready. Generator is notified about this duty by a kill
flag in the fc_job table, which is set by WebAdmin, after the user clicks at the
purge button.

The Generator communicates with the rest of the server using the database
only. This approach is similar to most of the BOINC daemons. The generator
also creates the input files, which are sent to the hosts. The number of these files
varies, depending on the type of the attack. data and config files are always sent,
containing input hashcat hash and needed metadata respectively. For dictionary
and combinator attacks, dict1 and dict2 input files may be needed, containing
list of passwords. If the administrator wants to apply rules to the dictionary, rules
input file is created. For a mask attacks using Markov chains, markov input file,
containing hcstat2 file is created.

4.14 Validator

The Validator35 is a tool implemented within BOINC. It validates the syntax of
all incoming workunit results from clients before they are passed to the Assimi-
35 https://boinc.berkeley.edu/trac/wiki/ValidationIntro

52

https://boinc.berkeley.edu/trac/wiki/ValidationIntro

Algorithm 6: Generator daemon algorithm
1 while (1) do
2 // Iniciatization
3 if Any Jobs reached deadline then
4 Set them to Finishing status (12).

5 foreach Running Job (status ≥ 10) do
6 Process the purge requests. Load all corresponding masks or

dictionaries.
7 // Benchmark
8 foreach Host in Benchmark status (0) do
9 if Benchmark is not planned then

10 Plan a benchmark.

11 // Cracking
12 foreach Host in Normal status (1) do
13 if Number of planned workunits ≥ 2 then
14 Continue to next Host.

15 if Job is in Running status (10) then
16 Generate a new workunit or reassing a retry workunit.
17 if No workunits could be generated then
18 Set Job to Finishing status (12)

19 if Job is in Finishing status (12) then
20 Reassign a retry workunit if exists. Otherwise, set Host to

Done (3).

21 // Job finished
22 if Job status is Finishing (12) and no Jobs are generated then
23 Check the end conditions and set job to

Finished/Exhausted/Timeout/Paused.

24 Wait a short time interval before the next iteration

lator. The subsystem also checks if each result contains all necessary output files.
If the job replication is active, i.e., a single workunit is assigned to more than one
host, the Validator verifies if the replicated results match. TThe technique helps
in an untrusted network where we expect hosts may be compromised produce
intentionally incorrect results. In Fitcrack, the replication is by default disabled
since it reduces the computational power by 50% or more, as discussed in [8].
In volunteer-based computing, the Validator also grants credit to hosts, but this
feature is not interesting for our use-case.

53

4.15 Assimilator

The Assimilator36 is a server daemon which parses the results supplied by hosts.
It decides what to do when a host completes a workunit. As mentioned in sec-
tion 4.13, there are three types of workunits – the benchmark for one format,
complete benchmark, and a normal cracking job – each having a specific type
of result. Depending on the result, the Assimilator can modify the job’s state in
the database or even cancel running workunits.

The results are sent in a custom format, where pieces of information are
separated by a newline. The meaning of the lines varies, depending on the type
of workunit. However, the first two lines always inform us about the workunit
type and the result. At the first line, letter b is signalling a result from the
benchmark workunit, letter a result from complete benchmark, and letter n
result from a normal cracking task. At the second line, there is always a result
code. Generally, code 0 is signaling a successful result while codes greater than
two are signaling computation error. The simplified functionality of Assimilator
daemon is described by algorithm 7. There are three options, how a workunit
could end:

• Successful benchmark of a node - The Assimilator saves the node’s crack-
ing performance to the database.

• Finished regular job - The Assimilator updates the job progress. If the
host cracked one or more hashes, the passwords are saved to the database.
If all hashes are cracked, the entire job is considered done, and all ongoing
workunits are terminated. If the whole keyspace is processed, the Assimilator
changes the job’s status to either finished or exhausted.

• Computation error - The Assimilator sets the retry flag to the workunit
to perform the failure-recovery process, as described in [8].

4.16 Trickler

With the Generator, Validator, and Assimilator, the server knows what host has
which workunit assigned. However, the only information about the workunit’s
progress the server obtains when the host finishes its work and sends a report.
To provide the administrator with a more detailed overview, the Runner (See
Section 5.3.) uses BOINC Trickle message API37. Via this API, each host pe-
riodically sends Trickle messages that inform the server about partial progress.
The goal of the Trickler daemon is to process these messages and updates the
information in the database. The administrator may then visualize it in the
WebAdmin application.

This way, we know the current state of the cracking even with several hours
long workunits. The messages are in XML format and are saved into the database.
From here, Trickler daemon reads them and updates the Fitcrack table fc_workunit
with progress. The old entries in the database are periodically removed.
36 https://boinc.berkeley.edu/trac/wiki/AssimilateIntro
37 https://boinc.berkeley.edu/trac/wiki/TrickleApi

54

https://boinc.berkeley.edu/trac/wiki/AssimilateIntro
https://boinc.berkeley.edu/trac/wiki/TrickleApi

Algorithm 7: Assimilator daemon algorithm
1 while (1) do
2 Read the result type
3 switch type do
4 case benchmark do
5 if Result is OK (code 0) then
6 Read the power and save it to database
7 else
8 Plan a new benchmark

9 case normal do
10 if One or more passwords found (code 0)) then
11 Read the password(s) and save them to database
12 if Any hashes remaining to be cracked then
13 Switch the Job state to Finished (1)
14 Cancel all running Workunits of the Job
15 Set finished flag to all Workunits
16 Read the cracking time and save it

17 else
18 if No passwords found (code 1) then
19 Modify the workunit size according to 1.
20 Update the current index used for planning
21 else
22 // Computation error
23 Cancel host workunints
24 Set Host status to Benchmark (0)

25 case bench_all do
26 if Result is OK (code 0) then
27 Read the power list and save it to database
28 else
29 Plan a new benchmark

4.17 Transitioner

Transitioner is default BOINC daemon that keep databased synchronized. It
updates workunits and their results when needed. All other daemons depends
on Transitioner’s work. Fitcrack system uses deafult BOINC implementation
without any modifications.

55

4.18 Scheduler

Scheduler is another BOINC program. It is responsible for communication with
hosts. The communication consists of periodical exchange of scheduler request
and reply messages in XML format. In those, all information is sent, includ-
ing new workunits. In this case, the workunit must be generated first by the
Generator daemon.

Although Fitcrack system uses the default Scheduler implementation, some
adjustments were made. Most importantly, the program was modified so that
with every reply sent to host, the Fitcrack fc_host_status table is updated
with the current timestamp. Using this modification, we can see which hosts are
currently up and running.

4.19 Feeder

Fitcrack system uses default BOINC implementation of Feeder daemon. It works
closely with Scheduler and is responsible for distributing chunks of shared mem-
ory.

4.20 File deleter

File deleter is one of many BOINC server daemons. Fitcrack system uses default
BOINC implementation of this daemon. It’s responsibility lies in deleting input
and output files of completed and assimilated workunits. This daemon can be
run periodically in user defined intervals to clear the disk space.

56

5 Client-side subsystems

Clients represent the actual cracking nodes. Fitcrack can be run on any machine
with Windows, or Linux OS, and at least one OpenCL-compatible device with
proper drivers installed. The only piece of software that needs to be installed is
BOINC Client (see section 5.1), and optionally BOINC Manager (see section
??) providing a graphical user interface to BOINC Client.

Once the BOINC Clients connects and authenticates to the server, all neces-
sary binaries are downloaded automatically before the actual work is assigned.
The binaries involve two applications: hashcat as the “cracking engine” (see sec-
tion 5.4), and Runner (see section 5.3) which server as a wrapper encapsulating
and controlling operations with hashcat. The architecture of Fitcrack client is
illustrated in figure 19.

hashcat
BOINC client

BOINC manager

Runner

OpenCL kernel

CoreCLI

TCP/IP + HTTP(S) + BOINC RPC
Client(s)

Fitcrack-specific Related to hashcat BOINC

GUI

Local
administrator

Matt Weir's work

princeprocessorExternal password
generators

PCFG Manager client
PIPE

passwords

Connection to the server

Fig. 19. The architecture of Fitcrack server

5.1 BOINC Client

BOINC Client38, also referred to as core client, is the main host application
of Fitcrack system. It is required to be manually installed to the host system.
The application ensures communication with the project server. Both the ini-
tialization of project on the host and the retrieving and reporting of individual
workunits. Project initialization consists of the authentication of user, download
of the project specific binaries and information.

Another job of the application is the execution of project specific host appli-
cations. On receive of every new workunit it:

1. Creates copy of the default project files into new empty directory.
38 https://boinc.berkeley.edu/wiki/BOINC_Client

57

https://boinc.berkeley.edu/wiki/BOINC_Client

2. Downloads the workunit specific file from the server.
3. Adds files containing soft-links to workunit specific files as to the directory

created in item 1.
4. Executes the host application in that directory with specified parameters.
5. Retrieves the exit code of the host application.
6. Reports the generated result to the server.
7. Deletes the created directory with all of its subfolders and files.

BOINC Client can be configured to run the computations only when certain
conditions are met. Some of them are processor utilization, disk space usage,
network transfer limits, exclusive applications aren’t running. Also, it is possible
to set daily schedules and others.

BOINC Client can be executed as daemon by cron, manually or at the startup
of the system. It can also run as CLI application in terminal. It communicates
with the server via BOINC scheduling server protocol using either HTTP or
HTTPS. It executes and controls the host application via system calls.

5.2 BOINC Manager

BOINC Manager39 is in general graphical interface of BOINC Clien. It allows
to add projects, control progress of tasks, review application logs, configure user
setting and logging preferences. It communicates with the client over graphical
user interface remoter procedure calls (GUI RPS).

BOINC Manager can be run either at the system start-up or manually and
can be shutdown at any time without affecting the computation process. It
requires BOINC Client to be running for its proper functioning.

5.3 Runner

The Runner is a wrapper of hashcat, designed to be used as either standalone
tool, simplifying control of hashcat, or as middleware in BOINC system. The
code uses the C++98 standard extended by few functions from C99 standard.
It is written in the way to be compilable into a static binary for both Linux and
Windows.

5.3.1 Pre-compilation

In order to maintain maximum compatibility with most systems, the Runner is
distributed as a static binary pre-compiled to different architectures. However,
in case an experienced user decides to modify it, it is possible to re-compile the
application. To compile runner, it is necessary to run make linux in the Runner
directory to build Runner binary for Linux. Similarly, use make windows to
produce a binary for Windows. The Makefile requires a MinGW G++ to be
installed on the Linux OS to be able cross compile the Runner for Windows.
39 https://boinc.berkeley.edu/wiki/BOINC_Manager

58

https://boinc.berkeley.edu/wiki/BOINC_Manager

To make development more easy, there are two scripts that help update the
binaries in Fitcrack. The update_client_libs.sh compiles the Runner for both
Linux and Windows and copies the binaries to the server/client_bin inside
the directory with Fitcrack’s sources. If the Fitcrack server is later installed
from the directory, it automatically uses the updated binaries. The second script
update_binaries.py is helpful for live debugging. It can be run on a machine with
an existing installation of the Fitcrack server. The script compiles the Runner
and updates the currently installed system. BOINC then automatically updates
the Runner binaries on client nodes.

5.3.2 Basic operation

Once runner is started, it:

1. reads the config file (see section 6.1), and converts the options to hashcat
parameters,

2. if an attack requires an external password generator, Runner launches it
3. launches hashcat,
4. monitors the cracking progress of cracking,
5. gathers results, and creates and output file (see section 6.2) which is passed

to BOINC.

Runner is launched by the BOINC client. All information needed by the appli-
cation is stored in several files which are required to be in the same directory as
the executable. The files are:

• required files:
◦ hashcat_files_v510_1.zip - containing all hashcat file like OpenCL

kernels, *.hcstat, *.hctune, etc.,
◦ config - the workunit input configuration file – see section 6.1,
◦ data - file with hashcat acceptable hash to be cracked,

• optional files:
◦ config - a configuration of the workunit (see below),
◦ data - a file containing one, or more input hashes,
◦ dict1 - a password dictionary number one,
◦ dict2 - a password dictionary number two,
◦ rules – a file with password-mangling rules,
◦ markov - a .hcstat file with Markov statistics (see section 3.3),
◦ pretermnals - a file with PCFG preterminals,
◦ grammar - a file with PCFG grammar.

• output files:
◦ out - this output file with cracking results in the server understandable

format – see section 6.2,
◦ stderr.txt - execution log.

59

All mentioned files can contain BOINC -like soft-link to the real file. Soft-link
may be created by making text files with following XML element with path to
the real file as its value <soft_link></soft_link>. Runner resolves such soft-
link to the absolute path of the file which it then uses instead of the soft-link
file.

Runner launches the hashcat as a cracking engine for all attack modes. In
case of PCFG and PRINCE attacks, an external password generator is required
to produce candidate passwords and Runner needs to launch it. A light-weight
abstraction of processes for Linux and Windows is implemented in ProcessLinux
and ProcessWindows.

An external generator is connected with the hashcat via pipes for the best
possible performance. As soon as a generator is able to produce new candidate
passwords, the hashcat starts cracking them. A light-weight abstraction of Linux
and Windows pipes is implemented in classes PipeLinux and PipeWindows.

Given that concurrently running multiple instances of hashcat generally leads
to a decrease in overall cracking speed as well as increased usage of system
resources such as GPU memory, Runner also ensures (see classes NamedMu-
texLinux and NamedMutexWindows) that while one instance of Runner cur-
rently has a running hashcat process, all other instances will wait for it to finish
before launching their own.

The arguments of hashcat, and the behavior of Runner depends on selected
attack mode, attack submode, and options specificied in the workunit config
file. For detailed information, see section 6.1.

5.3.3 Attack specific configuration
Runner maps options from the config file to an arguments for hashcat and
for external external generators like PCFG manager or princeprocessor. This
mapping is implemented in the classes with name starting with “Attack” - eg.
AttackDictionary, AttackPCFG, etc.

5.3.4 Host specific configuration
Runner also supports host specific specification of hashcat parameters. It is de-
signed to be used for the specification of workload-w), which OpenCL devices to
use(-d), whether should hashcat ignore errors(--force) and such thing which
aren’t generalized for all host by their nature.

File with such additional configurations has to be placed at /etc/<BOINC_-
project_name>.conf on Linux and under C:\ProgramData\BOINC\<BOINC_-
project_name>.conf on Windows. If you would like to run Runner as stan-
dalone then create config using the same directories but name it standalone.conf.
It is just inlined into hashcat command.

5.4 hashcat

Fitcrack uses hashcat as a tool realizing the actual password recovery. It allows
the system to support a lot of the hash formats / algorithms. Also, it uses

60

the kernels written in OpenCL C for the implementation of hash function and
alogrithm. OpenCL enables the use of the hardware accelerators such as graphics
cards and feild programmable gate arrays (FPGA) or even CPUs. For hashcat
to function correctly the proper driver with OpenCL support has to be installed
for chosen processing device. The tool itself doesn’t have to be install as the
system ships its own hashcat binaries to the clients.

The hashcat tool is executed via the module Runner(section 5.3). The module
sets the execution parameters and processes the outputs of the tool and its exit
code.

5.5 PCFG Manager client

In contrast with the classic attack modes, An instance of the PCFG Manager
runs in the client mode and generates candidate passwords from the pretermi-
nals created by the PCFG Manager server [12, 9], as described in Section 4.10.
Through a pipe, the passwords are sent to the standard input of hashcat. Hash-
cat runs in a dictionary attack mode without a concrete wordlist specified. It
reads all the passwords directly from the pipe.

5.6 Princeprocessor

The PRINCE attack also uses an external password generator on the client-side.
An instance of the princeprocessor tool runs with options --skip and --limit to
generate assigned range of candidate passwords using the PRINCE algorithm.
The generated passwords are sent to the standard input of hashcat through
a pipe. Hashcat runs in a dictionary attack mode and reads all the generated
passwords directly from the pipe.

61

6 Client-server communication

While the underlaying communication is handled by BOINC using BOINC schedul-
ing server protocol40, the inputs and outputs of each workunit are controled by
Fitcrack. For each job, Fitcrack defines a number of input and output files.
Which files are used depends on the attack mode. The attack modes and their
numbers are defined in section 3.

In BOINC, all workunit-related files are described by input and output tem-
plates41 located on the server in PROJECT_ROOT/templates directory (see sec-
tion 4.1). While input templates define input files downloaded by a client from
the server before a workunit is started, the output templates define the output
files which are sent by the client back to the server after the job is finished. In
Fitcrack, we have three types of workunits:

• Benchmark workunit - is sent to each client at the beginning of each job.
The goal is to determine the client’s current speed which is then used to
bootstrap the adaptive scheduling algorithm (see section 2.4). Once finished,
the result of the benchmark for given hash type is stored in fc_benchmark
table within the database (see 7). If the record already exists, it is updated by
the newly-measured one. It is also used to initialize the power column in the
fc_host table, after being converted to the appropriate units. In workunit
config file (see below), the computation mode is set to “b”.

• Benchmark all - is a workunit which lets the client perform the benchmark
over all supported hash algorithms. It is used only within a special (hidden)
job called BENCH_ALL which is always present in the system. By default, the
complete benchmark is performed only once, and is started whenever a new
client is connected to the server. The goal is to scan the capabilities of the
client. The resulting speeds for all hash types are saved to fc_benchmark
table within the database (see 7). In workunit config file, the computation
mode is set to “a” which stands for “all”.

• Normal workunit - is a regular piece of cracking work sent to the client.
What hash type and how exactly is cracked specifies the config file described
in section 6.1. In workunit config file, the computation mode is set to “n”.

6.1 Files transferred from server to client

In Fitcrack, we have six different input templates. The bench_in template used
for bechmarking. For rest, each template corresponds to a number of attack
modes and submodes (represented by the attack number - see 3):

• bench_in - used for bench_all workunits (no attack),
• dict_in - used for dictionary attacks (00),
• rule_in - used for dictionary attacks with rules (01),

40 https://boinc.berkeley.edu/trac/wiki/RpcProtocol
41 https://boinc.berkeley.edu/trac/wiki/JobTemplates

62

https://boinc.berkeley.edu/trac/wiki/RpcProtocol
https://boinc.berkeley.edu/trac/wiki/JobTemplates

• combinator_in - used for combination attacks (10, 11, 12, 13),
• mask_in - used for brute-force attacks with mask (30),
• markov_in - used for brute-force attacks with mask and user-defined Markov

statistics file (31, 32),
• hybrid_dict_mask_in - used for hybrid (wordlist+mask) attacks (60),
• hybrid_mask_dict_in - used for hybrid (mask+wordlist) attacks (70),
• prince_in - used for PRINCE attacks (80),
• prince_rules_in - used for PCFG attacks with rules (81),
• pcfg_in - used for PCFG attacks (90),
• pcfg_rules_in - used for PCFG attacks with rules (91).

Each template defines the use of one of more of the following input files:

• config - a configuration of the workunit (see below),
• data - a file containing one, or more input hashes,
• dict1 - a password dictionary number one,
• dict2 - a password dictionary number two,
• rules – a file with password-mangling rules,
• markov - a .hcstat file with Markov statistics (see section 3.3),
• preterminals - a file with PCFG preterminal structures,
• grammar - a file with serialized PCFG grammar.

Table 7 shows the relationship between templates, attack modes, and input files.
Each row stands for a single template. The first column shows the name of the
template. The second column contains numbers of attacks in which the template
is used. For each input file, there is a column containing “X” if the file is used
within the template. For example, template mask_in define the use of two input
files: config and data.

template attacks config data dict1 dict2 rules markov preterminals grammar
bench_in X
dict_in 00 X X X
rule_in 01 X X X X
comb_in 10, 11, 12, 13 X X X X
mask_in 30 X X
markov_in 31, 32 X X X
prince_in 80 X X X

prince_rules_in 81 X X X X
pcfg_in 90 X X X X

pcfg_rules_in 91 X X X X X

Table 7. Input templates used by boinc

The config is a text file defining the workunit, e.g. its attack mode and keyspace
(see 2.3). For easy parsing on the client-side, we use the Type-length-value42

(TLV) representation. Each line of the config file has the following syntax:
42 https://named-data.net/doc/NDN-packet-spec/current/tlv.html

63

https://named-data.net/doc/NDN-packet-spec/current/tlv.html

||| name|type|length|value |||

The name identifies the configration parameter. Allowed names are listed in
table 9. The type matches one of the data types defined in table 8. The length
says how many characters are in the value part. For example:

||| hash_type|UInt |4|9400|||

describes parameter names hash_type which should be saved as a 32-bit un-
signed integer. The value is 9400 of 4 digits.

On the client-side, the configuration parameters are interpreted by the Run-
ner subsystem (see 5.3). Many of them affect the arguments hashcat is started
with. Table 9 shows all workunit parameters supported by Fitcrack together
with hashcat’s arguments they are related to. For example, we can see the con-
nection of the start_index and hc_keyspace parameters to hashcat’s --skip
and --limit arguments, as discussed in section 2.3.

type description
Bool Boolean: 0 means FALSE, 1 means TRUE
Char C-like 8-bit unsigned char
String C-like sequence of chars
Int 32-bit signed integer
UInt 32-bit unsigned integer
BigInt 64-bit signed integer
BigUInt 64-bit unsigned integer

Table 8. Data types supported in Fitcrack config

Not all config parameters are used in every workunit, e.g. in dictionary attack,
we have no mask, etc. Table 10 shows in which attack modes and submodes
the parameters are used. If a parameter is used in given mode and submode,
“X” is displayed in the corresponding column. For example, mask_hc_keyspace
parameter defining the hascat’s keyspace of a given mask is only used within
a brute-force attack, so “X” is in columns related to attack mode number 3. If
a parameter may be used but is optional, “O” is displayed in the corresponding
column.

For benchmark workunits, the workunit config file is identical to the one cre-
ated for a normal workunit for a given job, aside from parameters limiting the
number of cracked passwords, which are currently start_index, hc_keyspace,
dict_hc_keyspace and skip_from_start. The only exception is for jobs with
dictionaries. Their size may be enormous, and they are often fragmented to
smaller parts before use. Hence, sending entire dictionaries to all nodes would
be a costly and useless effort. Moreover, the exact content of a dictionary is not
necessary for a benchmark. As we experimentally detected, the measured perfor-
mance is influenced mainly by the distribution of password lengths. Therefore,
we use an alternative solution. The server sends an empty file instead, plus

64

name describtion hashcat arg. princeprocessor arg.
attack_mode attack mode (see 3) -a

attack_submode attack submode (see 3)
hash_type type of the hash (see 1.1) -m

name the name of the cracking job
charset1 user-defined charset number 1 (see 3.3) -1 charset1
charset2 user-defined charset number 2 -2 charset2
charset3 user-defined charset number 3 -3 charset3
charset4 user-defined charset number 4 -4 charset4
rule_left rule for the left dictionary (see 3.2) -j
rule_right rule for the right dictionary -k

mask password mask for brute-force attack
start_index starting password index (see 2.3) --skip
hc_keyspace keyspace of the workunit --limit

mask_hc_keyspace keyspace of the entire mask
mode computation mode (b|n|a) -b for bench

markov_threshold threshold for Markov model (see3.3) --markov-threshold
dict_hc_keyspace keyspace of the wordlist --limit
case_permute case permutation --case-permute

check_duplicates check and ignore duplicated passwords --dupe-check-disable
max_password_len maximal length of passwords --pw-max
min_password_len minimal length of passwords --pw-min
max_elem_in_chain maximal number of elements in chain --elem-cnt-max
min_elem_in_chain minimal number of elements in chain --elem-cnt-max
skip_from_start number of passwords to skip --skip

generate_random_password number of generated random passwords -g
hw_temp_abort temperature threshold to abort cracking –hwmon-temp-abort
benchmark_dict1 Password length distribution of dict1
benchmark_dict2 Password length distribution of dict2

Table 9. Parameters used in the config file

information about password length distribution using special config parame-
ters benchmark_dict1 and benchmark_dict2. Password length distribution for
a dictionary is computed once using the pwd_dist tool (see 4.12) and then
stored to the table fc_dictionary. The format of those parameters is a string
of concatenated items, where one item is formatted as length followed by a colon,
the number of passwords of this length, and a semicolon. For example three 6
character passwords followed by four 8 character passwords would result in the
string 3:6;4:8;. Based on this information, the Runner on the host machine
generates a temporary dummy dictionary with similar properties and uses it for
the benchmark.

The config file is created by Generator together with the workunit. An ex-
ample of a concrete workunit config file is:

		attack_mode	UInt	1	0		
		attack_submode	UInt	1	0		
		hash_type	UInt	4	9400		
		name	String	4	test		
		start_index	BigUInt	1	0		
		hc_keyspace	BigUInt	6	135985		
		mode	String	1	n		

The config defines a workunit within a cracking job named test. Attack mode
0 defines a dictionary attack, attack submode 0 stands for the classic dictionary

65

attack mode 0 1 3 6 7 8 9
attack submode 0 1 0 1 2 3 0 1 2 0 0 0 1 0 1

name type
attack_mode UInt X X X X X X X X X X X X X X X

attack_submode UInt X X X X X X X X X X X X X X X
hash_type UInt X X X X X X X X X X X X X X X

name UInt X X X X X X X X X X X X X X X
hw_temp_abort UInt X X X X X X X X X X X X X X X

charset1 String X X X O O
charset2 String X X X O O
charset3 String X X X O O
charset4 String X X X O O
rule_left String X X O
rule_right String X X O

mask String X X X X X
start_index BigUInt X X X X X X X X X
hc_keyspace BigUInt X X X X X X X X X X X

mask_hc_keyspace BigUInt X X X
dict_hc_keyspace BigUInt X X

mode String X X X X X X X X X X X X X X X
markov_threshold UInt X X
max_password_len UInt X X
min_password_len UInt X X
max_elem_in_chain UInt X X
min_elem_in_chain UInt X X

case_permute UInt X X
check_duplicates UInt X X
skip_from_start BigUInt X X

generate_random_rules UInt X X

Table 10. Use of config parameters within different attacks

66

attack without the use of password-mangling rules. Start index equal is typical
in dictinary attack, since we only send fragments of the original dictionary, as
described in section 3.1. The total hashcat’s keyspace, in this case the number
of passwords in dictionary fragment, is 135985. The mode is set to “n” which
stands for (n)ormal cracking.

6.2 Files transferred from client to server

While workunits have multiple input files, the output file described by app_out
template is only one - the out file containing:

<mode >
<status_code >
<info >

where mode refers to the computational mode: i) “b” for benchmark, ii) “a” for
benchmark all, and ii) “n” for normal tasks. The meaning of status codes is
described in table 11.

code benchmark (b) benchmark all (a) normal task (n)
0 successfull (partial) success at least one hash cracked
1 - - finished, no hash cracked
3 error error error

Table 11. Meaning of codes in out file.

The info part is different for each computational mode and status code. The
contents of the info part is defined as follows:

• Benchmark workunits (mode = b); the allowed status codes are:

◦ 0 - means the benchmark was successfull, the info part consist of two
lines: the first one contains the cracking speed in hashes per second (inte-
ger), the seconds one contains the total time of the benchmark (double).
The contents of the out are:

b
0
<cracking_speed(power)> - integer
<cracking_time > - double

◦ 3 - is used if an error occured during the benchmark. The info part con-
sist of two lines: the first one contains hashcat’s return code, the seconds
one contains the error message returned by hashcat. The contents of the
out are:

67

b
3
<hashcat_exit_codes > - integer
<hashcat_exit_info > - string (may be empty)

• Benchmark all workunits (mode = a); the allowed status codes are:
◦ 0 - means the complete benchmark was successfull at least for some hash

types. The info part consist of lines containing the number of a hash type
number, colon (:), and measured cracking speed in hashes per second:

a
0
<cracking_time > - double
<hash_type >:<cracking_speed >
<hash_type >:<cracking_speed >
<hash_type >:<cracking_speed >
...

If benchmarking of any hash type encountered an error, the cracking_speed
is set to 0.

◦ 3 - the benchmark was not successful for any hash type. This means
that no run of hashcat was successful. The info part contains the error
message returned by hashcat. The contents of the out are:

a
3
<hashcat_exit_info >

• Normal workunits (mode = n); the allowed status codes are:
◦ 0 - means the password was found for one or more hashes. The info part

consist of a line contaning the cracking time in hashes per second, and
one or more lines containing the cracked hash, a semicolon (:), and the
cracked password in hex form. The out file has the following contents:

n
0
<cracking_time > - double
<cracked_hash >:<password(hexa encoded)> - string
<cracked_hash >:<password(hexa encoded)> - string
<cracked_hash >:<password(hexa encoded)> - string
...

◦ 1 - no password was found within the workunit. The info part contains
the cracking speed in hashes per second. The out file has the following
contents:

n
1
<cracking_time > - double

68

◦ 3 - means the client has encountered an error. The info part contains
two lines. The first line contains the exit code of hascat, while the second
line contains the error message displayed by hashcat. The out file has
the following contents:

n
3
<hashcat_exit_code > - integer
<hashcat_error_info > - string

6.3 Trickle messages

Whereas previous sections described client-server communication done before
a workunit is started, and after the workunit is finished, the client-side also
informs the server about partial progress on currently-computer workunit. This
is performed in Runner subystem (see section 5.3) using BOINC Trickle message
API 43 which is used to send trickle messages to the server. The messages are
processed by the Trickler daemon (see section 4.16). Each trickle message has
the following syntax:

<workunit_name >wuName </ workunit_name >
<progress >wuProgress </progress >
<speed >wuSpeed </speed >

where wuName corresponds to the name of the workunit in BOINC workunit
tabe, wuProgress is a value from 0.0 to 100.0 defining the current progress on
the workunit, and wuSpeed stands for the cracking speed in hashes per second.

43 https://boinc.berkeley.edu/trac/wiki/TrickleApi

69

https://boinc.berkeley.edu/trac/wiki/TrickleApi

7 MySQL database

To store all cracking-related information, Fitcrack server (see section 4) uses
a MySQL database. At the time of writing this technical report, Fitcrack is
compatible with MySQL44 server 4.0.9 or higher, respectively MariaDB45 server
10.0 or higher. The database contains two types of tables:

• BOINC tables - created by BOINC make_project script and maintained
by BOINC server daemons: Transitioner, Scheduler, Feeder, and File Deleter
(see section 4). Fitcrack-specific subsystems use only read-only access to
these tables. BOINC tables are described in section 7.1.

• Fitcrack tables - created by SQL scripts of Fitcrack server, respectively
Fitcrack installer, and used by Fitcrack WebAdmin, Generator, Assimilator,
Validator, and Trickler. Fitcrack tables are described in section 7.2.

7.1 The overview of BOINC tables

BOINC tables respect the BOINC database scheme46. The most important ta-
bles are:

• platform - defining compilation targets of the core client and/or applica-
tions. The core client is treated as an application; its name is core_client.

• app_version - defining versions of client-side application binaries. Each
record contains an URL which the BOINC client uses for downloading the
binaries, and the MD5 checksum to verify application integrity.

• user - describes user accounts used by BOINC client/manager to authenti-
cate with Fitcrack server.

• host - lists all hosts, also referred to as clients, or cracking nodes. BOINC
Scheduler daemon automatically adds new record to the database, whenever
a new host is connected to the cracking network described in section 2.2.

• workunit - contains workunits, the smallest pieces of work assigned to hosts
in terms of BOINC. The records include the count of results linked to the
workunit, the number of workunits sent, succeeded, and failed.

• result - is filled with workunit results, whenever a result is dispatched by
a host. The reords store information about CPU time spent within the
workunit, exist status, and validation status.

There are also other tables used by the BOINC, defined on the BOINC website47.

44 https://www.mysql.com/
45 https://mariadb.org/
46 https://boinc.berkeley.edu/trac/wiki/DataBase
47 https://boinc.berkeley.edu/

70

https://www.mysql.com/
https://mariadb.org/
https://boinc.berkeley.edu/trac/wiki/DataBase
https://boinc.berkeley.edu/

7.2 The overview of Fitcrack tables

Besides the default BOINC tables, Fitcrack uses the following additional tables:

• fc_batch - batch job runs,
• fc_benchmark - benchmarking results of hosts,
• fc_bin - job bins (folders),
• fc_bin_job - bins and jobs junction table,
• fc_charset - character sets,
• fc_dictionary - password dictionaries,
• fc_hash - password hashes,
• fc_hcstats - Markov statistics files,
• fc_host - actively cracking hosts,
• fc_host_activity - mapping of hosts to jobs,
• fc_host_status - status of hosts,
• fc_job - cracking jobs,
• fc_job_dictionary - mapping dictionaries to jobs,
• fc_job_graph - points in job progress graph,
• fc_job_status - job status history,
• fc_mask - password masks,
• fc_masks_set - sets of password masks,
• fc_notification - various notifications,
• fc_pcfg_grammar - grammars for PCFG attacks,
• fc_pcfg_preterminals - PCFG preterminals for given workunit,
• fc_protected_file - input files to XtoHashcat,
• fc_role - user roles in WebAdmin,
• fc_rule - files with password-mangling rules,
• fc_server_usage - server resources usage,
• fc_settings - global server sertings,
• fc_template - job templates,
• fc_user - user accounts in WebAdmin,
• fc_user_permissions - per-job user permissions,
• fc_workunit - workunits (chunks of keyspace).

7.3 fc_batch

The table keeps track of batch job runs. Batches have a name and rememeber
who created them. Jobs are assigned to the batch via a foreign key in the fc_job
table, which also stores their position in queue. The structure of the table is
defined as follows:

• id - primary key,
• name - name of the batch,
• creator_id - user id (linked to fc_user).

71

7.4 fc_benchmark

The table is used to store benchmarking results of hosts. Each record represents
the cracking speed of given host and given hash algorithm. The structure of the
table is defined as follows:

• id - primary key,
• boinc_host_id - host ID in BOINC host table,
• hash_type - hashcat’s number48 of hash algorithm,
• power - measured cracking speed in hashes per second,
• last_update - time of last update of the record.

7.5 fc_bin

The table stores job bins, which group together multiple jobs for listing and
managing. Many jobs can be assigned to a bin and many bins can list the same
job, so the relationship has a junction table in fc_bin_job (see below). The
structure of the table is defined as follows:

• id - primary key,
• name - name of the bin,
• position - position of the bin in the menu.

7.6 fc_bin_job

This is a junction table linking fc_bin and fc_job. The structure of the table is
defined as follows:

• id - primary key,
• job_id - id from the fc_job table,
• bin_id - id from the fc_bin table.

7.7 fc_charset

This table stores information about user-defined character sets used for brute-
force attack and hybrid attacks (see section 3). Each record corresponds to a sin-
gle charset file located in COLLECTIONS_ROOT/charsets directory. The structure
of the table is defined as follows:

• id - primary key,
• name - name of the charset (displayed in WebAdmin),
• path - the real name of the charset file,
• keyspace - number of characters in the charset,
• time - time the charset file was added to the system,
• deleted - flag (0/1) saying if the charset was deleted.

48 https://hashcat.net/wiki/doku.php?id=example_hashes

72

https://hashcat.net/wiki/doku.php?id=example_hashes

7.8 fc_dictionary

This table stores information about password dictionaries used for dictionary
attack and hybrid attacks (see section 3). Each record corresponds to a sin-
gle dictionary file located in COLLECTIONS_ROOT/dictionaries directory. The
structure of the table is defined as follows:

• id - primary key,
• name - name of the dictionary (displayed in WebAdmin),
• path - the real name of the dictionary file,
• password_distribution - password distribution in the dictionary,
• keyspace - the number of passwords in the dictionary,
• time - time the dictionary was added to the system,
• deleted - flag (0/1) saying if the charset was deleted.

7.9 fc_hash

The table contains various hashes which are cracked within the jobs. Each record
stands for a single hash. The structure of the table is defined as follows:

• id - primary key,
• job_id - ID of the corresponding job fc_job table,
• hash_type - hashcat’s number defining the type of the hash,
• hash - the value of the hash,
• result - plaintext input defining the correct password, if found.
• added - time the hash was added to the system,
• time_cracked - time the hash was was cracked.

7.10 fc_hcstats

This table stores information about Markov .hcstat2 statistics files used for
brute-force and hybrid attacks (see section 3). Each record corresponds to a single
.hcstat2 located in COLLECTIONS_ROOT/markov directory. The structure of the
table is defined as follows:

• id - primary key,
• name - name of the Markov statistics file (displayed in WebAdmin),
• path - the real name of the .hcstat2 file,
• time - time the file was added to the system,
• deleted - flag (0/1) saying if the file was deleted.

7.11 fc_host

Is the table for storing information about active BOINC hosts (also referred to as
clients, or cracking nodes) which are currently working on a cracking job. Each
record represents an involvement of a host in a cracking job. In other words, the
table binds records in BOINC host table to the records in fc_job table. The
structure of the table is defined as follows:

73

• id - primary key,
• boinc_host_id - host ID in BOINC host table,
• power - cracking speed reported by the workunit most recently completed

by the host. It should be expressed in candidate passwords attempted per
second, not considering rules.

• job_id - ID of the job, the host is currently working on,
• status - the status of the host’s involvement. Allowed states are:
◦ 0 - benchmark - the host is waiting for, or working on a benchmark,
◦ 1 - normal - the hosts is working on a cracking job,
◦ 3 - done - the host has finished all work on the given job, and is not

participating on the job anymore,
◦ 4 - error - the host encountered an error during the computation,

• time - time the record was added to the database.

7.12 fc_host_activity

While fc_host table says which hosts are “currently working on” which job,
fc_host_activity says which host “should participate” in which job. The table
is strongly connected to host mapping section in Fitcrack WebAdmin. Every
time a user assings a host to a job, a new record in this table is created. The
structure of the table is defined as follows:

• id - primary key,
• boinc_host_id - host ID in BOINC host table,
• job_id - ID of the job, the host is mapped to.

7.13 fc_host_status

The table is used for displaying online/offline status of hosts in Fitcrack WebAd-
min. Each record represents a state of the host (cracking node). The structure
of the table is defined as follows:

• id - primary key,
• boinc_host_id - host ID in BOINC host table,
• last_seen - time the host was last seen online,
• deleted - flag (0/1) representing if the host is hidden from WebAdmin, or

not.

7.14 fc_job

The table is used to store cracking jobs. Each record represents a cracking job
with a defined attack mode, submode. Within a job, we have one or more hashes
(stored in fc_hash table) of the same hash type. The structure of the table is
defined as follows:

• id - primary key,

74

• attack_mode - attack mode (see section 3), a value from table 12,
• attack_submode - attack submode (see section 3), a value from table 12,
• hash_type - number of hashcat’s hash type,
• status - job status code, a value from table 13, possible transitions can be

seen in Figure 20,
• keyspace - the real number of candidate passwords,
• hc_keyspace - hashcat’s normalized keyspace (see section 2.3),
• indexes_verified - nuber of processed hashcat-indexes form keyspace,
• current_index - keyspace index from which the next workunit will start,

a number in range 0..(hc_keyspace − 1). In combination attack, it is the
offset in the second dictionary,

• current_index_2 - offset in the first dictionary (for combination attack),
or 0 if fragmenting of the left dictionary is not necessary,

• time - time the job was added to the database,
• name - name of the job,
• comment - optional user comment,
• time_start - timestamp defining when the job should start,
• time_end - timestamp defining then the job has to end,
• workunit_sum_time - total sum of host cracking times,
• seconds_per_workunit - time period for a workunit used in the adaptive

scheduling algorithm (see 2.4),
• charset1 - user-defined character set no. 1 in hex form,
• charset2 - user-defined character set no. 2 in hex form,
• charset3 - user-defined character set no. 3 in hex form,
• charset4 - user-defined character set no. 4 in hex form,
• rules - name of the file with password-mangling rules (for attack 01), or

NULL (for others),
• rule_left - left password-mangling rule (for attacks 11, 13),
• rule_right - right password-mangling rule (for attacks 11, 13),
• markov_hcstat - name of the Markov .hcstat2 file,
• markov_threshold - threshold liming the number of states processed within

the Markov model (0 = no limit aka “full brute-force”),
• grammar_id - ID of grammar from fc_pcfg_grammar,
• case_permute - flag (0/1) defining if case permutation is enabled or not,
• check_duplicates - flag (0/1) defining whether to check for duplicated

passwords or not,
• max_password_len - maximal length of passwords,
• min_password_len - minimal length of passwords,
• max_elem_in_chain - maximal number of elements in chain,
• min_elem_in_chain - minimal number of elements in chain,
• generate_random_rules - number of generated random rules,
• deleted - flag (0/1) defining if the job was hidden, or not,
• kill - flag (0/1) defining if the job was purged and BOINC workunits should

be stopped,
• batch_id - ID of the batch the job is assigned in, if any, from fc_batch,
• queue_position - position in queue when part of a batch, lesser numbers

go first

75

mode submode description
0 0 Basic dictionary attack
0 1 Dictionary attack with password-mangling rules
1 0 Basic combination attack
1 1 Combination attack with left rule
1 2 Combination attack with right rule
1 3 Combination attack with left and right rule
3 0 Basic brute-force attack
3 1 Brute-force attack with custom hcstat file using 2D Markov
3 2 Brute-force attack with custom hcstat file using 3D Markov
6 0 Hybrid attack: wordlist + mask
6 1 Hybrid attack: wordlist + left rule + mask
7 0 Hybrid attack: mask + wordlist
7 2 Hybrid attack: mask + wordlist + right rule
8 0 PRINCE attack
8 1 PRINCE attack with password-mangling rules
9 0 PCFG attack
9 1 PCFG attack with password-mangling rules

Table 12. Attack modes and submodes in Fitcrack

status name description
0 ready Job is ready to be started.
1 finished Job is finished, one or more hashes cracked.
2 exhausted Job is finished, no password found.
3 malformed Malformed due to incorrect input.
4 timeout Job was stopped due to exceeded time_end.
10 running Computation is in progress.
12 finishing All keyspace assigned, some hosts still compute.

Table 13. Job status codes in Fitcrack

status name description
0 benchmark The host is waiting for, or working on a benchmark.
1 normal The host is working on a cracking job.
2 - Currently unused and reserved for future use.
3 done The host has finished all work on the given job.
4 error The host encountered an error during the computation.

Table 14. Host status codes within a job

76

Fig. 20. State diagram of a job in the Fitcrack system

7.15 fc_job_dictionary

This allows Fitcrack to use multiple dictionaries within a dictionary or a com-
bination attack. Generator subsystem (see section 4.13) loads all dictionaries
which are not processed yet (current_index 6= keyspace in fc_dictionary),
and continuously creates fragments, as described in section 3. The structure of
the table is defined as follows:

• id - primary key,
• job_id - job ID in fc_jobs table,
• dictionary_id - dictionary ID in fc_dictionary table,
• current_index - current index in a dictionary,
• is_left - flag (0/1) defining it is a left dictionary in a combination attack.

7.16 fc_job_graph

The table is used for displaying progress graph in Fitcrack WebAdmin (see sec-
tion 4.2). Each record represents a point in the graph. The structure is defined
as follows:

• id - primary key,
• progress - job progress as a double between 0 and 1,
• job_id - job ID from fc_job table,
• time - time the point was added to the graph.

77

7.17 fc_job_status

The table is used to keep track of status changes for each job. The structure of
the table is defined as follows:

• id - primary key,
• job_id - id of the job, from fc_job,
• status - the new status,
• time - the time the status change was recorded.

7.18 fc_mask

The table stores password masks which are used in a brute-force attack and
combination attacks, as described in section 3. Each record represents a single
password mask. The structure of the table is defined as follows:

• id - primary key,
• job_id - job ID from fc_job table,
• mask - the password mask,
• current_index - keyspace index from which the next workunit will start,

a number in range 0..(hc_keyspace− 1).
• keyspace - the real number of password candidates generated from the

mask,
• hc_keyspace - hashcat’s keyspace of the mask.

7.19 fc_masks_set

Since the WebAdmin allows to import and export set of masks in the form of
text files with .hcmask extension, it is necessary to store information about mask
files present in the system. Each record corresponds to a single mask file located
in COLLECTIONS_ROOT/masks directory. The structure of the table is defined as
follows:

• id - primary key,
• name - name of the mask set (displayed in WebAdmin),
• path - the real name of the mask set file,
• time - time the mask set was added to the system,
• deleted - flag (0/1) saying if the mask set file was deleted.

7.20 fc_notification

To inform the user about important events (e.g. cracking job is finished, etc.),
Fitcrack uses a system of notifications which are display in WebAdmin. Each
record in the table represents a single notification. The structure of the table is
defined as follows:

• id - primary key,

78

• user_id - ID of a recipient (in fc_user table) of the noficitaion,
• source_type - type of the source (0 = job, others not used yet),
• source_id - ID of the source, e.g. job ID from fc_job,
• old_value - original value (for notifications about value change),
• new_value - new value (for notifications about value change),
• seen - flag (0/1) saying if the recipient has seen the notification,
• time - time the notification was created in the system.

7.21 fc_pcfg_grammar

This table servers as a storage for grammars in PCFG attacks (see section 3.5).
Each such grammar has an entry in this table with its essential information.

• id - primary key,
• name - name of the PCFG grammar file (displayed in WebAdmin),
• path - path to the PCFG grammar,
• keyspace - number of possible passwords that can be generated from this

grammar,
• time_added - timestamp of adding a grammar to the system,
• deleted - flag (0/1) saying if the grammar was deleted.

7.22 fc_pcfg_preterminals

The preterminals in PCFG attack are generated by the PCFG Manager (see
section 3.5) on-the-fly. However, when a workunit is not finished by a certain
host, we need to duplicate such a workunit to be done by a different host. PCFG
Manager is not capable of returning to a state of previous workunit. Therefore,
we have to store the preterminals in a separate table to be used to duplicate
such unfinished workunit.

• id - primary key,
• job_id - ID of the job which these preterminals belong to,
• workunit_id - ID of the original workunit,
• preterminals - preterminal payload in the format specified by PCFG Man-

ager.

7.23 fc_protected_file

Since Fitcrack WebAdmin also supports password-protected files (e.g. encrypted
containers) as an input, it is necessary to store them in the database before the
files are processed by XtoHashcat tool (see section 4.6). Each record in the table
represents a single protected file. The structure of the table is defined as follows:

• id - primary key,
• name - name of the protected file (displayed in WebAdmin),
• path - the real name of the protected file,
• hash - hash exported from the file by XtoHashcat,
• hash_type - hashcat’s number defining the type of hash,
• time - time the protected file was added to the system.

79

7.24 fc_role

Each user of Fitcrack WebAdmin is assigned a role. The role defines user’s per-
missions - what the used is allowed to do. Each record represents a role defined
by ID, name and a list of permission flags. The structure of the table is defined
as follows:

• id - primary key,
• name - name of the role (e.g. administrator),
• MANAGE_USERS - flag (0/1) allowing the user to manage users and

roles,
• ADD_NEW_JOB - flag (0/1) allowing to add new jobs,
• UPLOAD_DICTIONARIES - flag (0/1) allowing the user to add new

password dictionaries to the system,
• VIEW_ALL_JOBS - flag (0/1) allowing the user to view all jobs,
• EDIT_ALL_JOBS - flag (0/1) allowing the user to edit all jobs,
• OPERATE_ALL_JOBS - flag (0/1) allowing the user to operate (start,

stop, restart, etc.) all jobs,
• ADD_USER_PERMISSIONS_TO_JOB - flag (0/1) allowing the

user to add job-specific permissions (NOTE: not implemented yet !).

7.25 fc_rule

In dictionary attack (see 3.1), the user can select a ruleset. Each ruleset has
the form of file containing a list of password-mangling rules. On client-side the
rules are applied to all candidate passwords. Each record in the table defines
a single file with password-mangling rules. The structure of the table is defined
as follows:

• id - primary key,
• name - name of the ruleset (displayed in WebAdmin),
• path - the real name of the ruleset file,
• count - number of rules in the file,
• time - time the ruleset was added to the system,
• deleted - flag (0/1) saying if the ruleset was deleted.

7.26 fc_server_usage

The table is used to store server resource monitoring data. The structure of the
table is defined as follows:

• id - primary key,
• time - the time the data was recorded,
• cpu - CPU usage (%),
• ram - memory usage (%),
• net_recv - network card downlink rate (kbps),
• net_sent - network card uplink rate (kbps),
• hdd_read - disk reads (kbps),
• hdd_write - disk writes (kbps).

80

7.27 fc_settings

This table contains global settings of the Fitcrack server. The settings define
the behavior for creating and handling cracking jobs, as well as default values of
various job parameters. The structure of the table is defined as follows:

• id - primary key,
• default_seconds_per_workunit - number of seconds (default: 3600)

specifying the default value for seconds_per_workunit job parameter,
• workunit_timeout_factor - the number (default: 1) multiplying the worku-

nit timeout - the time after a workunit is considered failed (and re-assigned),
if no result is received.

• hw_temp_abort - temperature threshold (default: 90) when to abort
cracking,

• bench_all - flag (0/1, default: 1) - defining if the newly-connected hosts
should perform the complete benchmark, as described in section 6,

• distribution_coefficient_alpha - maximum percentage (default: 0,1) of
the remaining keyspace that can be assigned with a single workunit unless
it would be below the minimum,

• t_pmin - absolute minimum seconds (default: 20) per workunit (including
the start of hashcat, etc.), prevents creation of extremely small workunits,

• ramp_up_workunits - flag (0/1, default: 0) defining if smaller workunits
should be created at start - the size increases until the solving time hits the
“Time per workunit” value,

• ramp_down_coefficient - minimum fraction of “Time per workunit” that
can be created; influences the size of workunits at the end of the job; the
lower the value, the smaller the size workunits at the end: 1.0 means no ramp
down, 0.0 ramp down is limited only by tpmin,

• verify_hash_format - flag (0/1, default: 1) defining if WebAdmin should
verify the format of input hashes using HashValidator tool (see section ??),

7.28 fc_template

The table is used to store job templates saved in Fitcrack WebAdmin. Each
record represents a named template with saved state from the Add Job form.
The structure of the table is defined as follows:

• id - primary key,
• name - name of the template,
• created - timestamp of when the template was created,
• template - serialized form data stored as JSON.

7.29 fc_user

This table is used to store accounts of users who have access to Fitcrack We-
bAdmin. Each record represents a single user account with a given username,
e-mail, password, and role. The structure of the table is defined as follows:

81

• id - primary key,
• username - name of the user,
• password - hash of user password created using PBKDF2 with 50000 iter-

ations of SHA-256 algorithm,
• mail - e-mail address of the user,
• role_id - ID of user’s role (from fc_role table),
• deleted - flag (0/1) saying if the user was deleted.

7.30 fc_user_permissions

The table is designed to store per-job (non-global) user permissions. Each record
represents a permission of a user to do specific operation with a specific job. The
owner flag also denotes the user who created the job. This user is the only one
allowed to assign permissions in this table for their job. The structure of the
table is defined as follows:

• id - primary key,
• job_id - ID of the job (from fc_job) which is operated,
• user_id - ID of the user (from fc_user),
• owner - flag (0/1) denoting the user created this job,
• view - flag (0/1) allowing the user to view the job,
• modify - flag (0/1) allowing the user to modify the job,
• operate - flag (0/1) allowing the user to operate the job.

7.31 fc_workunit

In Fitcrack, a workunit is a single piece of cracking work. Workunits are cre-
ated continuously by the Generator daemon. Every workunit belongs to a job
from which the workunit was created. Every record in fc_workunit table is con-
nected to an existing record in BOINC workunit table. Each record represents
a workunit created within a given job. The structure of the table is defined as
follows:

• id - primary key,
• job_id - ID of a job in fc_job table,
• workunit_id - ID of a record in BOINC workunit table,
• host_id - ID of a host to which the workunit is assigned,
• boinc_host_id - BOINC ID of the host,
• start_index - starting password index from the job keyspace (imin value

from section 2.3); defines where the computation starts; in combination at-
tack, the value represents the offset in the second dictionary,

• start_index_2 - offset for the first dictionary in combination attack (see
section 3.2),

• hc_keyspace - hashcat’s keyspace of the workunit,
• progress - host’s progress on the workunit (value between 0 and 1),
• mask_id - ID of a mask, if used,

82

• dictionary_id - ID of a dictionary, if used,
• duplicated - flag (0/1) defining if the workunit was duplicated due to some

problems during computation,
• duplicate - if duplicated=1, contains the ID of the original workunit,
• time - time the workunit was added to the database,
• cracking_time - time spend by the host by computing the workunit,
• retry - flag (0/1) defining if it is a re-assigned workunit,
• finished - flag (0/1) defining if the workunit was completed.

83

8 Conclusion

Fitcrack is a software system for distributed password cracking, also referred
to as password recovery. It uses BOINC as a framework for task-distribution,
and hashcat as the client-side cracking engine. The technical report described
the basic principles of hash cracking, task distribution, and most importantly -
described the design of the proposed system.

All other relevant information is located on Fitcrack website49. The most
recent version of Fitcrack is located on NES@FIT GitHub page50

References

[1] Adobe Systems Incorporated. Document management — Portable docu-
ment format — Part 1: PDF 1.7. 32000-1:2008. Geneva, Switzerland: ISO,
July 2008.

[2] D. P. Anderson. “BOINC: a system for public-resource computing and
storage”. In: Grid Computing, 2004. Proceedings. Fifth IEEE/ACM Inter-
national Workshop on. Nov. 2004, pp. 4–10.

[3] Corel Corporation. AES Encryption Information: Encryption Specification
AE-1 an AE-2. Version 1.04. Jan. 2009.

[4] Peter Gazdík. “Use of Heuristics for Password Recovery with GPU Acceler-
ation”. Czech. Bachelor’s thesis. Brno, CZ: Faculty of Information Technol-
ogy, Brno University of Technology, 2015. url: http://www.fit.vutbr.
cz/study/DP/BP.php?id=18210.

[5] Seymour Ginsburg. The Mathematical Theory of Context Free Languages.
McGraw-Hill Book Company, 1966.

[6] Shiva Houshmand, Sudhir Aggarwal, and Randy Flood. “Next Gen PCFG
Password Cracking.” In: IEEE Trans. Information Forensics and Security
10.8 (2015), pp. 1776–1791.

[7] Radek Hranický, Martin Holkovič, Petr Matoušek, and Ondřej Ryšavý.
“On Efficiency of Distributed Password Recovery”. In: The Journal of Dig-
ital Forensics, Security and Law 11.2 (2016), pp. 79–96. issn: 1558-7215.
url: http://www.fit.vutbr.cz/research/view_pub.php.cs?id=
11276.

[8] Radek Hranický, Martin Holkovič, Petr Matoušek, and Ondřej Ryšavý.
“On Efficiency of Distributed Password Recovery”. In: The Journal of Dig-
ital Forensics, Security and Law 11.2 (2016), pp. 79–96. issn: 1558-7215.
url: http://www.fit.vutbr.cz/research/view_pub.php?id=11276.

[9] Radek Hranický, Filip Lištiak, Dávid Mikuš, and Ondřej Ryšavý. “On
Practical Aspects of PCFG Password Cracking”. In: Data and Applications
Security and Privacy XXXIII. Ed. by Simon N. Foley. Cham: Springer
International Publishing, 2019, pp. 43–60. isbn: 978-3-030-22479-0.

49 https://fitcrack.fit.vutbr.cz/
50 https://github.com/nesfit/fitcrack

84

http://www.fit.vutbr.cz/study/DP/BP.php?id=18210
http://www.fit.vutbr.cz/study/DP/BP.php?id=18210
http://www.fit.vutbr.cz/research/view_pub.php.cs?id=11276
http://www.fit.vutbr.cz/research/view_pub.php.cs?id=11276
http://www.fit.vutbr.cz/research/view_pub.php?id=11276
https://fitcrack.fit.vutbr.cz/
https://github.com/nesfit/fitcrack

[10] Radek Hranický, Petr Matoušek, Ondřej Ryšavý, and Vladimír Veselý.
“Experimental Evaluation of Password Recovery in Encrypted Documents”.
In: Proceedings of ICISSP 2016. Roma, IT: SciTePress - Science and Tech-
nology Publications, 2016, pp. 299–306. isbn: 978-989-758-167-0. url: http:
//www.fit.vutbr.cz/research/view_pub.php.cs?id=11052.

[11] Radek Hranický, Dávid Mikuš, and Lukáš Zobal. Lámání hesel pomocí
pravděpodobnostních gramatik. Czech. Tech. rep. FIT-TR-2019-03, Brno,
CZ, 2019, p. 19. url: https://www.fit.vut.cz/research/publication/
12140.

[12] Radek Hranický, Dávid Mikuš, and Lukáš Zobal. Lámání hesel pomocí
pravděpodobnostních gramatik. Czech. Tech. rep. FIT-TR-2019-03, Brno,
CZ, 2019, p. 19. url: https://www.fit.vut.cz/research/publication/
12140.

[13] Radek Hranický, Lukáš Zobal, Vojtěch Večeřa, and Petr Matoušek. “Dis-
tributed Password Cracking in a Hybrid Environment”. In: Proceedings of
SPI 2017. Brno, CZ: University of defence in Brno, 2017, pp. 75–90. isbn:
978-80-7231-414-0. url: http://www.fit.vutbr.cz/research/view_
pub.php?id=11358.

[14] Radek Hranický, Lukáš Zobal, Vojtěch Večeřa, and Matúš Múčka. The
architecture of Fitcrack distributed password cracking system. Tech. rep.
FIT-TR-2018-03, Brno, CZ, 2018, p. 61. url: https://www.fit.vut.cz/
research/publication/11887.

[15] Ryan Lim. “Parallelization of John the Ripper (JtR) using MPI”. In: Ne-
braska: University of Nebraska (2004).

[16] Dávid Mikuš. “Password Recovery of RAR, BZIP, and GZIP Archives
Using GPU”. Czech. Bachelor’s thesis. Brno, CZ: Faculty of Information
Technology, Brno University of Technology, 2015. url: http://www.fit.
vutbr.cz/study/DP/BP.php?id=18740.

[17] Arvind Narayanan and Vitaly Shmatikov. “Fast Dictionary Attacks on
Passwords Using Time-space Tradeoff”. In: Proceedings of the 12th ACM
Conference on Computer and Communications Security. CCS ’05. Alexan-
dria, VA, USA: ACM, 2005, pp. 364–372. isbn: 1-59593-226-7. doi: 10.
1145/1102120.1102168. url: http://doi.acm.org/10.1145/1102120.
1102168.

[18] Andy Pippin, Brent Hall, and Wilson Chen. Parallelization of John the
Ripper Using MPI (Final Report). Tech. rep. 2006.

[19] Niels Provos and David Mazieres. “A Future-Adaptable Password Scheme.”
In: USENIX Annual Technical Conference, FREENIX Track. 1999, pp. 81–
91.

[20] RAR file format. [Online; accessed 2017-01-03]. url: http://acritum.
com/winrar/rar-format.

[21] R. Rivest. The MD5 Message-Digest Algorithm. Tech. rep. 1321. Updated
by RFC 6151. Apr. 1992. url: http://www.ietf.org/rfc/rfc1321.txt.

[22] V. L. Thing and H.-M. Ying. “Making a faster cryptanalytic time-memory
trade-off”. In: Advances in Cryptology (2003), pp. 617–630.

85

http://www.fit.vutbr.cz/research/view_pub.php.cs?id=11052
http://www.fit.vutbr.cz/research/view_pub.php.cs?id=11052
https://www.fit.vut.cz/research/publication/12140
https://www.fit.vut.cz/research/publication/12140
https://www.fit.vut.cz/research/publication/12140
https://www.fit.vut.cz/research/publication/12140
http://www.fit.vutbr.cz/research/view_pub.php?id=11358
http://www.fit.vutbr.cz/research/view_pub.php?id=11358
https://www.fit.vut.cz/research/publication/11887
https://www.fit.vut.cz/research/publication/11887
http://www.fit.vutbr.cz/study/DP/BP.php?id=18740
http://www.fit.vutbr.cz/study/DP/BP.php?id=18740
https://doi.org/10.1145/1102120.1102168
https://doi.org/10.1145/1102120.1102168
http://doi.acm.org/10.1145/1102120.1102168
http://doi.acm.org/10.1145/1102120.1102168
http://acritum.com/winrar/rar-format
http://acritum.com/winrar/rar-format
http://www.ietf.org/rfc/rfc1321.txt

[23] Vojtěch Večeřa. “Password Recovery of ZIP Archives Using GPU”. Czech.
Bachelor’s thesis. Brno, CZ: Faculty of Information Technology, Brno Uni-
versity of Technology, 2015. url: http://www.fit.vutbr.cz/study/DP/
BP.php?id=18211.

[24] Charles Matthew Weir. “Using probabilistic techniques to aid in password
cracking attacks”. PhD thesis. Florida State University, 2010.

[25] M. Weir, S. Aggarwal, B. d. Medeiros, and B. Glodek. “Password Cracking
Using Probabilistic Context-Free Grammars”. In: 2009 30th IEEE Sympo-
sium on Security and Privacy. May 2009, pp. 391–405. doi: 10.1109/SP.
2009.8.

[26] X. Wu, J. Hong, and Y. Zhang. “Analysis of OpenXML-based office en-
cryption mechanism”. In: 2012 7th International Conference on Computer
Science Education (ICCSE). July 2012, pp. 521–524. doi: 10.1109/ICCSE.
2012.6295128.

[27] Lukáš Zobal. “Microsoft Office Password Recovery Using GPU”. Czech.
Bachelor’s thesis. Brno, CZ: Faculty of Information Technology, Brno Uni-
versity of Technology, 2015. url: http://www.fit.vutbr.cz/study/DP/
BP.php?id=18341.

86

http://www.fit.vutbr.cz/study/DP/BP.php?id=18211
http://www.fit.vutbr.cz/study/DP/BP.php?id=18211
https://doi.org/10.1109/SP.2009.8
https://doi.org/10.1109/SP.2009.8
https://doi.org/10.1109/ICCSE.2012.6295128
https://doi.org/10.1109/ICCSE.2012.6295128
http://www.fit.vutbr.cz/study/DP/BP.php?id=18341
http://www.fit.vutbr.cz/study/DP/BP.php?id=18341

	The architecture of Fitcrack distributed password cracking system, version 2
	Radek Hranický, Lukáš Zobal, Vojtěch Večeřa, Matúš Múčka, Adam Horák, Dávid Bolvanský, Tomáš Ženčák
	Introduction
	Terminology
	Structure of the document

	Overview
	Password cracking process
	The cracking network
	Task distribution
	Index-based distribution
	Jobs and workunits
	The keyspace in hashcat

	Adaptive scheduling
	The architecture of client and server

	Attack modes
	Dictionary attack
	Password-mangling rules
	Distributed dictionary attack

	Combination attack
	Brute-force attack
	Password mask
	Markov chains
	Distributed brute-force attack

	Hybrid attacks
	PCFG attack
	The use of probabilistic context-free grammars
	Distributed PCFG attack

	PRINCE attack
	Basic algorithm components
	Distributed PRINCE attack

	Server-side subsystems
	Server directory structure
	WebAdmin
	WebAdmin frontend
	Job creation and management
	Asset library management
	System and user administration

	WebAdmin backend
	hashcat
	XtoHashcat
	hcstat2gen
	Monitoring System Usage
	PCFG Monitor
	PCFG Manager server
	Princeprocessor
	pwd_dist
	Generator
	Validator
	Assimilator
	Trickler
	Transitioner
	Scheduler
	Feeder
	File deleter

	Client-side subsystems
	BOINC Client
	BOINC Manager
	Runner
	Pre-compilation
	Basic operation
	Attack specific configuration
	Host specific configuration

	hashcat
	PCFG Manager client
	Princeprocessor

	Client-server communication
	Files transferred from server to client
	Files transferred from client to server
	Trickle messages

	MySQL database
	The overview of BOINC tables
	The overview of Fitcrack tables
	fc_batch
	fc_benchmark
	fc_bin
	fc_bin_job
	fc_charset
	fc_dictionary
	fc_hash
	fc_hcstats
	fc_host
	fc_host_activity
	fc_host_status
	fc_job
	fc_job_dictionary
	fc_job_graph
	fc_job_status
	fc_mask
	fc_masks_set
	fc_notification
	fc_pcfg_grammar
	fc_pcfg_preterminals
	fc_protected_file
	fc_role
	fc_rule
	fc_server_usage
	fc_settings
	fc_template
	fc_user
	fc_user_permissions
	fc_workunit

	Conclusion
	References

