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Abstract—The synergy between advancements in medicine,
ultrasound modeling, and high performance computing has lead
to emergence of many new applications of biomedical ultrasound.
These applications, ranging from HIFU treatment planning to
(photo-)acoustic imaging, are requiring accurate large scale
ultrasound simulations while putting significant pressure on the
cost and time to solution.

The presented article discusses progress in the development
of our k-space pseudo-spectral fullwave non-linear ultrasound
simulation code across an assortment of modern accelerated
cluster architectures.
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I. INTRODUCTION

Many emerging applications of ultrasound in medicine re-

quire large scale simulations of ultrasound wave propagation in

soft tissue. Typical example of an ultrasound based treatment

procedure is High Intensity Focused Ultrasound (HIFU) [1]

used for noninvasive tumor removal by focusing mechanical

energy of the ultrasound to a precise point associated with

tissue heating. Another example is photo-acoustic imaging

[2] where the tissue structure (image) is reconstructed from

a recording of the ultrasound waves produced by rapid light

energy absorption in the tissue.

Both of these applications require simulations in domains

of up to 25 cm× 25 cm× 25 cm with frequencies in a MHz

range and medium with sound speeds around 1500m/s.
Additionally, in the case of HIFU, the frequencies up to

15MHz have to be modeled due to nonlinearity of the wave

propagation at high intensities. In both applications, the stress

at the time to solution and the cost is significant as multiple

simulations are needed for each patient (HIFU is an optimiza-

tion problem while photo-acoustic reconstruction is an inverse

problem).

My Ph.D. work raises to these challenges and sets up a list

of following goals:

• Find a suitable mathematical model of the ultrasound

wave propagation in soft tissue.

• Identify the most favorable supercomputer architectures.

• Further optimize the code for selected architectures

(while accounting for future hardware).

• Generalize the developed techniques to broader a class of

problems.

This paper describes the progress made towards the routine

employment of large scale ultrasound simulations required

for various medical procedures. The paper will first briefly

describe challenges associated with rise of accelerated clusters.

Second, novel domain decomposition method used for the

formulation of pseudo-spectral time-domain methods suitable

for these accelerated clusters will be detailed. Next, this

technique will be compared with the traditional approach

on a CPU-based cluster and results achieved across various

architectures will be presented. Finally, practical benefits of

our work will be shown and important conclusions drawn.

Challenges of Accelerated Clusters

Most modern HPC clusters heavily rely on acceleration or

specialized architectures to attain their performance, and more

importantly, power efficiency goals. Putting aside challenges

associated with the efficient computation on accelerators (wide

SIMD units, memory coherency and threading models, etc.),

the shift towards accelerated computing presents new platform

wide challenges. The applications architecture have to adapt

to changes in communication and data management. Figure 1

shows a typical accelerated cluster. Note that each accelerator

has its own memory, which is often represented as a separate

address space. The ratio between the local memory bandwidth

and inter-node interconnect bandwidth is getting significantly

worse [3].
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Figure 1: An example of accelerated cluster architecture.
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will compare the CoolMUC3 cluster based on Intel Xeon Phi

Knight’s Landing (KNL) many core architecture, the Salomon

cluster accelerated by Intel Xeon Phi Knight’s Corner (KNC),

Piz Daint accelerated with Nvidia P100 GPUs, and conclude

with a few remarks on clusters with dense multi-GPU nodes.

Many-Core Architectures

The main appeal of many-core architectures in the form

of the Intel Many Integrated Cores (MIC) architectures is

their apparent similarity to traditional multi-core processors.

In theory, this means that the code optimized for CPUs should

scale nicely on MICs without a need for significant changes.

Therefore, a speedup of around 4× when using Salomons

KNC accelerators, and 7 to 10× on CoolMUC3s KNLs in one

to one comparison to the Salomons 12-core CPU is expected.
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Figure 4: Strong scaling on KNC and KNL clusters.

In practice, we observed that the KNCs are 2.2 to 4.3×

slower than the CPU baseline (see Fig. 4). Although the

computation on KNCs involves some additional intra-node

communication (accelerators are connected via PCI-E 2.0

×16), this adds only about 50% of the total communication

time. Most of the performance is lost in local 3D FFT

computations which are known to perform very poorly on this

MIC architecture. KNC achieves no more than 50% of 12-

code CPUs performance in this task. Our investigation points

to problems with the memory hierarchy and the coherency

protocols of KNC architecture.

Intel Xeon Phi KNL achieves a speedup of 1.7× on average

compared to CPUs. This result can be explained by significant

improvements of on-chip interconnect (a grid based topology)

and an increase in the memory bandwidth. It should also be

noted that the CoolMUC3 cluster uses an OmniPath intercon-

nect which is directly accessible by each KNL.

Despite these results, the scaling factor on both clusters

remains above 1.5, which confirms the propsed communication

strategy to work as expected. A detailed analysis of the code

behavior on Intel MIC platforms was published in [11].

GPU Accelerated Clusters

GPUs are perhaps the most proliferate form of acceleration

in modern HPC clusters. Their high parallel efficiency stems

from a very different memory coherency and programming

models. Although this may make the migration of some

algorithms difficult, it is not the case for our simulation code

which is data intensive and has a regular workload.
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Figure 5: Strong and weak scaling on the Piz Daint cluster.

To evaluate the performance and scaling on a GPU accel-

erated cluster, the Piz Daint cluster located in Switzerland

was employed. Piz Daint comprises of 5704 compute nodes,

each of which equipped with a single NVIDIA P100 GPU

accelerator. Comparing one accelerator to a single 12-core

CPU used in Salomon yields an 8× speedup for our simulation

workload. Figure 5 shows the scaling on the Piz Daint cluster

reaches a scaling factor of 1.5, and an average speedup of 4.8

over the Salomon CPUs (in comparison on socket/GPU level).

The key components enabling these results are NVIDIA P100

GPUs in combination with Piz Daints interconnect based on

the Aries ASIC in a Dragonfly network topology [12], which

provides excellent connection to neighboring nodes.

Multi-GPU Dense Nodes

Recently, the supercomputer architectures begin a transition

to multi-GPU compute nodes with a special high-bandwidth

interconnects between GPUs. This brings new challenges to

efficient intra-node GPU-to-GPU communication which has to

be addressed as well. In practice, this means the elimination

of the communication through the CPU (such as message

passing) and transition to direct communications between

GPUs (such as CUDA Peer-to-Peer transfers).
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Figure 6: Message passing versus CUDA P2P communication

(PCI-E 3.0 based server with 8 Tesla P40 GPUs.)

In this area, we first optimized inter-GPU communications

in a traditional dual-socket server with 8 Nvidia Tesla P40

GPUs attached by PCI-E 3.0 ×16. Figure 6 shows up to 3.6×

speedup achieved by using direct P2P communication between

GPUs without involving CPU.

Finally, to estimate the potential of dense nodes with fast

P2P interconnects between accelerators, a series of experi-

ments on an Nvidia DGX-2 server was performed. DGX-

2 is a dual socket machine with 24 cores per socket and
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1.5TB of system memory. The machine is accelerated by

16 Nvidia V100 GPUs. These GPUs are interconnected via

Nvidia NVlink 2 being able to achieve 300GB/s bidirectional

bandwidth between two GPUs, and 1.98TB/s bisection band-

width across all 16 GPUs.
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Figure 7: Nvidia DGX-2: Simulation scaling and breakdown.

The results (Fig. 7) indeed show almost 10× faster inter-

GPU interconnect yielding a massive reduction in time spent

on the overlap exchanges. An average scaling factor is 1.6,

which is mostly due to additional computational work and

not the communication. The comparison with the results from

Piz Daint cluster (Fig. 5) shows that we achieved about 2×

speedup when all 16 GPUs are in use. Please note that a single

V100 is not much faster than a single P100. The speedup is

therefore mostly caused by a superior interconnect in DGX-2.

V. CONCLUSION

My Ph.D. work has shown that the proposed ultrasound

wave propagation model optimized on modern clusters can

reach up to 5× speedup on the same hardware, and up to 50×

when a GPU accelerated cluster is available. Further, I have

shown that the solution is scalable to clusters with hundreds

of GPUs, and is ready for recently introduced clusters with

multi-GPU compute nodes. Finally, the benefits of ultra-dense

GPU accelerated compute servers with high-bandwidth GPU-

to-GPU interconnect have been demonstrated.

Let us consider a real-world photo-acoustic tomography

image reconstruction on a domain of 20 cm× 20 cm× 20 cm

with the maximum frequency of 2MHz requiring 50 sim-

ulations. Each simulation needs over 5500 time-steps on a

domain of 10243 grid points. My work proves that it is

possible to reduce the computation time from 88 hours on

32 dual-socket nodes of Salomon to 35 hours on a single 8

GPU server equipped with PCI-E 3.0. More significantly, the

computational cost can be reduced by a factor of 4 at the same

time. Our solution can further reduce the reconstruction time

down to about 8 hours while maintaining the price when a

DGX-2 server is used. This is a stunning breakthrough for

photoacoustic imaging since four such machines can cover

the computing needs of a medium-size breast cancer medical

centre.

Achievement Summary

To achieve these results, a novel approach to the decompo-

sition of PSTD methods has been introduced. The numerical

performance of this approach has been improved by optimiza-

tion of bell functions used to restore the local Fourier basis.

Further, the simulation code and communication patterns have

been optimized for various accelerated cluster architectures

achieving scaling to 6144 CPU cores, 256 Intel Xeon Phi

(KNC) accelerators or 1024 GPUs.

Future Work

The presented results can be adapted to other PSTD codes

such as the elastic wave propagation simulation. It also allows

for novel approaches of model coupling in hybrid fluid-elastic

models and models with spatially varying resolution.
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