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Abstract—Finding a problem cause in network infrastructure
is a complex task because a fault node may impair seemingly in-
dependent components. On the other hand, most communication
protocols have built-in error detection mechanisms. In this paper,
we propose to build a system that automatically diagnoses
network services and applications by inspecting the network
communication automatically. We model the diagnostic problem
using a fault tree method and generate a set of rules that identify
the symptoms and link them with possible causes. The adminis-
trators can extend these rules based on their experiences and
the network configuration to automatize their routine tasks.
We successfully deployed the proof-of-concept tool and found
interesting future research topics.

Keywords–Network diagnostics; passive network monitoring;
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I. INTRODUCTION

Network infrastructure and applications are complex, prone
to cyber attacks, outages, performance problems, misconfigu-
ration errors, and problems caused by software or hardware
incompatibility. All these problems may affect network perfor-
mance and user experience [1] which may cause fatal problems
in critical networks (e.g., E-health, Vanet, Industrial IoT).

Many network administrators do not have the proper
tools or knowledge to diagnose and fix network problems
effectively, and they require an automated tool to diagnose
these errors [2]. Zeng et al. [3] provide a short survey
on network troubleshooting from the administrators’ viewpoint
identifying the most common network problems: reachability
problems, degraded throughput, high latency, and intermittent
connectivity. The consulted network administrators expressed
the need for a network monitoring tool that would be able
to identify such problems.

This paper proposes a system which creates diagnostic
information only by performing passive network traffic moni-
toring and packet-level analysis. Previous research and devel-
opment provided tools for helping administrators to diagnose
faults [4] and performance problems [5]. However, these tools
either require installation of agents on hosts, active monitoring,
or providing rich information about the environment.

One of the most common ways of analyzing network
traffic is by using a network packet analyzer (e.g., Wireshark).
The analyzer works with captured network traffic (PCAP
files) and displays structured information of layered protocols

contained in every packet (encapsulated protocols, protocol
fields). Administrators work with this information, check trans-
ferred content and compare the data with expected values.
This process, done manually, is time-consuming and requires
a good knowledge of network protocols and technologies.

The main contribution of this paper is a proposal of a tool
for automatic diagnoses of network related problems from
network communication only. Our approach tries to imitate
a diagnostic process of a real administrator using the fault tree
method and a popular packet parsing tool tshark. We have also
implemented a proof-of-concept implementation to confirm
the viability of the approach.

The paper is organized as follows. Section 2 defines
the problem statement and research questions. Section 3
discusses related work and describes diagnostic approaches.
Our solution consists of three stages and is introduced in Sec-
tion 4. Section 5 instructs network administrators how to use
our system (proof-of-concept) and shows how we model diag-
nostic knowledge. Finally, Section 6 is the conclusion which
summarizes the current state and proposes future works.

II. RESEARCH QUESTIONS

Our primary goal is to design a system that infers possible
causes accountable for network related problems, such as ser-
vice unreachability or application errors. Offering a list of ac-
tions for fixing the errors’ cause is the secondary and optional
goal. All this information is gathered only from captured
network communication.

In our work, we focus on enterprise networks that have
complex networking topologies, usually consisting of hetero-
geneous devices. We expect that the administrators will collect
network communication on appropriate places and validate its
consistency before the analysis.

To achieve our goal, we need to find answers
to the following research questions:

1) How to model different network faults in a suitable way
for implementation in a diagnostic system? Reachability,
application specific, and device malfunctioning problems
can cause various networking issues. We need to have
a unified approach for modeling these problems to iden-
tify the symptoms and link them with root causes.

2) What information should be extracted from the captured
network communication to identify symptoms of failures?



In our case, we can passively access the communica-
tion in the monitored network and extract the necessary
data to detect possible symptoms. An approach that can
efficiently detect the symptoms in terms of precision and
performance is needed.

3) How to identify the root cause of the problem, if we have
a set of identified symptoms? The core part of the diag-
nostic engine is to apply knowledge gathered from
observed symptoms to infer the possible root cause
of the observed problem. The result should provide the in-
formation in sufficient detail. For instance, if the process
on server crashed, then we would like to know this spe-
cific information instead of a more general explanation
(e.g., a host failure has occurred).

4) What list of actions can we give to the administrator
to fix the problems? Based on the observed symptoms and
the root cause, the system should be able to provide fixing
guidelines. These guidelines are supposed to be easy
to understand even for an inexperienced administrator.

III. RELATED WORK

A lot of research activities were dedicated to the diagnoses
of network faults. Various methods were proposed for different
network environments [4], in particular, home networks [6],
enterprise networks [7]–[10], data centers [5], backbone and
telecommunications networks [11], mobile networks [12], In-
ternet of Things [13], Internet routing [14] and host reach-
ability. Methods of network troubleshooting can be roughly
divided into the following classes:
Active methods use traffic generators to send probe packets

that can detect the availability of services or check
the status of applications [15]. Usually, generators create
diagnostic communication according to the test plan [7].
The responses are evaluated and provide diagnostic infor-
mation that may help to reveal device misconfiguration
or transient fail network states. Diagnostic probes intro-
duce extra traffic, which may pose a problem for large in-
stallations [10]. Also, active methods may rely on the de-
ployment of an agent within the environment to get
information about the individual nodes [8].

Passive methods detect symptoms from existing data sources,
e.g., traffic metadata [11], traffic capture files, network
log files [14], performance counters. Passive methods can
utilize the data provided by network monitoring systems.

Of course, the proposed systems also combine passive traf-
fic monitoring to detect faults with active probing to determine
the cause of failure. Identifying anomalies related to network
faults and linking them with possible causes can be done
by using one of the following approaches:
Inference-based approach uses a model to identify the depen-

dence among components and to infer the faults using
a collection of facts about the individual components [8],
[16].

Rule-based approach uses predefined rules to diagnose
faults [9]. The rules identify symptoms and determine
how these contribute to the cause. The rules may be orga-
nized in a collaborative environment for sharing knowl-
edge between administrators [6].

Classifier-based approach requires training data to learn
the normal and faulty states. The classifier can identify
a fault and its likely cause [17].

Network diagnostics based on traffic analysis can also
use methods proposed for anomaly detection as some types
of faults result in network communication anomalies.

Main contributions of our solution:

• automation of the tool Wireshark - Wireshark is a well-
known protocol analyzer but lacks any task automation;
• the result is well understandable - the result contains steps

which a real administrator would execute;
• easily extendable list of rules - the rules use Wireshark

display filter language [18].

IV. PROPOSED SYSTEM ARCHITECTURE

We have built a proof-of-concept expert system to ana-
lyze network traffic. The system combines rule-based
and inference-based approaches. We will not use a classifier-
based approach [19], because it requires too much training data
and only returns the root cause of the problem and not how it
relates to the detected symptoms. Another benefit of the rule-
based approach is that we can cover very specific situations
for which getting training data could be very problematic.

We are focusing purely on passive methods because ac-
tive methods are generating additional traffic into diagnosed
networks (which is not acceptable for us) and also because
this way, an administrator can perform an offline analysis
on a computer not connected to the diagnosed network.

The proposed system processes the input data in several
stages as shown in Figure 1. The first stage labeled as Protocols
Analyzer filters and decodes input packets using an external
tool. The second stage named Events Finder executes simple
rules to identify events significant from the diagnostics point
of view. In the third stage (Tree Engine), decision trees identify
the possible problem cause and create a diagnostic output. All
stages are easily extendable by the administrator who can add
new rules and definitions.

Our proposed approach can also use different data sources
(e.g., log files) as shown in Figure 1. Events Finder searches
through data using analyzers specific to each data source.
Additional analyzers could increase the diagnostic capability,
however in our research, we are focusing only on network data,
and we leave other possibilities for future research.

Events
Finder
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Protocols
Analyzer

diagnostics
data

PCAP
file
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analyzer

log files
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       (eg. log files)

Figure 1. Top level architecture design of all the proposed system stages.
The gray area represents optional extensions — additional data sources.

A. Protocols Analyzer
The first step in the processing pipeline is decoding cap-

tured network traffic in the PCAP format into a readable JSON
format. We employ the tool tshark, which is a command



line version of the widely-used network protocol analyzer
Wireshark. Because tshark follows the field naming convention
used by Wireshark, we can use Wireshark Display Filter
Expressions to select packet attributes. Tshark supports all
packet dissectors available in Wireshark. Using tshark brings
the following benefits:

• huge support of network protocols and when a new
protocol is created, community can implement parsers
very quickly and for free;

• adds tunneled, segmented and reassembled data support;
• tshark marks extracted data with the same names as dis-

played inside the Wireshark GUI. This allows a creation
of easy-to-read API for diagnostics;

B. Events Finder
Events finder aims to identify events useful for network

diagnosis (for example, a successful SMTP authentication
event). An event rule consists of two parts: a list of packet
filters and a list of assertions to express additional constraints.
Both filter expressions and assertions use Wireshark’s display
filter language. Using this language, the expressions can be first
tested in Wireshark before we use them in event finder rules.

The system evaluates the event rule as follows: (i) Each
packet filter returns a list of packets matching the filter.
(ii) Assertions are evaluated to select pairs of packets satisfying
the constraints. A result has the form of a collection of pairs
of packets, e.g., a rule that identifies DNS request-response
pairs asserts that the transaction ID in both the request and
response packets match. Assertion expressions use the display
filter language extended with basic mathematical operations.

The event rules have the declarative specification written
in YAML format. This format is described in subsection V-B.
Rules are organized into modules. New modules can be easily
added extending the rule database.

C. Tree Engine
The tree engine infers the possible error cause by evaluating

a decision tree that contains expert knowledge about supported
network protocols and services. Each node of the tree contains
a diagnostic question. Questions refer to events identified
by the Event Finder. Paths in the tree represent gathered knowl-
edge and lead to the possible cause of the problem. Along
the path, a diagnostic report is created to provide additional
information for experienced users. The diagnostic report is pro-
duced in a human-readable format, as well as in a machine
format useful for further processing or visualization.

The decision tree is comprised of the declarative specifica-
tion of tree nodes enriched by Python code. Injection of Python
code into the tree node definitions enables us to do complex
knowledge processing. The idea is to keep the declarative part
simple enough for most of the use-cases. The Python code
is needed for specific use-cases, where a custom processing
logic is necessary. The tree is defined using the YAML format
rules, and subsection V-A describe its syntax.

V. RULE SPECIFICATION

Diagnostic engine defines each protocol as a decision tree.
The tree consists of nodes representing administrator questions,
and edges representing answers to these questions. The edge

Administrator

Does the PCAP
contain an

SMTP protocol?

Did the user try
to authenticate?Did the server

successfully
welcome the

client? Did the server
return an error

code?NO
...

YES

YES

NO ...

...

Figure 2. A simple illustration of a binary decision tree. Administrator
diagnoses SMTP problem by checking questions in the predefined order.

can move the diagnostic process from one question to another
or finish the process with the discovered result.

The questions simulate thinking of a real administrator.
Typically, an administrator starts to search for certain net-
work packet values and after the search for them is finished,
the administrator searches for next values based on the result.
In our solution, each question can only have two answers:
success or fail. This yields a binary decision tree. Figure 2
shows an example of a small portion of the SMTP tree.

We need to convert the decision tree to a format under-
standable by our system. This conversion is split into two
steps: 1) defining tree nodes (Tree node rules) and 2) defining
conditions for choosing tree nodes (Event condition rules). The
following subsection describes the syntax for both tree node
rule and event condition rule. The reason why a node rule
does not contain a condition code directly is that multiple rules
would not be able to use the same condition code (reusability).

Conversion assigns a name to each node (label id). We
use the node names as labels for switching from one node
to another. Each node has a condition (condition rule id),
defined as an Event condition rule, used for choosing the next
diagnostic step. Each rule can have one or none success
and fail branch (branch code). Branches contain executable
Python code and the next node rule name. After the execution
of the Python code, the analysis switches to the next node.
Figure 3 shows the pseudocode for writing tree nodes.

1 label_id:
2 if (condition_rule_id):
3 success branch_code
4 else:
5 fail branch_code

Figure 3. Pseudocode for writing a tree node. Each node should have
a unique id, condition, and branch codes.

A. Tree Node Rules
Each rule consists of an event condition rule name which

should be executed, next states and blocks of Python code.
The Python code can process packet data, make logical deci-
sions and most importantly, generate diagnostic output. Instead
of writing the whole output inside these rules, the rule contains
only the name of the event. Each rule can switch to another
protocol rule to diagnose problems across several protocols,
e.g., if an SMTP communication is not detected, we will
check if there are any ICMP unreachable messages, failed TCP
connection attempts or incorrect DNS resolutions. Figure 4
shows an example of one rule defying the middle node from
the tree in Figure 2.



1 id : smtp d e t e c t e d # name of the rule
2 query : welcome ok ? # Events Finder rule
3 s u c c e s s :
4 s t a t e : c l i e n t welcomed # next state
5 code : | # Python code follows
6 event ("client_welcomed" )
7 f a i l :
8 s t a t e : check e r r o r # next state
9 code : | # Python code follows

10 event ("client_not_welcomed" )
Figure 4. Simple Tree Engine rule showing what should be done

if SMTP server welcomed the client or not.

B. Event Condition Rules
Rules in this section describe how the question is converted

into packet lookup functions. Each rule may look for several
independent packets, which are combined and checked if their
relation fulfills the assert condition. Each question returns
a list of tuples, where a tuple represents packets fulfilling
the assert condition. Figure 5 shows an example of a simple
rule for the question Did the server successfully welcome
the client? Section facts looks for any hello commands and
OK responses. The system puts founded packets which belong
together into touples based on the asserts section.

1 id : welcome ok ? # name of the rule
2 f a c t s : # which packets we are looking for
3 command: smtp . r e q . command i n {"HELO"
4 "EHLO"}
5 r e p l y : smtp . r e s p o n s e . code == "250"
6 a s s e r t s : # packets relation constrain
7 −command [ tcp . stream ]== r e p l y [ tcp . stream ]
8 −command [ tcp . ack ]== r e p l y [ tcp . seq ]
Figure 5. Example of SMTP rule for checking if the server welcomed

the client or not.

Figure 6. An example of diagnostic output for an SMTP error. After an error
552 is detected and translated into human-readable error description, the

system proposes a list of actions for fixing the error.

Before executing the diagnostic process, it is necessary
to define event names from the Tree engine rules. A defi-
nition is just a simple dictionary which contains a severity
and a description message. Part of the event description can
be a pointer to another dictionary, which translates error codes
to a human readable format. For example, instead of SMTP
error code 552, the message ”Requested mail actions aborted

Table 1. Supported protocols and amount of rules and success, warning,
error events which describe various protocol behavior situations.

Protocol Node rules Condition rules Events
Success Warning Error

DHCP 25 23 10 9 4
DNS 12 12 8 2 6
FTP 24 10 17 5 6
ICMP 4 2 0 0 4
IMAP 15 8 7 0 11
POP 21 7 8 5 10
SIP 38 22 15 1 8
SLAAC 8 7 1 5 2
SMB 27 25 20 4 5
SMTP 17 13 10 5 9
SSL 1 1 1 0 1
TCP 11 11 0 8 3

- Exceeded storage allocation” is displayed. After all rules
and events are defined, it is possible to execute the diagnostic
process. Figure 6 shows an example of one diagnostic output.

VI. CONCLUSION

This paper presents a proposal of a system intended
for troubleshooting network problems based on a passive
network traffic analysis. The primary goal is to automate
network diagnostics to help network administrators find causes
of problems. The core of the presented approach is a multistage
processing pipeline combining rule-based and inference-based
methods. We have completed the implementation of a proof-
of-concept system that we will use for preliminary evaluation
and experiments.

We have implemented diagnostic rules for several app-
lication and service protocols. Table 1 shows the current
list of supported protocols and their complexity in term
of Node and Condition rule count, and their capabilities in term
of Event count. After an evaluation of our solution by our part-
ner — a monitoring vendor company, we have concluded,
that the system must mark all reports which our tool may
have incorrectly detected because of low-quality input data.
For example, packet loss can drastically decrease the quality
and accuracy of diagnostic results. In the current system, all
reports from TCP flows with missing segments are marked
as possibly incorrect.

Future work will focus on:
• evaluating the solution (accuracy and performance)

and comparing the results with similar monitoring tools;
• analyzing each protocol’s rules and based on used proto-

cols and their field names create a filtering unit to reduce
the amount of data processed by Protocol Analyzer;

• optimizing the performance. The current Events Finder
combines all packets to check whether they are fulfilling
the assert conditions or not. This all-to-all packet check
has exponential time complexity (2O(n)), which is un-
acceptable for large PCAP files. We want to optimize
checking the asserts to decrease the complexity.
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