

M. Dantuma¹, F. Lucka^{2,3}, B. Treeby⁴, J. Jaros⁵, B. Cox⁴ and S. Manohar¹

¹Biomedical Photonic Imaging (BMPI), TechMed centre, University of Twente, PO box 217, 7500 AE, Enschede, The Netherlands ²Computational Imaging Group, Centrum Wiskunde and Informatica, 1098 XG Amsterdam, The Netherlands ³Department of Computer Science, University College London, WC1E 6BT, London, United Kingdom ⁴Department of Medical Physics and Biomedical Engineering, University College London, WC1E 6BT, London, United Kingdom ⁵Centre of Excellence IT4Innovations, Faculty of Information Technology, Brno University of Technology, 612 66, Brno, Czech Republic

PROBLEM STATEMENT

- » Photoacoustic tomography (PAT) setups increasingly used in clinical studies
- » PA tumor appearance differs per system due to lack of standardization in technical system specifications

I. Signal content

Measured power spectra are compared with spectra from a similar sized perfect tumors with an homogenous initial pressure.

- » More information about tumor appearance required to improve image interpretation
- This study investigates:
- » PA frequency content of tumors with different vessel distributions: homogeneous (solid) and superficial (hollow)
- Their PA appearance with 0.5 and 1 MHz transducers

RESEARCH METHOD

- I. Simulation geometry
- » 20 cm diameter spherical bowl, filled with water
- 500 µm isotropic pixel size **>>**
- » MRI segmented breast [1] pendant in bowl
- » CE-MRI segmented 1.5 cm tumor (solid or hollow) embedded in breast at 1/8 depth

II. Algorithm

- 1. Acoustical and optical properties [1-4] assigned to tissues
- 2. Illumination simulated with Monte Carlo (MCX [5], GPU accelerated) 3. Obtained fluence map converted into a pressure map using Grüneisen coefficient 4. Acoustical propagation modeled with k-wave [6] (GPU accelerated). 5. Iterative image reconstruction using a speed of sound map

CONCLUSION AND FUTURE WORK

I. Main conclusions

- 1. Both a solid and a hollow tumor appear as hollow in the PA image due to light absorption by tumor tissue.
- 2. The transducer center frequency mainly affects the resolution of the reconstruction, but has little influence on the reconstructed tumor shape.
- 3. A theoretical difference between the frequencies emitted by a sphere and a

spherical shell exists but cannot be observed in the breast, due to the decaying fluence with depth.

II. Outlook

Further investigating the effect of technical system specifications High resolution 3D blood vessel networks inside tumor

REFERENCES

UNIVERSITY OF TWENTE. | TECHMED CENTRE

[1] Lou, Y., Zhou, W., Matthews, T. P., Appleton, C. M., & Anastasio, M. A. (2017). Generation of anatomically realistic numerical phantoms for PA and US breast imaging. Journal of biomedical optics, 22(4), 041015. [2] Jacques, S. L (2013). Optical properties of biological tissues: a review. Physics in Medicine & Biology", 58(11), R37. [3] Brooksby, B., Jiang, S., Dehghani, H., Pogue, B. W., Paulsen, K. D., Kogel, C., ... & Poplack, S. P. (2004). MRI-guided NIRT of the breast. Review of Scientific Instruments, 75(12), 5262-5270. [4] Nebeker, J., & Nelson, T. R. (2012). Imaging sos using UST. Journal of Ultrasound in Medicine, 31(9), 1389-1404.

[5] Fang, Q., & Boas, D. A. (2009). Monte Carlo simulation of photon migration in 3D turbid media accelerated by GPUs. Optics express, 17(22), 20178-20190.

[6] Treeby, B. E., & Cox, B. T. (2010). k-Wave: MATLAB toolbox for the simulation and reconstruction of PA wave fields. Journal of biomedical optics, 15(2), 021314.