
lable at ScienceDirect

Digital Investigation 22 (2017) S26eS38
Contents lists avai
Digital Investigation

journal homepage: www.elsevier .com/locate/di in
DFRWS 2017 USA d Proceedings of the Seventeenth Annual DFRWS USA
Leveraging the SRTP protocol for over-the-network memory
acquisition of a GE Fanuc Series 90-30

George Denton a, Filip Karpisek b, Frank Breitinger a, *, Ibrahim Baggili a

a Cyber Forensics Research and Education Group (UNHcFREG), Tagliatela College of Engineering, ECECS, University of New Haven, 300 Boston Post Rd., West
Haven, CT, 06516, USA
b Faculty of Information Technology, Brno University of Technology, Czech Republic
Keywords:
GE Fanuc Series 90-30
Live memory acquisition
GE-SRTP protocol
SCADA
PLC
* Corresponding author.
E-mail addresses: gdent1@unh.newhaven.edu (G.

cz (F. Karpisek), FBreitinger@newhaven.edu (F. Bre
edu (I. Baggili).

URL: http://www.unhcfreg.com/, http://www.
Baggili.com/

http://dx.doi.org/10.1016/j.diin.2017.06.005
1742-2876/© 2017 The Author(s). Published by Elsevie
licenses/by-nc-nd/4.0/).
a b s t r a c t

Programmable Logic Controllers (PLCs) are common components implemented across many industries
such as manufacturing, water management, travel, aerospace and hospitals to name a few. Given their
broaddeployment in critical systems, they became and still are a common target for cyber attacks; themost
prominent one being Stuxnet. Often PLCs (especially older ones) are only protected by an outer line of
defense (e.g., a firewall) but once an attacker gains access to the system or the network, theremight not be
any other defense layers. In this scenario, a forensic investigator should not rely on the existing software as
it might have been compromised. Therefore, we reverse engineered the GE-SRTP network protocol using a
GE Fanuc Series 90-30 PLC and provide two major contributions: We first describe the Service Request
Transport protocol (GE-SRTP) which was invented by General Electric (GE) and is used by many of their
Ethernet connected controllers. Note, to the best of our knowledge, prior to this work, no publicly available
documentation on the protocol was available affording users' security by obscurity. Second, based on our
understanding of the protocol, we implemented a software application that allows direct network-based
communication with the PLC (no intermediate server is needed). While the tool's forensic mode is
harmless and only allows for reading registers, we discovered that one can manipulate/write to the reg-
isters in its default configuration, e.g., turn off the PLC, or manipulate the items/processes it controls.
© 2017 The Author(s). Published by Elsevier Ltd. on behalf of DFRWS. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

A Supervisory Control And Data Acquisition (SCADA) system is a
remote monitoring and control unit that operates with coded sig-
nals over a communication channel used in a variety of applica-
tions, e.g., in prisons to operate cell doors, in dams to open or close
gates, or in gas transmission for pressure regulation. They have
become systems intertwined with our daily lives and are used in
domains like power generation, water treatment and civil defense
to name a few. One important component of SCADA systems is a
Programmable Logic Controller (PLC). PLCs are digital devices
usually used for automation of industrial/mechanical/electrical
processes. Typical applications include control of machines in fac-
tories and amusement park rides.
Denton), ikarpisek@fit.vutbr.
itinger), IBaggili@newhaven.

FBreitinger.de/, http://www.

r Ltd. on behalf of DFRWS. This is
Given their widespread, PLCs have become a common target for
attackers. For instance, Zetter (2011) reported in 2011 that “34
exploits were published by a researcher on a computer security
mailing list and targeted seven vulnerabilities in SCADA systems
produced by Siemens, Iconics, 7-Technologies and DATAC”. These
exploits can be employed by worms and were demonstrated by
Spenneberg et al. (2016) at Black Hat Asia. “The worm scans the
network for new targets (PLCs), attacks these targets and replicates
itself onto the found targets. The original main program running on
the target is not modified.” Another prominent example was
Stuxnet (Langner, 2011).

In our paper we analyzed one specific PLC, the GE Fanuc Series
90-30 from General Electric (GE) which was introduced to the
automation market almost 30 years ago.1 It has been installed in a
number of systems worldwide, and will at some point be dis-
continued and replaced with a new line with enhanced security
features. Of note, however, is that it would be quite a feat for
1 Manual's date is 1990 and can be found here: http://plcproducts.com/sites/pl/
files/manuals/ge_fanuc/ic610chs110a_ge_fanuc_series_one_user_manual.pdf.

an open access article under the CC BY-NC-ND license (http://creativecommons.org/

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:gdent1@unh.newhaven.edu
mailto:ikarpisek@fit.vutbr.cz
mailto:ikarpisek@fit.vutbr.cz
mailto:FBreitinger@newhaven.edu
mailto:IBaggili@newhaven.edu
mailto:IBaggili@newhaven.edu
http://www.unhcfreg.com/
http://www.FBreitinger.de/
http://www.Baggili.com/
http://www.Baggili.com/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.diin.2017.06.005&domain=pdf
http://plcproducts.com/sites/pl/files/manuals/ge_fanuc/ic610chs110a_ge_fanuc_series_one_user_manual.pdf
http://plcproducts.com/sites/pl/files/manuals/ge_fanuc/ic610chs110a_ge_fanuc_series_one_user_manual.pdf
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
http://dx.doi.org/10.1016/j.diin.2017.06.005
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.diin.2017.06.005
http://dx.doi.org/10.1016/j.diin.2017.06.005


G. Denton et al. / Digital Investigation 22 (2017) S26eS38 S27
organizations worldwide to transition to a new system for both
financial and technical reasons.

As most PLC software is proprietary, our research focused on
understanding the communication protocol called GE-SRTP and its
security mechanisms. The protocol is used to interface the con-
trollers to Human Machine Interface (HMI) computers. While our
testing involved the GE Fanuc Series 90-30, our findings apply to all
PLCs that employ GE's proprietary communication protocol known
as GE-SRTP.

To perform our assessment, we set up an environment which
consists of the GE Fanuc Series 90-30 PLC and a machine to sniff/
analyze the network traffic. This allowed us to reverse engineer the
GE-SRTP protocol and to understand the request and response bit
type messages to and from the GE Fanuc Series 90-30. More spe-
cifically, the research focused on acquiring live memory from the
PLC with the mindset of minimizing the effect on the process being
operated whilst bypassing the HMI (valid commands are directly
sent to the PLC). While our tests did not show any impact, there
may be a chance that our tool negatively impacts the process and
the performance in a production environment. Our main goal was
to construct a method/forensic tool which will allow an end user to
analyze the memory in case the PLC or HMI software is compro-
mised. Thus, in case of a cyber attack, an incidence response team
would not have to rely on the HMI software. More significantly,
during our experimentation we found that commands such as
opening/closing a motorized valve, opening/closing a circuit
breaker, or suddenly starting/stopping a turbine can be executed by
an attacker if the device is in its default configuration. These actions
can lead to equipment damage with repair cost ranging from
thousands to millions of dollars or fatality of workers.

The GE Fanuc Series 90-30 platform was selected for evaluation
because of multiple years of experience maintaining, trouble-
shooting, and writing ladder logic by the research team as well as
its wide adoption. Our intention is not to cause any harm to the
manufacturer of the product but to create the much needed
awareness of the security issues, as well as practical methods for
the PLC's incidence response.

The remainder of this paper is structured as follows: Sec. GE
Fanuc Series 90-30 and its memory describes the various mem-
ory types in the GE Fanuc Series 90-30. In Sec. Testing environment
setup we briefly present our testing environment followed by the
methodology in Sec. Methodology. The core of this paper is Sec.
Understanding the GE-SRTP protocol where we describe the GE-
SRTP protocol. Our tool which is capable of reading and writing
to the PLC memory is described in Sec. Tool. Sec. Related work
summarizes the related work. The last three sections start with a
discussion of our findings (Sec. Discussion), followed by the future
work (Sec. Future work) and lastly the conclusion (Sec. Conclusion).
2 An older operating system was used because Proficy Machine Edition and
Wonderware Intouch v9.5 is only compatible with this system.

3 “DDE allows one program to subscribe to items made available by another
program, for example a cell in a Microsoft Excel spreadsheet, and be notified
whenever that item changes”. More information can be found in Microsoft's
specification Microsoft (N/A) or on https://en.wikipedia.org/wiki/Dynamic_Data_
Exchange.
GE Fanuc Series 90-30 and its memory

A PLC consists of several registers which can be programmed as
well as accessed using a HMI. A HMI is commonly a piece of soft-
ware running on a PC. In the following we summarize the memory
prefix types supported by the GE Fanuc Series 90-30which are used
in our experiments. They are necessary to understand our appli-
cation and will be referenced throughout the paper. The memory
register information was pulled from GE's reference manual GFK-
0467M (GE Fanuc Automation North America, Inc, 2002).
Attached to the memory prefix is usually a number to indicate the
exact address location of the memory, e.g., %R581.

1. Register Memory: The prefix %R is used to assign system register
references used to store data in the program such as set points.
2. Analog Input Memory: The prefix %AI is used to represent an
analog input references that stores an analog input data from a
field device.

3. Analog Output Memory: The prefix %AQ is used to represent an
analog output references that holds an analog output value.

4. Discrete InputMemory: The prefix%I represents input references.
The references are located in the input statusdata table that stores
the state of all input modules received during the input scan.

5. Discrete Output Memory: The prefix %Q represents physical
output references that are stored in the output status table. The
values from the table are sent to the output modules during the
output scan.

6. Discrete TemporaryMemory: Theprefix%Trepresents temporary
references. They can be used in the program many times. These
are temporary values which mean it can be lost during power
failure or transition between the PLC run mode and stop mode.

7. Discrete Momentary Memory: The prefix %M represents inter-
nal references.

8. System Memory: The prefix %S represent system status refer-
ences used to access timers, scan information, fault information
in the PLC. The system references include %SA, %SB, and %SC.

9. Discrete Global Memory: The prefix %G represents global data
references. These references are used to access contact and coil
statuses shared by multiple PLCs.
Testing environment setup

Our testing environment was composed of the following hard-
ware and software components:

1. GE Fanuc Series 90-30 (5-Slot Base IC693CHS397C, CPU 331,120/
240VAC Power Supply IC693PWR321X (includes Serial port),
and CMM321 Ethernet Interface).

2. Netgear Prosafe 16 port 10/100 Switch including Category 5
cables.

3. HP Compaq NC6400 laptop.
4. Software packages: MS Excel, Proficy Machine Edition 6.0,

Wonderware Intouch v9.5, Wireshark (including a plugin that
we created), Wonderware IO servers for Host Communications
version 8.1.101.0. All software was running on a single laptop.

Connecting the mentioned devices leaded to the topology
shown in Fig. 1. In the following we describe these components in
some more detail.

HMI computer. A laptop running Windows XP is used by system
operators to communicate with the PLC.2 In our experiment, a
simulated HMI was created with Wonderware Intouch v9.5. The
communication between the GE Fanuc Series 90-30 and the work-
station requires Wonderware IO server which can have different
input sources. Forourexperiments,weused theWonderware Intouch
software as well as Microsoft Excel and the Dynamic Data Exchange
(DDE3) protocol. On the network layer (Wonderware IO server to the
GE Fanuc Series 90-30), the GE-SRTP protocol is utilized to transport
the data. Fig. 2 provides an overview of the communication flow.

GE Fanuc Series 90-30. The PLC system is made up of a CPU
controller, Input/Output (I/O) modules, power supply module,

https://en.wikipedia.org/wiki/Dynamic_Data_Exchange
https://en.wikipedia.org/wiki/Dynamic_Data_Exchange


Fig. 1. The network topology used for setting up the simulated SCADA system.

Fig. 2. Diagram of the signal flow between the HMI computer programs and the PLC.

G. Denton et al. / Digital Investigation 22 (2017) S26eS38S28
communication module, and a baseplate. A type 331 CPU controller
wasused for this research. Ithas6KBofRAM,a10MHzprocessor, and
a 80188microprocessor. Next, the ladder logic as depicted in Fig. A.6
(Appendix A) was created in Proficy Machine Edition software and
placed on the PLC via a serial port (built into the power supply
module). The Ethernet port on the communicationmodule is used to
connect the system to a TCP/IP network. All the power required for
the PLC components mounted on the baseplate is supplied by the
power supply module wired to a 120 VAC external source.

Starting point. For initial tests, we utilized an Excel macro as it
allowed us to read and write to PLC memory efficiently e we were
able to write to various memory types in the PLC in less than a
minute.4 Configuring the Wonderware IO server to communicate
with the PLC involved defining an application name, topic name,
and item name. These names were also used in the Excel macro to
initiate a DDE conversation with the Wonderware IO server. Once
the conversation was established, the IO server responded to the
Excel macro client with the PLC memory data requested (note,
4 To conduct a similar task with the HMI, we would have to build multiple
graphics on the HMI page to read PLC memory and add push buttons to write to
memory. The HMI can only modify/read some of the memory types.
there is no direct connection to the PLC). The client can either read
or write to memory.

Based on our understanding of the protocol, the initialize bit
streams of all zeros were exchanged between the master device
(HMI) and the PLC slave to start communication between the de-
vices. After the connection was verified, we immediately started to
request different PLC memory types with an Excel macro running
on the HMI computer.

Privilege level. The GE Fanuc Series 90-30 has four password
protected privilege levels ranging from 1 to 4 which are eight digits
max length ASCII passwords. By default a privilege level is not
assigned but must be set by the customer. Each privilege level re-
stricts the master to certain tasks. For instance, with a privilege
level 2, themaster canwrite to systemmemory, toggle force system
memory, clear fault table, set PLC time and change PLC state.
Privilege level 1 allows tasks such as but not limited to reading
system memory, reading task memory, returning fault table, pro-
gram store, and returning control program name. At privilege level
3, the controller ID can be set and a program may be uploaded.
Depending on the PLC firmware version, privilege level 4 is
required to set controller ID instead of level 3. Our experiments are
carried out using the default configuration with no password. We
argue that if a system has been running over several years,



Table 1
Request message structure.

Byte offset Field type Common value

0 type 0x02
1 unknown/reserved 0x00
2 sequence number
3 unknown/reserved 0x00
4 text length 0x00
5e8 unknown/reserved 0x00
9 unknown/reserved 0x01
10e16 unknown/reserved 0x00
17 unknown/reserved 0x01
18e25 unknown/reserved 0x00
26 time (seconds) 0x00
27 time (minutes) 0x00
28 time (hours) 0x00
29 unknown/reserved 0x00
30 sequence number
31 message type 0xc0
32e35 mailbox source 0x00 00 00 00
36e39 mailbox destination 0x10 0e 00 00
40 packet number 0x01
41 total packet number 0x01
42 service request code
43e47 request type dependent
48e55 unknown/reserved 0x00

G. Denton et al. / Digital Investigation 22 (2017) S26eS38 S29
administrators have not changed the configuration and the
communication still runs with no authentication. However, we
hope to analyze the impact of passwords in the future.

Methodology

As stated in Sec. Testing environment setup, the GE Fanuc Series
90-30 can be controlled on the application layer by the DDE pro-
tocol through Excel or using a HMI created with Wonderware
Intouch. While our experiments started by having a Wonderware
IO server and then sending commands using Excel/the DDE pro-
tocol, we realized that the server keeps record of all changes and
immediately reports them back to the HMI software. Thus, we
decided to focus on the network layer and the GE-SRTP protocol.
Here, the challenge was that the GE-SRTP protocol is a proprietary
protocol and therefore no documentation (how the protocol works
or the structure of the protocol) is available to the public at the time
of conducting this research.

In order to construct our software, we first reverse engineered
the protocol which was mainly conducted by using Wireshark and
capturing all network traffic; the setup network topology remained
untouched as depicted in Fig. 1. To analyze the GE-SRTP protocol,
four steps were followed:

1. We first wrote ladder logic to control a simple process and
downloaded the code on the GE Fanuc Series 90-30 using the
Proficy Machine Edition software.

2. We built a HMI project with the Wonderware Intouch software
and ran it on a laptop to interact with the PLC.

3. We read andwrote to different memory register types in the PLC
using the HMI computer and simultaneously captured the traffic
for each read and write data request.

4. We analyzed the captures, examined sections that changed and
formeda comprehensive understandingof theGE-SRTPProtocol.

Note, for the last item we additionally utilized a description of
the Serial Network Protocol (SNP). More details are provided in the
following section.

Understanding the GE-SRTP protocol

As outlined in the methodology, we started by sending and
capturing single packets between the HMI and the GE Fanuc Series
90-30 in order to examine which bits/bytes change when specific
commands were sent. While this revealed some initial hints on the
protocol, it allowed us to compare it to the SNP protocol specifi-
cation (General Electric, 1998) which is the predecessor of the GE-
SRTP protocol. Particularly, the SNP protocol fulfills a similar pur-
pose as it allows control of a PLC over serial network ports but is no
longer supported by GE process controllers. For the remainder of
this paper, whenever we talk about the SNP protocol description,
we refer to the description provided by General Electric (1998).

The comparison of our initial findings of the GE-SRTP protocol
and the documented SNP protocol revealed that both protocols
have similarities but differ in the offsets of the bytes. With the help
of the documentation, we developed aWireshark plugin to ease the
analysis of the GE-SRTP packets captured on the network.

GE-SRTP plugin for Wireshark: In a first step, a dissector5 for the
GE-SRTP protocol was developed using Wireshark and its support
for the Lua scripting language. Lua is a platform independent lan-
guage and can be used. A dissector simply changes the represen-
tation of the data. Thus, instead of looking at a hexdump, it allowed
5 https://wiki.wireshark.org/Lua/Dissectors (last accessed 2017-Jan-21).
us to extract specific bytes, change their representation into deci-
mal and add labels.

Request network packet analysis results

An overview of the request packets is shown in Table 1 where
the payload has a total length of 55 bytes. Most of the fields in the
packets remain fixed throughout our testing and are classified as
unknown/reserved. We will discuss the variable fields (empty value
in the table).

The type field is commonly 0x02 for a request packet and will
change for the response packet to 0x03. Throughout testing, we did
not observe any other values in the type field.

We believe that the sequence number is repeated twice in the
message structure (byte offset 2 and byte offset 30) and is used to
identify the request and response message pair. The master in-
cludes a byte in the message and the slave copies the byte in its
acknowledgment completion message or error message.

The more interesting bytes are clearly at the end of the payload.
The service request code (byte 42) varies on the type of memory that
is being requested where an overview is shown in Table 2.

Bytes 43e47 are used to access the different memory types. The
first byte (byte 43) is called ‘segment selector’ (according to the SNP
specification). The selector is a hex-value that indicates which and
how a memory register is accessed. Most memory types can be
accessed as either bit or byte, and some only allow ‘word’. Partic-
ularly, discrete memory types (%Q, %I, %M, etc.) can be accessed as
bit data or byte data, and word memory types (%R, %AI, and %AQ)
can only be accessed as word data. An overview is shown in Table 3.

Bytes 44 and 45 indicate the memory offset which will be
accessed starting with zero. Bytes 46 and 47 specify the data length
for thememory type to be accessed. Offset and length both have the
least significant byte first followed by most significant byte. The
segment selector dictates whether the address and data count are
in bits, bytes, or words. Here are some examples for values of the
key fields when reading PLC systemmemory6 after bothmaster and
slave have established a connection:
6 Examples are partially taken from SNP page 6e10, General Electric (1998).

https://wiki.wireshark.org/Lua/Dissectors


G. Denton et al. / Digital Investigation 22 (2017) S26eS38S30
In the following example, we write a value of 57dec to register
memory %R39. A representation of the request packet is shown in
Fig. 3 where the red (in theweb version) highlights the key valuese
the service request code, segment selector, data offset, data length,
and the value to be written to the register memory.

PLC will interpret this packet as follows:
PLC response network packet analysis results

The response messages from the PLC are similar to the request
message structure and are summarized in Table 4. While most of
Table 2
Types of service request codes.

Hex value Service request code

0x00 PLC short status request
0x03 return control program names
0x04 read system memory
0x05 read task memory
0x06 read program memory
0x07 write system memory
0x08 write task memory
0x09 write program block memory
0x20 programmer logon
0x21 change PLC CPU Privilege Level
0x22 set control ID(CPU ID)
0x23 set PLC (run vs stop)
0x24 set PLC time/date
0x25 return PLC time/date
0x38 return fault table
0x39 clear fault table
0x3f program store (upload from PLC)
0x40 program load (download to PLC)
0x43 return controller type and id information
0x44 toggle force system memory
the bytes remain fixed, the following are variable:
The sequence number (byte offset 2) serves the same purpose as

the sequence number used in the request packet structure.
The status code (byte 42) is usually zero which indicates that no

error has occurred. One of themost common errors during a service
request is insufficient privilege level. Other errors are dependent on
the service request such as an invalid parameter in a request
message (e.g., specifying the wrong segment selector (0x0a) to
write to register memory type).

A value of 0xd1 in the message type field (byte 31) of the reply
message is an indicator that the master request was rejected by the
PLC. This type of message is called Error Nack Mailbox message
according to the SNP specification. All Error Nack messages have a
major status code (byte 42) and aminor status code (byte 43). Some
of the error status codes are insufficient privilege level (0x02) for
the requested task, a full PLC service request queue (0x07), illegal
Table 3
Segment selectors' overview.

Memory type Bit-selector Byte-selector Word-selector

Discrete Inputs (%I) 0x46 0x10
Discrete Outputs (%Q) 0x48 0x12
Discrete Internals (%M) 0x4c 0x16
Discrete Temporaries (%T) 0x4a 0x14
%SA Discrete 0x4e 0x18
%SB Discrete 0x50 0x1a
%SC Discrete 0x52 0x1c
%S Discrete 0x54 0x1e
Genius Global Data (%G) 0x56 0x38
Analog Inputs (%AI) 0x0a
Analog Outputs (%AQ) 0x0c
Registers (%R) 0x08



Fig. 4. Response message structure.

Fig. 3. Request packet for writing to register memory.

Table 4
ACK reply message structure.

Byte offset Field type Common value

0 type 0x03
1 unknown/reserved 0x00
2 sequence number
3 unknown/reserved 0x00
4 text length 0x00
5e16 unknown/reserved 0x00
17 unknown/reserved 0x01
18e25 unknown/reserved 0x00
26 time (seconds)
27 time (minutes)
28 time (hours)
29 unknown/reserved 0x00
30 unknown/reserved value varies
31 message type 0xd4
32e35 mailbox source 0x10 0e 00 00
36e39 mailbox destination 0x20 5a 00 00
40 packet number 0x01
41 total packet number 0x01
42 status code
43 minor status code
44e49 return data
50e55 PLC status

G. Denton et al. / Digital Investigation 22 (2017) S26eS38 S31
mailbox type (0x06) defined in the request packet, illegal service
request (0x01) in the request task, or protocol sequence error
(0x04) which means the PLC receives a message out of order. More
details are provided in the specification (General Electric, 1998, pp.
3e12þþ). We will not focus on the error codes in our work.

The PLC status or ‘piggy-back’ status is found on the tail end of
all ACK reply messages (bytes 50e55) and consists of:

� The control program number (byte 50) indicates whether or not
the master is logged into the program task. In our case the
program task is the ladder logic created and downloaded to the
PLC to operate the head gate. If a 0xff is returned, the master is
not logged in to the program task and 0x00 returned value
signifies that the master is logged into the program task.

� The current privilege level (byte 51) as discussed in Sec. Testing
environment setup.

� The last sweep time (bytes 52e53) is the last elapsed time to
fully execute program task.

� The PLC status word (bytes 54e55) is a bit more complex. Each
bit in PLC status word either gives a status or fault in the PLC. For
example, bit 2 reports if the I/O fault table has changed since it
was last read. The value 1 means it changed and 0 signifies no
change. A description for the remaining bits can be found on
page 3e12 in the SNP documentation.

The data requested by the request message can be found in
bytes 44e49. If more data is requested, this section will expand in
order to hold all the data requested. In case the requested data is
more than 6 bytes (44e49), this section gets extended. The last six
bytes (commonly 50e55) always contain the PLC status.

Example for a response of a byte type memory request. Let us as-
sume there was a request for %M1 as byte data from the PLC, then
the response would look like Fig. 4. A successful request acknowl-
edgment is indicated by a 0xd4 message type (byte offset 31). The
returned data byte (byte 44) in red (in the web version) contains
the values of %M1 to %M8 starting from the least significant bit to
the most significant bit. The remaining bytes (bytes 45 to 49) that
are not requested in the request message are returned as zeros
regardless of the true values of the internal memory registers.
Tool

We condensed our knowledge of GE-SRTP protocol into a tool
that is capable of communicatingwith the PLC directly at the TCP/IP
layer (i.e., there is no need for the Wonderware IO server). While
ourmain focus was the forensic aspect to readmemory and identify
attacks, our tool is also capable of writing to the different memory
types. Due to the critical nature of the tool (should it be used in
cyber attacks), we removed the writing functionality before
releasing the tool which can be found on our website: https://www.
unhcfreg.com/datasetsandtools. Given that the released tool does
not have a writing capability, it is more forensically sound.

Our application was created using the multi-platform Qt
Framework which can run on all major operating systems (Win-
dows, Linux and Mac OS). However, in order to run the source code
directly, the Qt creator software is required to open the project.
Once installed, the IP address of the PLC must be entered in the
software tool to take advantage of the available features. Two
screenshots are provided in Appendix B.
Application capabilities

While our original implementation had read and write capa-
bilities, we removed thewriting capabilities in the released version.
In a nutshell, our tool has following features:

� Reading the name of the program task currently running on the
PLC.

� Reading & writing values of all registers on the PLC device.
� Reading PLC fault tables, I/O fault tables& CPU controller ID. The
fault tables log all PLC and I/O modules abnormal operations
such as low battery in PLC CPU or constant sweep exceeded.

� Master logging into and out of the program task.
� Changing the non-password protected privilege level of the
master prior to a PLC service request.

� Enabling/disabling I/O modules operation. I/O modules are used
by the PLC to interface with a field devices or instruments. They
are inserted in the PLC backplane slots and wired to instruments
using manufacturer wiring diagram. We did not use an I/O
module in our experiment because the headgate position
movements were simulated using scripts built into the Won-
derware application. If we had a ‘real’ headgate for exper-
imenting, a position transmitter (instrument) would be
physically connected to the gate. Once the gate starts to move
either upward or downward, a proportional 4e20 milliamp
(ma) signal would be transmitted onwires to an analog input I/O
module. The signal would then be scanned by an analog input
register memory (%AI03) in the PLC and then converted (ma to
feet) to engineering units for displaying the gate position on the
HMI and/or in the PLC program task.

� Changing the PLC state (RUN/STOP).

https://www.unhcfreg.com/datasetsandtools
https://www.unhcfreg.com/datasetsandtools


G. Denton et al. / Digital Investigation 22 (2017) S26eS38S32
Application architecture and main classes

The tool is written in Cþþ using the Qt framework and is
designed in a multi-thread manner. One thread controls the GUI
and the second thread communicates with the PLC device contin-
uously. We chose this architecture because the communication
with the PLC device can take quite some time and a single-threaded
application (where both GUI and communication execute on the
same thread) would cause the GUI to lock (freeze).

Our application consists of three major classes:

� MainWindow runs in the first thread and governs everything
regarding Graphical User Interface (GUI).

� PLC_comm_bridge runs in a second thread and provides the
interface to send and receive commands to/from the PLC.

� PLC_record object that contains information about one
request and its response.

MainWindow receives a request from a user via the GUI (but-
tons, input boxes, etc.), initializes a PLC_record object and creates
the data for the request, typically:

� request type (read memory, write memory, programmer logon,
…)

� memory location (system, task, program block)
� memory type (discrete input, discrete output, …)
� memory address and length

After the request is filled by MainWindow, it is passed to
PLC_comm_bridge that creates a corresponding data packet and
sends it to the PLC. After PLC_comm_bridge receives a response
packet from the PLC, it parses the packet and hands the response
values to a PLC_record object that it previously received from
MainWindow. Lastly, it is passed back to MainWindow. An example
of reading memory from the PLC is depicted in Fig. 5.

Test procedure

To validate our tool, we designed a head gate control application
which is a motorized gate that opens vertically to supply water
from an impoundment to spin a hydro turbine. Thewater flow from
the impoundment stops when a close command is initiated by the
operator. A generator is coupled to the turbine to convert me-
chanical energy to electrical energy where it can be used to power
up households and businesses. There is no gate position transmitter
Fig. 5. Tool operation example with reading
connected to the controller.
Alarms shown on the HMI are PLC communication failure (PLC

COMMS), control power lost, and head gate fault which is triggered
by the gate timing out during operation. A PLC COMMS alarm is
raised when communication is lost between HMI and PLC. The gate
close push button, gate moving up push button, and gate stop push
button are used to operate the gate. The ladder logic downloaded to
the PLC was created in Proficy Machine Edition 6.0.

The experiment entails operating the head gate from the HMI,
and acquiring live memory from the GE Fanuc Series 90-30 using
our application in forensic mode. We expected that the values
coincide. For the second part of the experiment we used the soft-
ware tool in writing mode to manipulate the PLC memory by
sending a gate open and close commands directly to the PLCeby-
passing the HMI software and the Wonderware server. In short, we
did not encounter any errors during both experiments. The simu-
lated headgate elevation reading displayed on the HMI was over-
ridden in the experiment by writing a value to the PLC memory
address for the gate elevation reading.

Related work

Before commencing any forensic investigation, the possible
types of attacks on the SCADA system must be understood. These
attacks are categorized into three groups: the communication
stack, hardware, and software. Communication stack attacks occur
on the network and application layers. Examples of these type of
attacks are SYN flooding and packet replay. A hardware attack oc-
curs when unauthenticated remote access is gained into the device,
and data set points are changed causing the SCADA system to fail.
Example of software attacks are a Buffer Overflow and a SQL In-
jection. We present here some work related to SCADA security.

SCADA security

Miller (2005) discussed several important areas that are ripe for
research such as studying the reliability and security of indepen-
dent SCADA systems. Process Control Systems (PCS) such as PLCs
and SCADA are critical, and downtime can cost millions of dollars in
the energy sector. Other topics for research are identifying and
assessing vulnerabilities of different SCADA systems, and tech-
niques for handling cyber attacks. Chandia et al. (2008) focused on
two strategies for securing SCADA networks. The first strategy
proposed was the security services suite. This strategy provides
security at five different levels of the SCADA network architecture
and displaying data from PLC memory.



G. Denton et al. / Digital Investigation 22 (2017) S26eS38 S33
and adheres to industry and government standards. The second one
will be explained in Sec. SCADA Forensic and Incident Response.

Queiroz et al. (2009) built a security test bed to simulate a
waster water plant's SCADA system just to study the effect of cyber
attacks. Their research successfully disturbed normal operation of
the water plant by using a TCP SYN flooding attack. The modbus
SCADA protocol was used for the simulation exercise. Zigbee and
DNP3 protocols will be used for their future work. Another means
of securing SCADA systems was discovered by Valli (2009). Their
planwas to use a SNORT Intrusion Detection System (IDS) rules and
a honeypot to createmultiple layers of defense for SCADA networks
from known vulnerability or exploits by hackers. An extension to
the SNORT IDS software called the Quickdraw was created by
Peterson (2009) to monitor SCADA network traffic, to detect events
to be logged in the controller, to create security events, and to
forward events to a historian for analysis. The software can be used
by ten different controllers, and its purpose is to generate security
event logs for SCADA controllers that lack this functionality. This
research allowed legacy SCADA system to capture security events
without changing out hardware and disturbing operation.

An attack on a Siemen's PLC was demonstrated by German re-
searches at Asia's Black Hat conference. Spenneberg et al. (2016)
proved the concept that a computer worm can be installed on the
SIMATIC S7-1200 and spread to other S7 PLCs within the subnet.
Protection features offered by PLC S7-1200 to safeguard customers
from the worm virus were discussed. Unlike the earlier version of
computer worms, the virus only targets S7 that uses a special port
for communication. Secondly if the target is already infected by the
virus, the PLC will detect it and skip the target. Also, no computer is
required to spread and to attack the PLC targets. The adverse effects
of the virus running on the PLC are output manipulation or
changing of the PLC output signals to field devices and denial of
service caused by the worm implementing a continuous loop. The
continuous loop will stop PLC execution due to the watch dog timer
exceedance.

A model of a potential cyber attack on SCADA systems was
discovered by Li et al. (2016). The model was called False Sequential
Logic attack and its purpose was to disturb the safe order of oper-
ation of a process causing serious damage to the process and/or
equipment. The authors modeled their attack on a batch neutrali-
zation process that consists of two holding tanks with different
ingredients used to make a product in a third holding tank. Each
ingredient tank had a transfer pump to supply their product to the
third holding tank. The correct order to safely operate the process
was discussed and then several cases of false sequential attacks
were modeled and implemented on the process. After the attack
implementation, the impact of each case was analyzed.

Another idea that focused on authentication, secure communi-
cation and integrity to improve SCADA systems was presented by
Vegh and Miclea (2015). By securing the communication channels
of cyber-physical systems, the information that is transmitted be-
tween the field devices and the controllers will always be
authenticated, complete, unchanged, and available.

Due to the escalating cyber threats on SCADA, Cherdantseva
et al. (2016) reviewed and compared effective risk assessment
methods for SCADA systems where the authors explored the ideas
of what can go wrong, likelihood that it would go wrong, and the
consequences. The authors stress that a number of risk assessment
methodologies exist for IT systems but it does not apply to SCADA
systems without adjustment. To carry out the research, a string
search was conducted from keywords “SCADA” and “risk assess-
ment” on papers from IEEE Xplore, ACM, SCOPUS, and Web of
Science between the year 2004 and 2014. Papers that suggested a
new risk assessmentmethod for SCADA systemswere the only ones
chosen. In the end, 24 papers were found describing risk assess-
ment methods on SCADA. Each method was examined based on
criteria such as aim, application domain, stages of riskmanagement
addressed, key concept of risk management covered, impact mea-
surement, sources of data for deriving probabilities, evaluation
method, and tool support.
SCADA forensic and incident response

A first toolkit to support forensic analysis of SCADA systems was
proposed by Stirland et al. (2014) which was based on the previ-
ously introduced forensic methodology from Wu et al. (2013). The
toolkit was developed to conduct a complete digital forensic
investigation using a full collection of forensic software and hard-
ware. The toolkit required for SCADA forensics differs from the
software and hardware required for computer forensics.

Van Der Knijff (2014) compared control systems forensics to
SCADA IT forensics. The research focused on the steps to perform a
forensic examination on a control system. An investigation strategy
is critical at the start of the investigation. Also, of importance is to
preserve the original state of the evidence, data acquisition, and
data analysis. The author stressed the importance of seeking
assistance from an experienced field engineer during a forensic
acquisition to guarantee process safety, business continuity, and
examination efficiency. Furthermore, the author stated that
capturing live data from a SCADA system without disturbing the
controlled process remains a challenge for investigators, but it can
be done by switching to the backup SCADA controller and per-
forming data acquisition on the attacked main controller in a
redundant system. Other forensic challenges were discussed such
as customized operating system kernels, resource-constrained de-
vices, inadequate logging of events, and lightweight data
acquisition.

In Hay et al. (2009)'s research, challenges and progress with live
analysis of SCADA systems were discussed. Live analysis tools give
the investigator amore complete picture of SCADA past and current
states. It collects data from SCADA systems to reconstruct and
analyze past events. The remainder of this section will focus on
different types of models for acquiring and analyzing live data from
SCADA systems:

Related work, by Miller (2005) focused on the forensic analysis
of a breached SCADA system. It consisted of a network system that
captures and stores data to aid in the investigation of a cyber attack.
The forensic architecture consisted of multiple forensic agents that
captured SCADA network traffic data and stored the data in a
Warehouse to be accessed when needed. Our approach differs in
collecting evidence since data is only collected from one computer
in real time. Once the data is stored and it can then be harshed for
future analysis.

Another model presented by Taveras (2013) captures forensic
data without disturbing the operation of a live SCADA system using
forensic watch dogs that constantly listen to SCADA events. Evi-
dence is only collected if any of the events violate a set of pre-
defined rules. The model switches back to a monitor model when
the events become normal. Data can only be collected by their
software tool after a security breach is detected and someone starts
collecting forensic data. There are no watch dogs available to
automatically collect forensic evidence. With that said, their tool
may be employed as a watch dog monitor when continuously
pinging a PLC.



G. Denton et al. / Digital Investigation 22 (2017) S26eS38S34
Kilpatrick et al. (2006) placed the forensic agents in strategic
locations inside the SCADA network to capture relevant traffic. Each
agent transfers a synopsis of each packet to a data warehouse
housed in a secure location for storage and retrieval. The data
warehouse analyzes each packet synopsis, creates a data signature,
and stores both data signature and synopsis in an area reserved for
each forensic agent. The architecture focused on SCADA protocols
such as Modbus and DNP3 that can be encapsulated inside an
Ethernet frame and transported within the network. Future
research plans included support for serial communication protocols
such as RS 232 and RS 485.

Anothermodel was created by Ahmed et al. (2012) to investigate
SCADA systems using seven phases. It provided more details when
performing a full forensic investigation compared to the traditional
IT forensic processes not suitable for SCADA systems. Currently,
there are little to no data acquisition tools available to extract data
from PLCs because of the lack of demand for tool makers to produce
software for SCADA forensic data collection. The existing tools that
support SCADA forensics are Hex dump analysis tools, network
forensic software used to monitor network traffic, and Digital Bond
software used to log security events for the Rockwell Automation
ControlLogix PLC. An experiment was conducted using the Siemens
S7 PLC and Siemens STEP7 to create a program for a traffic light
system. The traffic light system was hacked using a packet to turn
all traffic lights green. The experiment showed that the proposed
forensic capability architecture will provide forensic artifacts for
collection after an incident.

Wu et al. (2013) improved on the forensic model described in
the previous paragraph to carry out a more detailed and full
forensic investigation of SCADA systems. Analyzing SCADA systems
on Layer 0eLayer 2 of the Open Systems Interconnect (OSI) model.
Layer 0 consists of field devices such as control valves, pressure
transmitters, and flowmeters connected to the network. At Layer 1,
SCADA controllers are connected to field devices. Layer 2 is the
Demilitarized Zone (DMZ) that consists of historians, domain
controllers, and application servers.
Discussion

Nowadays, attackers are not only focusing on computers
anymore but on all connected devices like smart phones, Internet of
Things and PLCs.Whilewhen creating newer devices and protocols,
developers may have cyber security in mind, this may not have
been of priority one or two decades ago when PLCs and their
protocols were developed. As highlighted in the related work sec-
tion, especially recent years showed that PLCs are becoming more
andmore attractive for attackers. Our research showed that once an
attacker gains access to the network, it is possible to start/stop the
ladder program execution on a PLC with default configuration,
downloading/uploading software codes or send arbitrary com-
mands. Thus, we want to stress the importance of security in this
area. We want to also stress the importance for the creation of
forensic tools that help in the acquisition and analysis of PLC
memory.

One possibility, in order to make it harder for an active adver-
sary, is to configure authentication methods. For instance, the GE
Fanuc Series 90-30 supports privilege levels whichmust be enabled
and allow password protection. Note, by default the privilege levels
are turned off and thus it requires the administrator to change the
configuration. Given the long history of these devices (some of
themmight have been running for almost 30 years), privilege levels
are rarely activated (based on our experience and contacting ad-
ministrators at various organizations). On the other hand, vendors
should update protocols and firmware in order to enforce
authentication and allow passwords longer than 8 digits.

In our opinion, one of the most important challenges is to raise
the awareness with administrators that PLCs are currently not well
protected (can easily be manipulated) and that they need to
become active in order to secure their systems. If a breach happens,
we need reliable tools to acquire a PLC's memory, which can help in
the forensic analysis of these devices.
Future work

There are several points we would like to focus on in future
work. First, we would like to add new features to the forensic tool
such as pulling the description assigned to the memory types (%I, %
M, %R, etc.) over the network. This information can be useful to
determine the function of the memory type. Additionally, we also
want to determine the unknown field types of the GE-SRTP pro-
tocol. We will spend more time studying the privilege levels to
evaluate how secure they are, e.g., can we circumvent the authen-
tication and/or brute force it.

Furthermore, to acquire system memory from the PLC, our
application had to connect to the PLC by sending two initialized
packets prior to sending request messages. More research needs to
be conducted using different PLC models that support the GE-SRTP
protocol. The goal is to confirm if the structure of the initialized
packets are standardized for different models.

Lastly, we would also like to put a different angle on our future
research. While during this research the tool was being used as a
master device to request data from a slave PLC on the network, we
want to analyze if it is possible to use the tool as a slave device to
steal a connection from a slave PLC that exists on the Local Area
Network (LAN). All requests (read or write) from the HMI IO server
will be sent to the impersonator and response messages will be
sent back to the master.
Conclusions

In this article we successfully reverse engineered the GE-SRTP
protocol which is the communication protocol of Wonderware IO
Server and the GE Fanuc Series 90-30 PLC. Our findings allowed us
to create a tool that can bypass the traditional required software,
e.g., Wonderware IO Server, and allows for direct communication
with the device. Another benefit of the tool is to troubleshoot
process related alarms or checking revising/new software code
downloaded to the PLC.

Our work can be helpful for cyber forensic investigations as we
now do not have to rely on any proprietary software but can access
the memory registers directly. While our intention was to build a
forensic tool, we also discovered that it is possible to change reg-
ister values by using our application inwrite mode if the device is in
its default configuration. In other words, once an active adversary
has access to the network, s/he is able to manipulate memory
register values and may cause serious damage. Note, based on our
lab tests, in forensic mode, network PLC can be conducted without
disturbing process operation.



G. Denton et al. / Digital Investigation 22 (2017) S26eS38 S35
Appendix A. Ladder logic
Figure A.6. Ladder logic used to simulate the head gate process in a lab environment.



G. Denton et al. / Digital Investigation 22 (2017) S26eS38S36
Appendix B. Tool

The GUI is separated into two main sections. Fig. B.7 shows the
left half of our applicationwhich can be used to connect to a specific
Figure B.7. Left half of our application which allo
PLC and then will summarize the main attributes. The right side of
the application is depicted in Fig. B.8 and equals a comprehensive
‘table’ containing the different registers in its head-columns and
shows the values of the registers.
ws a connection to be established to a PLC.



Figure B.8. Snapshot of the right half of our application which shows memory values.

G. Denton et al. / Digital Investigation 22 (2017) S26eS38 S37



G. Denton et al. / Digital Investigation 22 (2017) S26eS38S38
References

Ahmed, I., Obermeier, S., Naedele, M., Richard III, G.G., 2012. SCADA systems:
challenges for forensic investigators. Computer 44e51.

Chandia, R., Gonzalez, J., Kilpatrick, T., Papa, M., Shenoi, S., 2008. Security strategies
for SCADA networks. In: Critical Infrastructure Protection. Springer, pp. 117e131.

Cherdantseva, Y., Burnap, P., Blyth, A., Eden, P., Jones, K., Soulsby, H., Stoddart, K.,
2016. A review of cyber security risk assessment methods for scada systems.
Comput. Secur. 56, 1e27.

GE Fanuc Automation North America, Inc, 2002. Series 90TM-30/20/Micro PLC CPU
Instruction Set. General Electrics.

General Electric, 1998. Series 90 PLC SNP Communications (gfk-0529c ed.).
Hay, B., Bishop, M., Nance, K., 2009. Live analysis: progress and challenges. Secur.

Priv. IEEE 7, 30e37.
Kilpatrick, T., Gonzalez, J., Chandia, R., Papa, M., Shenoi, S., 2006. An architecture for

SCADA network forensics. In: Advances in Digital Forensics II. Springer,
pp. 273e285.

Langner, R., 2011. Stuxnet: dissecting a cyberwarfare weapon. IEEE Secur. Priv. 9,
49e51.

Li, W., Xie, L., Deng, Z., Wang, Z., 2016. False sequential logic attack on SCADA system
and its physical impact analysis. Comput. Secur. 58, 149e159.

Microsoft (N/A). About dynamic data exchange. https://msdn.microsoft.com/en-us/
library/windows/desktop/ms648774(v¼vs.85).aspx. Last accessed 2017-Jan-21.

Miller, A., 2005. Trends in process control systems security. Secur. Priv. IEEE 3,
57e60.
Peterson, D., 2009. Quickdraw: generating security log events for legacy SCADA and
control system devices. In: Conference for Homeland Security, 2009. CATCH '09.
Cybersecurity Applications Technology, pp. 227e229.

Queiroz, C., Mahmood, A., Hu, J., Tari, Z., Yu, X., 2009. Building a SCADA security
testbed. In: Network and System Security, 2009. NSS'09. Third International
Conference on. IEEE, pp. 357e364.

Spenneberg, R., Brüggemann, M., Schwartke, H., 2016. PLC-Blaster: A Worm Living
Solely in the PLC. Black Hat Asia (p. N/A).

Stirland, J., Jones, K., Janicke, H., Wu, T., 2014. Developing cyber forensics for SCADA
industrial control systems. In: The International Conference on Information
Security and Cyber Forensics (InfoSec2014). The Society of Digital Information
and Wireless Communication, pp. 98e111.

Taveras, P., 2013. SCADA live forensics: real time data acquisition process to detect,
prevent or evaluate critical situations. Eur. Sci. J. 9.

Valli, C., 2009. SCADA forensics with snort ids. In: International Conference on
Security & Management (p. N/A).

Van Der Knijff, R., 2014. Control systems/SCADA forensics, what's the difference?
Digit. Investig. 11, 160e174.

Vegh, L., Miclea, L., 2015. Authenticity, integrity and secure communication in
cyber-physical systems. J. Comput. Sci. Control Syst. 8, 33.

Wu, T., Disso, J.F.P., Jones, K., Campos, A., 2013. Towards a SCADA forensics archi-
tecture. In: Proceedings of the 1st International Symposium for ICS & SCADA
Cyber Security Research, pp. 12e21.

Zetter, K., 2011. Attack Code for SCADA Vulnerabilities Released Online. https://
www.wired.com/2011/03/scada-vulnerabilities/. Last accessed 2017-Jan-21.

http://refhub.elsevier.com/S1742-2876(17)30192-5/sref1
http://refhub.elsevier.com/S1742-2876(17)30192-5/sref1
http://refhub.elsevier.com/S1742-2876(17)30192-5/sref1
http://refhub.elsevier.com/S1742-2876(17)30192-5/sref2
http://refhub.elsevier.com/S1742-2876(17)30192-5/sref2
http://refhub.elsevier.com/S1742-2876(17)30192-5/sref2
http://refhub.elsevier.com/S1742-2876(17)30192-5/sref3
http://refhub.elsevier.com/S1742-2876(17)30192-5/sref3
http://refhub.elsevier.com/S1742-2876(17)30192-5/sref3
http://refhub.elsevier.com/S1742-2876(17)30192-5/sref3
http://refhub.elsevier.com/S1742-2876(17)30192-5/sref4
http://refhub.elsevier.com/S1742-2876(17)30192-5/sref4
http://refhub.elsevier.com/S1742-2876(17)30192-5/sref5
http://refhub.elsevier.com/S1742-2876(17)30192-5/sref6
http://refhub.elsevier.com/S1742-2876(17)30192-5/sref6
http://refhub.elsevier.com/S1742-2876(17)30192-5/sref6
http://refhub.elsevier.com/S1742-2876(17)30192-5/sref7
http://refhub.elsevier.com/S1742-2876(17)30192-5/sref7
http://refhub.elsevier.com/S1742-2876(17)30192-5/sref7
http://refhub.elsevier.com/S1742-2876(17)30192-5/sref7
http://refhub.elsevier.com/S1742-2876(17)30192-5/sref8
http://refhub.elsevier.com/S1742-2876(17)30192-5/sref8
http://refhub.elsevier.com/S1742-2876(17)30192-5/sref8
http://refhub.elsevier.com/S1742-2876(17)30192-5/sref9
http://refhub.elsevier.com/S1742-2876(17)30192-5/sref9
http://refhub.elsevier.com/S1742-2876(17)30192-5/sref9
https://msdn.microsoft.com/en-us/library/windows/desktop/ms648774(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms648774(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms648774(v=vs.85).aspx
http://refhub.elsevier.com/S1742-2876(17)30192-5/sref11
http://refhub.elsevier.com/S1742-2876(17)30192-5/sref11
http://refhub.elsevier.com/S1742-2876(17)30192-5/sref11
http://refhub.elsevier.com/S1742-2876(17)30192-5/sref12
http://refhub.elsevier.com/S1742-2876(17)30192-5/sref12
http://refhub.elsevier.com/S1742-2876(17)30192-5/sref12
http://refhub.elsevier.com/S1742-2876(17)30192-5/sref12
http://refhub.elsevier.com/S1742-2876(17)30192-5/sref13
http://refhub.elsevier.com/S1742-2876(17)30192-5/sref13
http://refhub.elsevier.com/S1742-2876(17)30192-5/sref13
http://refhub.elsevier.com/S1742-2876(17)30192-5/sref13
http://refhub.elsevier.com/S1742-2876(17)30192-5/sref14
http://refhub.elsevier.com/S1742-2876(17)30192-5/sref14
http://refhub.elsevier.com/S1742-2876(17)30192-5/sref15
http://refhub.elsevier.com/S1742-2876(17)30192-5/sref15
http://refhub.elsevier.com/S1742-2876(17)30192-5/sref15
http://refhub.elsevier.com/S1742-2876(17)30192-5/sref15
http://refhub.elsevier.com/S1742-2876(17)30192-5/sref15
http://refhub.elsevier.com/S1742-2876(17)30192-5/sref16
http://refhub.elsevier.com/S1742-2876(17)30192-5/sref16
http://refhub.elsevier.com/S1742-2876(17)30192-5/sref17
http://refhub.elsevier.com/S1742-2876(17)30192-5/sref17
http://refhub.elsevier.com/S1742-2876(17)30192-5/sref17
http://refhub.elsevier.com/S1742-2876(17)30192-5/sref18
http://refhub.elsevier.com/S1742-2876(17)30192-5/sref18
http://refhub.elsevier.com/S1742-2876(17)30192-5/sref18
http://refhub.elsevier.com/S1742-2876(17)30192-5/sref19
http://refhub.elsevier.com/S1742-2876(17)30192-5/sref19
http://refhub.elsevier.com/S1742-2876(17)30192-5/sref20
http://refhub.elsevier.com/S1742-2876(17)30192-5/sref20
http://refhub.elsevier.com/S1742-2876(17)30192-5/sref20
http://refhub.elsevier.com/S1742-2876(17)30192-5/sref20
http://refhub.elsevier.com/S1742-2876(17)30192-5/sref20
https://www.wired.com/2011/03/scada-vulnerabilities/
https://www.wired.com/2011/03/scada-vulnerabilities/

	Leveraging the SRTP protocol for over-the-network memory acquisition of a GE Fanuc Series 90-30
	Introduction
	GE Fanuc Series 90-30 and its memory
	Testing environment setup
	Methodology
	Understanding the GE-SRTP protocol
	Request network packet analysis results
	PLC response network packet analysis results

	Tool
	Application capabilities
	Application architecture and main classes
	Test procedure

	Related work
	SCADA security
	SCADA forensic and incident response

	Discussion
	Future work
	Conclusions
	Appendix A. Ladder logic
	Appendix B. Tool
	References


