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Abstract

The two-dimensional discrete cosine transform (DCT) can be found in the heart of many image compression algorithms. Specifically,
the JPEG format uses a lossy form of compression based on that transform. Since the standardization of the JPEG, many other
transforms become practical in lossy data compression. This article aims to analyze the use of these transforms as the DCT
replacement in the JPEG compression chain. Each transform is examined for different image datasets and subsequently compared
to other transforms using the peak signal-to-noise ratio (PSNR). Our experiments show that an overlapping variation of the DCT,
the local cosine transform (LCT), overcame the original block-wise transform at low bitrates. At high bitrates, the discrete wavelet
transform employing the Cohen–Daubechies–Feauveau 9/7 wavelet offers about the same compression performance as the DCT.
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1. Introduction

In last decades, needs for high-quality photography are grow-
ing, and so demands for efficient data storage are also growing.
Therefore, it is important to compress the data as much as pos-
sible while preserving the quality of the image. For example,
transferring a large number of images with high resolution across
the Internet without a certain level of compression would be very
time-consuming. Regarding the photography, the problem can
be addressed by lossy image compression. Nowadays, the JPEG
standard [1], dating back to 1991, is still the most widely used
format for the lossy compression. Figure 1 shows the underlying
compression chain. Each color component is transformed by
blocks 8 × 8 using the 2-D DCT. The DCT has the property that,
for a typical image, most of the visually significant informa-
tion about the image in the 8 × 8 block is concentrated in just
a few coefficients. This allows for better image compression.
The transform coefficients are further quantized and fed into an
entropy coder.

Since then, several other lossy image compression standards
have been standardized. However, none of them became more
popular with the public than the original JPEG. Particularly,
the JPEG 2000 [2] decomposes large image tiles using the dis-
crete wavelet transform (DWT). The advantage of wavelets is
that wavelets are located on the small area in the image do-
main. Another interesting standard is JPEG XR [3], which is
based on an overlapping hierarchical transform, so-called lapped
biorthogonal transform (LBT). The last of the standards to be

∗Corresponding author
Email addresses: xsvobo0b@stud.fit.vutbr.cz (Stanislav Svoboda),

ibarina@fit.vutbr.cz (David Barina)

mentioned is WebP [4], based on the DCT complemented by
Walsh–Hadamard transform (WHT).

Figure 1 shows that the JPEG block-wise scheme is very
general. This opens the way to incorporate some other suit-
able transforms into the same compression chain. This is the
motivation behind our research.

The rest of the paper is organized as follows. Section 2
presents the JPEG chain in the necessary level of detail. Subse-
quent Section 3 deals with the transforms suitable for involve-
ment in this chain and examines their compression capabilities.
Eventually, Section 4 summarizes and closes the paper.

2. JPEG Format

Part 1 of JPEG standard [1] specifies the method of lossy
compression for digital images, based on the discrete cosine
transform (DCT). This section describes a simplified description
of JPEG image compression.

The color model to be used is YCBCR. Therefore, the repre-
sentation of the colors in the image is first converted from RGB
to YCBCR. The transformation into the YCBCR model enables
the next usual step, which is to reduce the spatial resolution of
the CB and CR components. For the rest of the compression
process, Y, CB, and CR components are processed separately.

As a next step, each component is split into blocks of 8 × 8
samples, xk,l for (0, 0) ≤ (k, l) < (8, 8). The samples are then
shifted down by 128, assuming an 8-bit depth. Subsequently,
each block undergoes the two-dimensional discrete cosine trans-
form

Xm,n = λm,n

∑
k,l

cos
(
π(k + 1/2)m

N

)
cos

(
π(l + 1/2)n

N

)
xk,l, (1)
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Figure 1: JPEG overview. The dashed line indicates the compression chain.

where (0, 0) ≤ (m, n) < (8, 8), λm,n is a scaling factor, and N = 8.
Now, the amplitudes of the coefficients are quantized. When
performing a block-based transform and quantization, several
types of artifacts can appear, especially blocking artifacts. The
blocking artifacts are shown in Figure 2. The artifacts can be
reduced by choosing a finer quantization, which corresponds to
a lower level of compression.

Figure 2: Blocking artifacts caused by the JPEG compression.

The DCT itself is a lossless process since the original input
can be exactly reconstructed by applying an inverse transform
to the coefficients Xm,n directly. In order to achieve substantial
compression ratio, quantization is applied to reduce the levels of
the coefficients. The uniform quantization procedure is used to
quantize the coefficients. One of up to four quantization tables
Qm,n may be used in the quantization procedure. No default
quantization table is specified in the standard. The quantization
is formulated as

X̂m,n = round
(

Xm,n

Qm,n

)
, (2)

where the round(a) operator rounds value a to the nearest integer.
Human visual system is more immune to a loss of higher spatial
frequency components than a loss of lower frequency compo-
nents. This allows quantization to greatly reduce the amount of
information in the high-frequency components.

After quantization, the X̂m,n coefficients are fed into an en-
tropy coder. Entropy coding employed in the JPEG is a special
form of lossless compression. The X̂0,0 coefficient (DC coeffi-
cient) is treated differently than other coefficients (AC coeffi-
cients). The latter ones are converted into a one-dimensional

”zig-zag” sequence. The rest of the process involves run-length
encoding (RLE) of zeros and then using Huffman coding (arith-
metic coding is possible, however rarely used).

From the above, it is clear that the scheme is almost indepen-
dent of the transform used. Consequently, it would seem logical
to substitute the DCT with some other similar transform. Several
other papers on this topic have already been published. Some
of them are briefly reviewed below. The authors of [5] exam-
ined the possibility of using the discrete Chebyshev transform
(DChT) in JPEG. As reported in their paper, the DChT over-
comes DCT on images with sharp edges and high predictability.
In [6], the author compared the compression performance of
the block-wise DCT against several lapped transforms. He con-
cluded that lapped transforms have less blocking than the DCT
and show some PSNR improvement over the DCT.

Considering the existing papers, we see that a wider compar-
ison of the transforms in the JPEG compression chain is missing.
The next section investigates the performance of some promising
transforms in conjunction with the JPEG compression.

3. New Transforms for JPEG Format

This section interleaves a description of the transforms and
their evaluation. The evaluation was performed on two datasets
[7, 8]. At the beginning, trigonometric transforms are inves-
tigated. Subsequently, separable and non-separable wavelet,
Chebyshev, and Walsh–Hadamard transforms are examined.

3.1. Discrete Sine Transform
The discrete sine transform (DST) is very similar to the DCT,

except cosines are replaced with sines. Recall that the DCT has
the property that, for a typical image, most of the information
is concentrated in just a few coefficients Xm,n with the lowest
(m, n) indices. However, this property is not always valid for
sine transforms. We found one variant for which the property
holds. In the literature, this variant is referred to as the DST-VII
[9] variant. Since most of the transforms investigated in this
paper are separable, only the one-dimensional definitions are
given from now on. The DST is defined by

Xm = λm

∑
k

sin
(
π(k + 1)(m + 1/2)

N + 1/2

)
xk, (3)

where λm is a scaling factor.
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Figure 3: Comparison of the DCT, DST, DHT, and LCT. The LCT overcomes
the other transforms at low bitrates.

3.2. Discrete Hartley transform

Like the previous transforms, the discrete Hartley transform
(DHT) [10] is also based on trigonometric functions. In fact, its
definition looks very similar to the definition of discrete Fourier
transform (DFT). Unlike the DFT, the discrete Hartley trans-
form maps real inputs onto real outputs, with no involvement of
complex numbers. The transform is defined by

Xm =
∑

k

cas
(

2πkm
N

)
xk, (4)

where cas(α) = cos(α) + sin(α).

3.3. Local Cosine Transform

The local cosine transform (LCT) [11] reduces and smoothes
the block effects. The local cosine transform is based on the stan-
dard block-based DCT. However, the local cosine transform has
basis functions that overlap adjacent blocks. Prior to the DCT al-
gorithm, a preprocessing phase in which the image is multiplied
by smooth bell functions that overlap adjacent blocks is applied.
This phase is implemented by folding the overlapping parts of
the bells back into the original blocks. The standard block-based
DCT algorithm then operates on the resulting blocks.

The folding operations are defined as

f−(n) =
b(n) f (−n) − b(−n) f (n)

b(n) − b(−n)
, (5)

f +(n) =
b(n) f (n) − b(−n) f (−n)

b(n) − b(−n)
, (6)

where the f−(n) is nth coefficient to the left (top) of the current
block, the f +(n) is nth coefficient to the right (bottom), and
b(n) = β((2n + 1)/N) is a bell function, where

β(n) =


0 n < −1
1+sin(πn/2)

2 otherwise
1 n > +1

. (7)

The comparison of all the transforms discussed above is
shown in Figure 3. The x-axis indicates bits per pixel (bpp). The

Figure 4: Sample image (on the left) and DST artifacts on block boundaries (on
the right).

discrete sine transform performs significantly worse than the
reference DCT. This is caused by artifacts on block boundaries,
as shown in Figure 4. Also, the discrete Hartley transform
performs worse than the DCT. As we have found, this is caused
by blocking artifacts at higher bitrates, where the artifacts are no
longer visible with the DCT. At lowest bitrates, the local cosine
transform has a better image quality than the reference DCT.
Unfortunately, at higher bitrates, the image quality is slightly
worse. The results on lower bitrates are caused by reduced
blocking artifacts.

3.4. Discrete Wavelet Transform
The discrete wavelet transform (DWT) became a very pop-

ular image processing tool in last decades. For example, the
JPEG 2000 standard is based on such decomposition technique.
In more detail, the DWT decomposes the image into several
subbands, while employing simple basis functions, the wavelets
[12]. The transform is usually applied on large image tiles
instead of small 8 × 8 blocks. Consequently, there are no block-
ing artifacts at all. In this paper, two well-known biorthogonal
wavelets are used, the Cohen–Daubechies–Feauveau (CDF) [13]
5/3 and 9/7 wavelets. Incidentally, both of them are employed in
the JPEG 2000 standard. In order to fit into JPEG compression
chain, the wavelet transforms were designed to create a regu-
lar 8 × 8 grid of coefficients. This design corresponds to three
levels of a dyadic decomposition [14]. The coordinates of the
coefficients in the 8 × 8 blocks are computed using bit-reversal
operations. In this way, the coefficients more closely correspond
to the DCT coefficients. Note that both of the transforms were
implemented using a lifting scheme [15, 16]. The lifting scheme
can decompose the wavelet transforms into a finite sequence of
simple filtering steps (lifting steps). Usually, the first step in
the pair is referred to as the predict and the second one as the
update.

3.5. Red-Black Wavelet Transform
The red-black wavelet transform (DWT RB) [17] is com-

puted using a 2-D lifting scheme on a quincunx lattice [18]. The
wavelets constructed in this way are inherently non-separable.
Consequently, the red-black wavelets are less anisotropic than
the classical tensor product wavelets (the classical DWT). In
other words, the classical DWT will favor horizontal and vertical
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Figure 5: Lifting scheme on the quincunx lattice. Filter samples are bordered in
blue. The first step (predict) on the left, the second (update) on the right.
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Figure 6: Comparison of the separable and non-separable (red-black) wavelet
transforms. The separable CDF 9/7 transform has the best overall performance.

features of the image. This is not visible in the red-black wavelet
transform.

The construction of the red-black wavelets is based on the
CDF wavelets above. Therefore, the CDF 5/3 and CDF 9/7
wavelets are used also for this construction. The individual steps
of the lifting scheme are illustrated in Figure 5. The details can
be found in [17].

According to the results shown in Figure 6, it is clear that
the separable CDF transform performs better than the red-black
transforms. The worse results of the non-separable CDF 9/7 are
caused by stain artifacts on the edges of objects, as illustrated
in Figure 7. The CDF 9/7 transforms perform always better
than the CDF 5/3. Therefore, the best combination seems to be
separable the CDF 9/7 transform.

Figure 7: Comparison of the non-separable CDF 9/7 (on the left) wavelet
transform and separable CDF 9/7 (on the right) in artefacts at edges.

3.6. Discrete Chebyshev Transform

The discrete Chebyshev transform (DChT) [19] is a polynomial-
based transform, which employs Chebyshev polynomials of the
first kind Tn(x). Since the DCT is closely associated with a
Chebyshev Polynomial series as cos(nα) = Tn(cos(α)) for some
α, the discrete Chebyshev transform can be viewed as a natural
modification of the DCT. The discrete Chebyshev transform is
then defined using the polynomials

tp(x) = (A1x + A2)tp−1(x) + A3tp−1(x), (8)

where A1, A2, and A3 are constant. The transform is then defined
as

Xm =
∑

k

tm(k) xk. (9)

3.7. Walsh–Hadamard Transform

The last of the transforms discussed in this paper is the
Walsh–Hadamard transform (WHT). The computation [20] of
this transform should be very fast since only additions/subtractions
are involved here. The transform is defined as

Xm = 1/N
∑

k

W(m, k) xk, (10)

where

W(m, k) =



+1 +1 +1 +1 +1 +1 +1 +1
+1 +1 +1 +1 −1 −1 −1 −1
+1 +1 −1 −1 +1 +1 −1 −1
+1 +1 −1 −1 −1 −1 +1 +1
+1 −1 +1 −1 +1 −1 +1 +1
+1 −1 +1 −1 −1 +1 −1 −1
+1 −1 −1 +1 +1 −1 −1 +1
+1 −1 −1 +1 −1 +1 +1 −1


. (11)

Figure 8 shows the performance of the discrete Chebyshev
transform. It is evident that the DChT is everywhere slightly
below the DCT. Finally, Figure 9 shows an overall comparison,
including the Walsh–Hadamard transform. Also, the WHT does
not overcome DCT in any part of the plot. The only advantage of
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Figure 8: Comparison of the DCT and DChT. The DCT is slightly better.
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Figure 9: Overall comparison of selected transforms.

the WHT is the computation performance. In summary, only the
local cosine transform (LCT) overcame the original block-wise
DCT, especially at low bitrates. In addition, it removes blocking
artifacts, as documented in Figures 10 and 12. Additionally, the
separable discrete wavelet transform with the CDF 9/7 wavelet
offers about the same compression performance as the DCT
at high bitrates. To improve the mental image of evaluated
transforms, bases of selected transforms are visually compared
in Figure 11.

4. Conclusions

The JPEG image compression format uses a lossy form of
compression based on the discrete cosine transform. This paper
deals with a substitution the discrete cosine transform in the
JPEG compression with some other similar transform. Several
practical transforms were examined, including other trigono-
metric transforms, separable and non-separable wavelet trans-
forms, a transform employing Chebyshev polynomials, and the
Walsh–Hadamard transform. These transforms were evaluated
on several image datasets.

The experiments show that only the local cosine transform
overcomes the original block-wise DCT at low bitrates. Besides,
it removes blocking artifacts. At high bitrates, the CDF 9/7
discrete wavelet transform performs similarly as the DCT.

In future work, we plan to focus on other transforms that have
not been covered here, including also non-linear transforms.
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Figure 10: Visual comparison of the original image (left), DCT (middle, PSNR 23.0 dB), and LCT (right, PSNR 23.3 dB).

Figure 11: Basis images of selected transforms, from the left: the DCT, DChT, DHT, and WHT. DC coefficient is located in the top left corner.

Figure 12: Blocking artifacts, from the left: the original image, DCT, and LCT.

6


	Introduction
	JPEG Format
	New Transforms for JPEG Format
	Discrete Sine Transform
	Discrete Hartley transform
	Local Cosine Transform
	Discrete Wavelet Transform
	Red-Black Wavelet Transform
	Discrete Chebyshev Transform
	Walsh–Hadamard Transform

	Conclusions

