
Accelerating Discrete Wavelet Transforms
on Parallel Architectures

David Barina Michal Kula Michal Matysek Pavel Zemcik

Centre of Excellence IT4Innovations
Faculty of Information Technology

Brno University of Technology
Bozetechova 1/2, Brno

Czech Republic
{ibarina,ikula,imatysek,zemcik}@fit.vutbr.cz

ABSTRACT
The 2-D discrete wavelet transform (DWT) can be found in the heart of many image-processing algorithms. Until
recently, several studies have compared the performance of such transform on various shared-memory parallel ar-
chitectures, especially on graphics processing units (GPUs). All these studies, however, considered only separable
calculation schemes. We show that corresponding separable parts can be merged into non-separable units, which
halves the number of steps. In addition, we introduce an optional optimization approach leading to a reduction in
the number of arithmetic operations. The discussed schemes were adapted on the OpenCL framework and pixel
shaders, and then evaluated using GPUs of two biggest vendors. We demonstrate the performance of the proposed
non-separable methods by comparison with existing separable schemes. The non-separable schemes outperform
their separable counterparts on numerous setups, especially considering the pixel shaders.

Keywords
Discrete wavelet transform, Image processing, Synchronization, Graphics processors

1 INTRODUCTION
The discrete wavelet transform became a very popular
image processing tool in last decades. A widespread
use of this transform has resulted in a development
of fast algorithms on all sorts of computer systems,
including shared-memory parallel architectures. At
present, the GPU is considered as a typical represen-
tative of such parallel architectures. In this regard,
several studies have compared the performance of
various 2-D DWT computational approaches on GPUs.
All of these studies are based on separable schemes,
whose operations are oriented either horizontally or
vertically. These schemes comprise the convolution
and lifting. The lifting requires fewer arithmetic op-
erations as compared with the convolution, at the cost
of introducing some data dependencies. The number
of operations should be proportional to a transform
performance. However, also the data dependencies
may form a bottleneck, especially on shared-memory
parallel architectures.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

In this paper, we show that the fastest scheme for a
given architecture can be obtained by fusing the corre-
sponding parts of the separable schemes into new struc-
tures. Several new non-separable schemes are obtained
in this way. More precisely, the underlying operations
of these schemes can be associated with neither hori-
zontal nor vertical axes. In addition, we present an ap-
proach where each scheme can be adapted to a partic-
ular platform in order to reduce the number of opera-
tions. This possibility was completely omitted in ex-
isting studies. Our reasoning is supported by extensive
experiments on GPUs using OpenCL and pixel shaders
(fragment shaders in OpenGL terminology). The pre-
sented schemes are general, and they are not limited to
any specific type of DWT. To clarify the situation, they
all compute the same values.

The rest of this paper is organized as follows. Sec-
tion Background formally introduces the problem defi-
nition. Section Related Work briefly presents the exist-
ing separable approaches. Section Proposed Schemes
presents the proposed non-separable schemes. Sec-
tion Optimization Approach discusses the optimization
approach that reduces the number of operations. Sec-
tion Evaluation evaluates the performance on GPUs in
the pixel shaders and OpenCL framework. Eventually,
Section Conclusions closes the paper. This section is
followed by Section Appendix for readers not familiar
with signal-processing notations.



2 BACKGROUND
Since the separable schemes are built on the one-
dimensional transform, a widely-used z-transform is
used for the description of underlying FIR filters. The
transfer function of the filter (gk) is the polynomial

G(z) = ∑
k

gk z−k,

where the k refers to the time axis. Below in the text,
the one-dimensional transforms are used in conjunction
with two-dimensional signals. For this case, the transfer
function of the filter

(
gkm,kn

)
is defined as the bivariate

polynomial

G(zm,zn) = ∑
km

∑
kn

gkm,kn z−km
m z−kn

n ,

where the subscript m refers to the horizontal axis and
n to the vertical one. The G∗(zm,zn) = G(zn,zm) is a
polynomial transposed to a polynomial G(zm,zn). A
shortened notation G is only written in order to keep
the notation readable.

A discrete wavelet transform is a signal-processing tool
which is suitable for the decomposition of a signal
into low-pass and high-pass components. In detail,
the single-scale transform splits the input signal into
two components, according to a parity of its samples.
Therefore, the DWT is described by 2×2 matrices. As
shown by Mallat [10], the transform can be computed
by a pair of filters followed by subsampling by a factor
of 2. The filters are referred to as G0,G1. The transform
can also be represented by the polyphase matrix[

G1
(o) G1

(e)

G0
(o) G0

(e)

]
, (1)

where the polynomials G(e) and G(o) refer to the even
and odd terms of G. This polyphase matrix defines the
convolution scheme. To avoid misunderstandings, it is
necessary to say that, in this paper, column vectors are
transformed to become another columns. For example,
y = Mx and y = M2M1x are transforms represented by
one and two matrices, respectively. Following the algo-
rithm by Sweldens [14, 4], the convolution scheme in
(1) can be factored into a sequence

∏
k

[
1 U(k)

0 1

][
1 0

P(k) 1

]
(2)

of K pairs of short filterings, known as the lifting
scheme. The filters employed in (2) are referred to as
the lifting steps. Usually, the first step P(k) in the kth
pair is referred to as the predict and the second one
U(k) as the update. The lifting scheme reduces the
number of operations by up to half. Since this paper is
mostly focused on a single pair of steps, the superscript
(k) is omitted in the text below. Note that the number

of operations is calculated as the number of distinct
(in a column) terms of all polynomials in all matrices,
excluding units on diagonals.

Considering the shared-memory parallel architectures,
the processing of single or several samples is mapped
to independent processing units. In order to avoid
race conditions during data exchange, the units must
use some synchronization method (barrier). In the lift-
ing scheme, the barriers are required before the lifting
steps. In the convolution scheme, the barrier is only
required before starting the calculation. In this paper,
the barriers are indicated by the | symbol. For example,
M2|M1 are two adjacent lifting steps separated by the
barrier. For simplicity, the number of barriers is also
called the number of steps in the text below.

The 2-D transform is defined as a tensor product of 1-D
transforms. Consequently, the transform splits the sig-
nal into a quadruple of wavelet coefficients. Therefore,
the 2-D DWT is described by 4×4 matrices. See Sec-
tion Appendix for details. Following the pioneering pa-
per of Mallat [10], the 1-D transforms are applied in
both directions sequentially. By its nature, this scheme
can be referred to as the separable convolution. The cal-
culations in a single direction are performed in a single
step. This means two steps for the two dimensions. The
scheme can formally be described as

NV ∣∣NH ∣∣,
where NH and NV are 1-D transforms in horizontal
and in vertical direction. For the well-known Cohen-
Daubechies-Feauveau (CDF) wavelet with 9/7 samples,
such as used in the JPEG 2000 standard, these matrices
are graphically illustrated in Figure 1. Here, only the
horizontal part is shown. Particularly, the filters in the
figure are of sizes 9 and 7 taps. The , , , and circles
represent the quadruple of wavelet coefficients. Figures
shown are for illustration purpose only.

Figure 1: Horizontal part of the separable convolution
scheme for the CDF 9/7 wavelet. Two appropriately
chosen pairs of matrix rows are depicted in separate
subfigures. The arrows are pointing to the destination
operand and denote a multiply–accumulate operation,
with multiplication by a real constant. The arrows in
the same row overlap.



Another scheme used for 2-D transform is the separable
lifting. Similarly to the previous case, the predict and
update lifting steps can be applied in both directions se-
quentially. Moreover, horizontal and vertical steps can
be arbitrarily interleaved thanks to the linear nature of
the filters. Therefore, the scheme is defined as

SV
U
∣∣SH

U
∣∣TV

P
∣∣TH

P
∣∣,

wherein the predict steps T always precede the update
steps S. The above mapping corresponds to a single
P and U pair of lifting steps. For multiple pairs, the
scheme is separately applied to each such pair. In or-
der to describe 2-D matrices, the lifting steps must be
extended into two dimensions as[

G
G∗

]
=

[
G (zm,zn)
G∗(zm,zn)

]
=

[
G(zm)
G(zn)

]
.

Then, the individual steps are defined as

TH
P =


1 0 0 0
P 1 0 0
0 0 1 0
0 0 P 1

 ,

TV
P =


1 0 0 0
0 1 0 0

P∗ 0 1 0
0 P∗ 0 1

 ,

SH
U =


1 U 0 0
0 1 0 0
0 0 1 U
0 0 0 1

 ,

SV
U =


1 0 U∗ 0
0 1 0 U∗

0 0 1 0
0 0 0 1

 .

For the CDF wavelets, the matrices are also illustrated
in Figure 2, again showing the horizontal part only.

(a) TH
P (b) SH

U

Figure 2: The horizontal part of the separable lifting
scheme for the CDF wavelets.

3 RELATED WORK
This section briefly reviews papers that motivated our
research. So far, several papers have compared the
performance of the separable lifting and separable
convolution schemes on GPUs. Especially, Tenllado et
al. [15] compared these schemes on GPUs using pixel
shaders. The authors mapped data to 2-D textures,
constituted by four floating-point elements. They con-
cluded that the separable convolution is more efficient
than the separable lifting scheme in most cases. They
further noted that fusing several consecutive kernels
might significantly speed up the execution, even if
the complexity of the resulting fused pixel program is
higher.

Kucis et al. [8] compared the performance of several re-
cently published schedules for computing the 2-D DWT
using the OpenCL framework. All of these schedules
use separable schemes, either the convolution or lift-
ing. In more detail, the work compares a convolution-
based algorithm proposed in [5] against several lifting-
based methods [2, 16] in the horizontal part of the trans-
form. The authors concluded that the lifting-based al-
gorithm of Blazewicz et al. [2] is the fastest method.
Furthermore, Laan et al. [16] compared the perfor-
mance of their separable lifting-based method against
a convolution-based method. They concluded that the
lifting is the fastest method. The authors also com-
pared the performance of implementations in CUDA
and pixel shaders, based on the work of Tenllado [15].
The CUDA implementation proved to be the faster
choice. In this regard, the authors noted that a speedup
in CUDA occurs because the CUDA effectively makes
use of on-chip memory. This use is not possible in
pixel shaders, which exchange the data using off-chip
memory. Other important separable approaches can be
found in [11, 6, 13, 12].

This paper is based on the previous works in [1, 9].
In those works, we introduced several non-separable
schemes for calculation of 2-D DWT. However, we
have not considered important structures, such as poly-
convolutions. We contribute this consideration with this
paper. Moreover, differences and similarities between
the separable schemes and their non-separable coun-
terparts are homogeneously discussed here. All these
schemes are also thoroughly analyzed and evaluated.

Considering the present papers, we see that a possible
fusion of separable parts into new non-separable struc-
tures is not considered. Therefore, we investigate on
this promising technique in the following sections.



Figure 3: Non-separable convolution scheme for the CDF 9/7 wavelet. The individual rows of N are depicted in
separate subfigures. The sizes are from top to bottom and left to right: 9×9, 7×9, 9×7, 7×7.

4 PROPOSED SCHEMES
As stated above, the existing approaches did not study
the possibility of a partial fusion of lifting polyphase
matrices. This section presents three alternative non-
separable schemes for the calculation of the 2-D trans-
form. The contribution of this paper starts with this sec-
tion. To avoid confusion, please note that the proposed
schemes compute the same values as the original ones.

The non-separable convolution scheme is a counter-
part to the separable convolution. Unlike the separa-
ble scheme, all horizontal and vertical calculations are
performed in a single step

N
∣∣,

where N = NV NH is a product of 1-D transforms in
horizonal and vertical directions. The drawback of this
scheme is that it requires the highest number of arith-
metic operations. For the CDF 9/7 wavelet, the matrix
is graphically illustrated in Figure 3. Here, the 2-D fil-
ters are of sizes 9× 9, 7× 9, 9× 7, and 7× 7. These
sizes make the calculation computationally demanding.
Aside from the GPUs, this approach was earlier dis-
cussed in Hsia et al. [7].

In order to reduce computational complexity, it would
be a good idea to construct some smaller non-separable
steps. Indeed, the non-separable convolution can be
broken into smaller units, referred here to as the non-
separable polyconvolutions. For a single pair of lifting
steps, the scheme follows from the mapping

NP,U
∣∣,

where

NP,U =


V∗V V∗U U∗V U∗U
V∗P V∗ U∗P U∗

P∗V P∗U V U
P∗P P∗ P 1


and V = PU + 1. For the CDF wavelets, the scheme
is graphically illustrated in Figure 4. In this case, the
employed filters are of sizes 5× 5, 3× 5, 5× 3, and
3×3. Note that only half of the operations are required
specifically for the CDF 9/7 wavelet, compared to the
non-separable convolution. For the sake of complete-
ness, it should be pointed out that it is also possible
to formulate the separable polyconvolution scheme. In
our experiments, this one was however not proven to be
useful concerning the performance.



Figure 4: Non-separable polyconvolution scheme for
the CDF wavelets. The individual rows of N are de-
picted in separate subfigures.

By combining the corresponding horizontal and vertical
steps of the separable lifting scheme, the non-separable
lifting scheme is formed. The number of operations has
slightly been increased. The scheme consists of a spa-
tial predict and spatial update step, thus two steps in to-
tal for each pair of the original lifting steps. Formally,
for each pair of P and U, the scheme follows from

SU
∣∣TP

∣∣,
where

TP =


1 0 0 0
P 1 0 0
P∗ 0 1 0

PP∗ P∗ P 1

 ,

SU =


1 U U∗ UU∗

0 1 0 U∗

0 0 1 U
0 0 0 1

 .

Note that the spatial filters in PP∗ and UU∗ may be
computationally demanding, depending on their sizes.
However, the situation is always better than in the pre-
vious two cases. For the CDF wavelets, the scheme is
graphically illustrated in Figure 5.

5 OPTIMIZATION APPROACH
This section presents an optimization approach that re-
duces the number of operations, while the number of
steps remains unaffected. Such an approach was not
covered in existing studies.
Regardless of the underlying platform, an important ob-
servation can be made. A very special form of the op-
erations guarantees that the processing units never ac-
cess the results belonging to their neighbors. These op-
erations comprise only constants. Since the convolu-
tion is a linear operation, the polynomials can be pulled

(a) TP (b) TP

(c) SU (d) SU

Figure 5: Non-separable lifting scheme for the CDF
wavelets.

out of the original matrices, and calculated in a differ-
ent step. Formally, the original polynomials are split
as P = P0 +P1 and U = U0 +U1. The P0 and U0 are
constant. As a next step, the P0 and U0 are substituted
into the separable lifting scheme. The separable lifting
scheme was chosen because it has the lowest number of
operations. This part is illustrated in Figure 6. In con-
trast, the P1 and U1 are kept in original schemes. These
two steps are then computed without any barrier. The
observation is further exploited to adapt schemes for a
particular platform.

(a) TH
P0

(b) TV
P0

(c) SH
U0

(d) SV
U0

Figure 6: Separable lifting scheme with the polynomi-
als P0 and U0.

Now, the improved schemes for the shaders and
OpenCL are briefly described. These schemes exploit
the above-described observation with the polynomials
P0 and U0 . On recent GPUs, OpenCL schemes also
omit memory barriers due to the SIMD-32 architecture.
Note that the non-separable polyconvolution scheme
makes sense only when K > 1, which is the case of the
CDF 9/7 wavelet. Implementations in the pixel shaders
map input and output data to 2-D textures. There is
no possibility to retain some results in registers, and
the results are exchanged through textures in off-chip
memory. Considering the OpenCL implementations, a
data format is not constrained. The image is divided
into overlapping blocks and on-chip memory shared by
all threads in a block is utilized to exchange the results.
Additionally, some results are passed in registers.



This paper explores the performance for three fre-
quently used wavelets, namely, CDF 5/3, CDF 9/7
[3], and DD 13/7 [14]. Their fundamental properties
are listed in Table 1: number of steps and arithmetic
operations. Note that the number of operations is
commonly proportional to a transform performance.
Additionally, the number of steps correspond to the
number of synchronizations on parallel architectures,
which also form a performance bottleneck.

Table 1: The total number of steps and arithmetic oper-
ations for the optimized schemes.

(a) CDF 5/3

scheme steps operations
OpenCL shaders

separable convolution 2 20 22
separable lifting 4 16 16

non-separable convolution 1 23 39
non-separable lifting 2 18 18

(b) CDF 9/7

scheme steps operations
OpenCL shaders

separable convolution 2 56 58
separable polyconv. 4 40 56
separable lifting 8 32 32

non-separable convolution 1 152 200
non-separable polyconv. 2 46 62
non-separable lifting 4 36 36

(c) DD 13/7

scheme steps operations
OpenCL shaders

separable convolution 2 60 60
separable lifting 4 32 32

non-separable convolution 1 203 228
non-separable lifting 2 50 50

6 EVALUATION
The experiments in this paper were performed on GPUs
of the two biggest vendors NVIDIA and AMD using
the OpenCL and pixel shaders. In these experiments,
only a transform performance was measured, usually
in gigabytes per second (GB/s). The host system does
not help in the calculation, i.e. with respect to padding
or pre/post-processing. Results for only two GPUs are
shown for the sake of brevity: AMD Radeon HD 6970
and NVIDIA Titan X. Their technical parameters are
summarized in Table 2.

Table 2: Specifications of the evaluated GPUs.

label AMD 6970 NVIDIA Titan X

model Radeon HD 6970 Titan X (Pascal)

multiprocessors 24 28
total processors 1 536 3 584
processor clock 880 MHz 1 417 MHz
performance 2 703 GFLOPS 10 157 GFLOPS

memory clock 1 375 MHz 2 500 MHz
bandwidth 176 GB/s 480 GB/s
on-chip memory 32 KiB 96 KiB

The implementations were created using the DirectX
HLSL and OpenCL. The HLSL implementation is used
on the NVIDIA Titan X, whereas the OpenCL imple-
mentation on the AMD 6970. The results of the per-
formance comparison are shown in Figures 7, 8, and
9. The value on the x-axis is the image resolution in
kilo/megapixels (kpel or Mpel). Except for the con-
volutions for the DD 13/7 wavelet, the non-separable
schemes always outperform their separable counter-
parts. For CDF wavelets, having short lifting filters, the
non-separable (poly)convolutions have a better perfor-
mance than the non-separable lifting scheme. Unfortu-
nately, for the DD 13/7 wavelet, which is characterized
by a high number of operations in lifting filters, the re-
sults are not conclusive. Considering the implementa-
tion in pixel shaders, similar results were also achieved
on other GPUs, including NVIDIA unified architec-
tures and AMD GPUs based on Graphics Core Next
(GCN) architecture. Whereas for the OpenCL imple-
mentation, the non-separable schemes are only proved
to be useful for very long instruction word (VLIW) ar-
chitectures.

Looking at the experiments with the pixel-shader im-
plementations, some transients can be seen at the be-
ginning of the plots (in lower 2 Mpel region). We con-
cluded that these transients are caused by a suboptimal
use of cache system, or alternatively by some overhead
made by the graphics API. It should be interesting to
show some measures provided by an OpenCL profiler.
Our profiling revealed that the implementations exhibit
only an occupancy 95.24 %. This occupancy is caused
by making use of 256 threads in OpenCL work groups
and due to maximal number 1344 of threads in mul-
tiprocessors (256 times 5 work groups is 1280 out of
1344).



0 

50 

100 

150 

200 

250 

300 

100kpel 1Mpel 10Mpel 100Mpel

G
B

/s

0 

10 

20 

30 

40 

50 

60 

100kpel 1Mpel 10Mpel 100Mpel

G
B

/s

(a) OpenCL (b) pixel shader

separable lifting
separable convolution

non-separable lifting
non-separable convolution

Figure 7: Performance for the CDF 5/3 wavelet.

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100kpel 1Mpel 10Mpel 100Mpel

G
B

/s

0 

5 

10 

15 

20 

25 

30 

35 

100kpel 1Mpel 10Mpel 100Mpel

G
B

/s

(a) OpenCL (b) pixel shader

separable lifting
separable polyconvolution
separable convolution

non-separable lifting
non-separable polyconvolution
non-separable convolution

Figure 8: Performance for the CDF 9/7 wavelet.

0 

5 

10 

15 

20 

25 

30 

35 

100kpel 1Mpel 10Mpel 100Mpel

G
B

/s

0 

5 

10 

15 

20 

25 

30 

100kpel 1Mpel 10Mpel 100Mpel

G
B

/s

(a) OpenCL (b) pixel shader

separable lifting
separable convolution

non-separable lifting
non-separable convolution

Figure 9: Performance for the DD 13/7 wavelet.



7 CONCLUSIONS
This paper presented and discussed several non-
separable schemes for the computation of the 2-D
discrete wavelet transform on parallel architectures,
exemplarily on modern GPUs. As an option, an opti-
mization approach leading to a reduction in the number
of operations was presented. Using this approach,
the schemes were adapted on the OpenCL framework
and pixel shaders. The implementations were then
evaluated using GPUs of the two biggest vendors.
Considering OpenCL, the schemes exploit features of
recent GPUs, such as warping. For CDF wavelets, the
non-separable schemes exhibit a better performance
than their separable counterparts on both the OpenCL
and pixel shaders.

In the evaluation, we reached the following conclu-
sions. Fusing several consecutive steps of the schemes
might significantly speed up the execution, irrespective
of their higher complexity. The non-separable schemes
outperform their separable counterparts on numerous
setups, especially considering the pixel shaders. All of
the schemes are general and they can be used on any
discrete wavelet transform. In future work, we plan
to focus on general-purpose processors and multi-scale
transforms.

Acknowledgements

This work has been supported by the Ministry of Edu-
cation, Youth and Sports from the National Programme
of Sustainability (NPU II) project IT4Innovations ex-
cellence in science (no. LQ1602), and the Technology
Agency of the Czech Republic (TA CR) Competence
Centres project V3C – Visual Computing Competence
Center (no. TE01020415).

APPENDIX
For readers who are not familiar with signal-processing
notations, a relationship between polyphase matrices
and data-flow diagrams is explained here. The 2-D
discrete wavelet transform divides the image into four
polyphase components. Therefore, the 4× 4 matrices
of Laurent polynomials are used to describe the 2-D
discrete wavelet transform. These matrices are com-
monly referred to as the polyphase matrices. The Lau-
rent polynomials correspond to 2-D FIR filters, that de-
fine the transform. In most cases, the transform is de-
scribed using a sequence of such matrices. One par-
ticular matrix thus defines a step of calculation in this
case.

For example, the matrix

TH
P =


1 0 0 0
P 1 0 0
0 0 1 0
0 0 P 1


maps four polyphase components to another four com-
ponents, while using two 2-D FIR filters represented
by the polynomials P. Moreover, when we substitute a
particular polynomial, say P(z) = −1/2(1+ z−1), into
the matrix, the mapping gets a specific shape. Such a
substitution illustrated by the data-flow diagram in Fig-
ure 10. The solid arrows correspond to multiplication
by −1/2 along with subsequent summation.

(a) TH
P

Figure 10: Visual representation of the polyphase ma-
trix. The four polyphase components are represented
by color circles.



REFERENCES

[1] Barina, D., Kula, M., and Zemcik, P. Parallel
wavelet schemes for images. Journal of Real-
Time Image Processing, in press. doi: 10.1007/
s11554-016-0646-3.

[2] Blazewicz, M., Ciznicki, M., Kopta, P., Kurowski,
K., and Lichocki, P. Two-Dimensional Discrete
Wavelet Transform on Large Images for Hybrid
Computing Architectures: GPU and CELL, pages
481–490. Springer, 2012. ISBN 978-3-642-
29737-3. doi: 10.1007/978-3-642-29737-3_53.

[3] Cohen, A., Daubechies, I., and Feauveau, J.-
C. Biorthogonal bases of compactly supported
wavelets. Communications on Pure and Applied
Mathematics, 45(5):485–560, 1992. ISSN 1097-
0312. doi: 10.1002/cpa.3160450502.

[4] Daubechies, I. and Sweldens, W. Factoring
wavelet transforms into lifting steps. Journal
of Fourier Analysis and Applications, 4(3):247–
269, 1998. ISSN 1069-5869. doi: 10.1007/
BF02476026.

[5] Galiano, V., Lopez, O., Malumbres, M. P., and
Migallon, H. Improving the discrete wavelet
transform computation from multicore to GPU-
based algorithms. In Int. Conf. on Computational
and Mathematical Methods in Science and Engi-
neering, pages 544–555, June 2011. ISBN 978-
84-614-6167-7.

[6] Galiano, V., Lopez, O., Malumbres, M., and Mi-
gallon, H. Parallel strategies for 2D discrete
wavelet transform in shared memory systems and
GPUs. The Journal of Supercomputing, 64(1):
4–16, 2013. ISSN 0920-8542. doi: 10.1007/
s11227-012-0750-5.

[7] Hsia, C. H., Guo, J. M., Chiang, J. S., and Lin,
C. H. A novel fast algorithm based on smdwt for
visual processing applications. In IEEE Interna-
tional Symposium on Circuits and Systems, pages
762–765, May 2009. doi: 10.1109/ISCAS.2009.
5117860.

[8] Kucis, M., Barina, D., Kula, M., and Zemcik, P.
2-D discrete wavelet transform using GPU. In
International Symposium on Computer Architec-
ture and High Performance Computing Workshop,
pages 1–6. IEEE, Oct. 2014. ISBN 978-1-4799-

7014-8. doi: 10.1109/SBAC-PADW.2014.13.

[9] Kula, M., Barina, D., and Zemcik, P. New non-
separable lifting scheme for images. In IEEE In-
ternational Conference on Signal and Image Pro-
cessing, pages 292–295. IEEE, 2016. ISBN 978-
1-5090-2375-2. doi: 10.1109/SIPROCESS.2016.
7888270.

[10] Mallat, S. A theory for multiresolution signal de-
composition: the wavelet representation. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 11(7):674–693, 1989. ISSN 0162-
8828. doi: 10.1109/34.192463.

[11] Matela, J. GPU-based DWT acceleration for
JPEG2000. In Annual Doctoral Workshop on
Mathematical and Engineering Methods in Com-
puter Science, pages 136–143, 2009. ISBN 978-
80-87342-04-6.

[12] Quan, T. M. and Jeong, W.-K. A fast discrete
wavelet transform using hybrid parallelism on
GPUs. IEEE Transactions on Parallel and Dis-
tributed Systems, 27(11):3088–3100, Nov. 2016.
ISSN 1045-9219. doi: 10.1109/TPDS.2016.
2536028.

[13] Song, C., Li, Y., Guo, J., and Lei, J. Block-
based two-dimensional wavelet transform running
on graphics processing unit. IET Computers Dig-
ital Techniques, 8(5):229–236, Sept. 2014. ISSN
1751-8601. doi: 10.1049/iet-cdt.2013.0141.

[14] Sweldens, W. The lifting scheme: A custom-
design construction of biorthogonal wavelets. Ap-
plied and Computational Harmonic Analysis, 3
(2):186–200, 1996. ISSN 1063-5203. doi: 10.
1006/acha.1996.0015.

[15] Tenllado, C., Setoain, J., Prieto, M., Pinuel, L.,
and Tirado, F. Parallel implementation of the
2D discrete wavelet transform on graphics pro-
cessing units: Filter bank versus lifting. IEEE
Transactions on Parallel and Distributed Systems,
19(3):299–310, 2008. ISSN 1045-9219. doi:
10.1109/TPDS.2007.70716.

[16] van der Laan, W. J., Jalba, A. C., and Roerdink,
J. B. T. M. Accelerating wavelet lifting on graph-
ics hardware using CUDA. IEEE Transactions on
Parallel and Distributed Systems, 22(1):132–146,
Jan. 2011. ISSN 1045-9219. doi: 10.1109/TPDS.
2010.143.


	Introduction
	Background
	Related Work
	Proposed Schemes
	Optimization Approach
	Evaluation
	Conclusions

