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ABSTRACT

Solving large linear systems is a fundamental task in many interesting problems, including finite element
methods (FEM) or (non-)linear least squares (NLS), among others. Furthermore, the problems of interest
here are sparse: not all the vertices in a typical FEM mesh are connected, or similarly not all vertices in a
graphical inference model are linked by observations, as is the case in e.g. simultaneous localization and
mapping (SLAM) in robotics or bundle adjustment (BA) in computer vision. The two places where most of
the time is spent in solving such problems are usually the sparse matrix assembly and solving the underlying
linearized system.

An interesting property of the above-mentioned problems is their block structure. It is given by the variables
existing in a multi-dimensional space such as 2D, 3D or even se(3) and hence their respective derivatives
being dense blocks of the corresponding dimension. In our previous work (Polok, Ila, and Smrž 2013),
we demonstrated the benefits of explicitly representing those blocks in the sparse matrix, namely reduced
assembly time and increased efficiency of arithmetic operations. In this paper, we propose a novel imple-
mentation of sparse block LU decomposition and demonstrate its benefits on standard datasets. While not
difficult to implement, the enabling feature is the pivoting strategy that makes the method numerically stable.
The proposed algorithm is on average three times faster (over 50× faster in the best case), causes less fill-in
and produces decompositions of comparable and often better precision than the conventional methods.

Keywords: LU decomposition, sparse matrix, block matrix, register blocking, direct methods.

1 INTRODUCTION

Solving a linear system of the form Ax = b is not trivial, unless A has specific properties such as being a
triangular matrix. Then, the last element of the unknown vector x is given by a ratio of the corresponding
elements in A and b. Next, the second last element can be calculated by substituting the first element and
solving another simple ratio and so on, until all of x is recovered–a process called back-substitution. There
are several algorithms for bringing a matrix into triangular form, Gaussian elimination, LU decomposition,
Cholesky factorization and QR decomposition (Davis 2006). These algorithms decompose the original
matrix A into a product of two or more factor matrices that are triangular or otherwise easily invertible
(diagonal or orthogonal). The solution to the original linear system then becomes a sequence of solutions
for each of those factors, ultimately yielding x. In the case of LU decomposition, this amounts to first solving
Ly = b to get an intermediate vector y, and then solving Ux = y.
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Notably, Cholesky factorization has the lowest time complexity of all these algorithms. It decomposes
A = R⊤R where R is upper-triangular matrix identical to that in QR decomposition, up to the sign (Cholesky
will always yield R with positive diagonal entries). It is required that A be square, positive-definite (SPD)
matrix. Matrices involved in least squares problems are SPD, which makes Cholesky an attractive choice for
this class of applications. The disadvantage of using Cholesky for over-determined systems is the need to
form a part of the Moore-Penrose pseudoinverse, A+ = (A⊤A)-1A⊤ that typically results in solving a system
in the form (A⊤A)x = A⊤b. The formation of the square matrix A⊤A may in some cases increase the amount
of memory needed and does increase the condition number, making the system more difficult to solve from
numerical precision point of view.

If the matrix A is sparse, there is another interesting facet to the Cholesky decomposition, the fill-in. Ideally,
R would have the same sparsity pattern as the upper triangle of A. However, in the course of calculating
the factorization, other non-zero entries may be introduced in R and those are referred to as the fill-in. The
number of nonzeros in R directly affects the speed of the factorization and subsequent backsubstitution.
The amount of fill-in is dependent on the ordering of matrix rows and columns and fill-reducing orderings
have been proposed in the literature, most notably the minimum degree ordering (George and Liu 1989, Liu
1985) and the faster approximate minimum degree (AMD) ordering (Amestoy, Davis, and Duff 1996).

The older LU decomposition is more general than Cholesky, and can factorize any square, invertible matrix
into a product A = LU , where L is a lower-triangular matrix with unit diagonal and U is a general upper
triangular matrix. This means the matrix no longer needs to be SPD. Since the diagonal of L is always the
same, it does not need to be stored and sometimes L and U are stored together in a single matrix. Similar
to Cholesky, LU decomposition also introduces fill-in and it is also possible to use the AMD algorithm for
finding a fill-reducing ordering.

Unlike Cholesky factorization, LU is not inherently numerically stable and requires pivoting. A pivot is an
element of the diagonal of A, that will serve as a divisor for other values in the decomposition algorithm.
The magnitude of the pivot is of great importance if the numerical precision is finite. Using a small pivot
will amplify the values in the matrix and lead to roundoff errors. The pivoting schemes therefore choose the
largest pivot, either from the current column (referred to as partial pivoting) or from the so far unreduced
remainder of the matrix, full pivoting.

While these strategies improve numerical stability, they also cause row or row and column reordering. This
subsequently interferes with the fill-reducing ordering of the matrix and may inadvertently increase fill-in
to unacceptable levels. In this paper, we show that block-based pivoting helps to reduce this effect, while
at the same time not destroying the precision of the result. This strategy is a proof of concept and shows
that block pivoting is possible and applicable to all kinds of decompositions that require it, be it LU, QR
or LDL⊤ (a different form of Cholesky factorization that can work with symmetric indefinite matrices but
which requires pivoting). We chose the LU factorization to demonstrate it because it is relatively simple to
implement and has a potentially greater practical impact than LDL⊤.

The remainder of this paper is structured as follows. The next section summarizes related work, especially
from the point of view of related sparse block matrix research and of pivoting strategies that were proposed
in the literature. Section 3 briefly revisits principles of LU decomposition and common forms of algorithms
for performing it. Section 4 describes the design of the proposed algorithm and how it differs from the
standard LU decomposition methods implemented in packages such as CSparse (Davis 2006). Finally,
Section 5 describes the evaluation of the proposed method.
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2 RELATED WORK

While the formats for representing sparse block matrices date back to the early basic linear algebra sub-
programs (BLAS) proposal (Du and Marrone 1992), there are surprisingly only a few implementations that
support them. The most popular sparse matrix package, CSparse (Davis 2006), a part of SuiteSparse only
supports element-wise sparse matrices in compressed sparse column (CSC) format. Despite that, it is also
being extensively used in applications where block matrices occur.

E.g. Google’s Ceres solver (Agarwal and Mierle 2012), a NLS implementation behind popular products
such as 3D maps or Street View uses CSparse for linear solving (other choices are also available, though, by
using a dense solver or an iterative one). It also defines its own block storage format that serves to accelerate
the sparse matrix assembly, but this format is abandoned in favor of CSC as soon as arithmetic operations
on the matrix are required.

NIST Sparse BLAS (Carney, Heroux, Li, and Wu 1994) supports matrices in the compressed sparse row
(CSR) format and in addition also the block compressed sparse row (BSR), a format for block matrices
where all the blocks in a single matrix are the same size, and variable block compressed sparse row (VBR),
a general format for block matrices where a single matrix can contain blocks of different dimensions. Unfor-
tunately, there are no algorithms for matrix decompositions in NIST Sparse BLAS, nor is there an associated
package that would contain them. Also, the triangular solving options are limited–only matrices with unit
diagonal are supported.

There are more libraries that support the BSR format, most notably Intel MKL (F. 2009) or PETsc (Balay
et al. 2015). Those can be readily used for solving linear systems, although limited to matrices containing
only square blocks of a single dimension. This effectively limits their use to simpler problems with only
variables of a single type (multiple variable types would in most cases yield blocks of several different
dimensions and thus also rectangular blocks).

In our previous work (Polok, Ila, and Smrž 2013), we proposed an efficient block matrix storage format and
several algorithms for performing arithmetic operations. The results were compared to CSparse and Ceres,
proving the proposed implementation superior. We furthermore demonstrated the ability to outperform
other block matrix implementations used in robotics (Polok, Šolony, Ila, Zemčík, and Smrž 2013). Later
on, an implementation of sparse block Cholesky was added and its variant for incremental solving was also
proposed (Polok, Ila, Šolony, Smrž, and Zemčík 2013).

Blocking is a popular technique for attaining higher memory throughput in dense implementations, used
e.g. in LAPACK (Anderson et al. 1987). In Eigen (Guennebaud, Jacob, et al. 2010), the partially pivoted
LU decomposition is blocked, splitting the matrix to rectangular blocks. Each such block contains a part of
the diagonal and all the elements under it, so that the blocking would not interfere with pivot choice. After
decomposing this block, the changes are communicated to the lower-right submatrix in a blockwise manner.

Ultimately, the choice of pivoting algorithm can have a great impact on the performance, due to required
communication and memory access patterns. There were many pivoting algorithms proposed in the litera-
ture. MA21 (Duff 1981a, Duff 1981b) is one of the early examples, producing such a row permutation that
the matrix ends up having nonzero diagonal entries. While not the best pivoting strategy for sparse decom-
positions, it showed potential in improving iterative solver convergence. The latter work (Duff and Koster
1999) expanded into obtaining such an ordering that the magnitude of the diagonal entries is maximized. It
explores maximum product of the diagonal entries, which is the pivoting strategy applied in this paper.

Parallel implementations of LU decomposition often try to avoid pivoting during the decomposition phase
itself, often by using threshold pivoting (a pivot permutation only takes place if its magnitude is larger by a
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given threshold than that of the natural pivot), or by performing static pivoting beforehand (Li and Demmel
2003). This helps to reduce communication and synchronization otherwise required.

Schenk and Gärtner (2006) propose a pivoting strategy for the LDL⊤ factorization, not entirely unlike the
method proposed here. Their algorithm chooses pivots of size 1×1 or 2×2 that are factorized in blockwise
fashion (and in the case of 2×2, the blocks themselves are also subject to intra-block pivoting that the
authors refer to as perturbation). In this work, we use pivoting at the granularity of the naturally occurring
blocks, rather than choosing the size of the pivots.

3 LU DECOMPOSITION

In this section, the basic algorithm for LU decomposition is revised, to give insights how the blocked al-
gorithm will be implemented. Two basic transformation of a dense algorithm are in Algorithm 1. The
SUBMATRIXLU is right-looking version of the algorithm and it is a common way of implementing dense
LU decomposition. It is right-looking and produces one column of L and one row of U at a time. This is
sometimes referred to by the order of the loops, as the kij algorithm.

The (partial) pivoting is performed by choosing a particular element from the lower part of the current
column of A (Algorithm 1, line 2). The choice is typically performed as:

pk = argmax
j

(
|A j,k| ·w j ·

{
1+ t if j = k
1 otherwise

)
, j ≥ k , (1)

where w j is approximate pivot weight vector, determined by taking row-wise L∞ norm of A or 1 if no
weighting is used and t is pivot threshold or 0 if no pivot thresholding is used. Upon choosing a pivot, the
corresponding row is swapped with the current row k and this change is collected in the permutation matrix
P (lines 4 and 5). If the weight vector w was used, the same swap would be performed there as well. To
perform full pivoting, one would choose a pivot from the entire submatrix Ai, j | i ≥ k∧ j ≥ k.

This algorithm yields a decomposition LU = PA, where the matrices overwrite A with LU − I, where I is an
identity matrix–the unit diagonal of L that is not explicitly stored. This is a common way of representing the
decomposition in the dense case.

The same algorithm is, however, not well suited for direct implementation of a sparse decomposition, as it
requires access to both rows and columns of the matrix. If using a sparse storage format such as CSC, the
matrix access pattern needs to be by columns–accessing the matrix by rows amounts to searching for every
element and would be overly costly. Instead, by changing the order of the loops to kji, it is possible to
arrive at COLUMNLU that only requires column-wise access. It is a left-looking algorithm and produces
one column of the factorization at a time.

Conceptually, the first half of this algorithm is triangular solving (lines 24 to 29) and the rest is just choosing
the pivot and column scaling. Note that in sparse case, swapping rows for pivoting would be inefficient and
the implementations instead maintain a row permutation and simply renumber rows of all elements at the
end (Davis 2006). Also note that due to always having only a single unreduced column, full pivoting is
not easily attained. In the sparse case, the L and U matrices are stored separately, as it saves the work of
searching for the diagonal elements when back-substituting later on.

4 PROPOSED ALGORITHM

The proposed algorithm is based on the procedure COLUMNLU described in the previous section, with
several differences. The key difference is the use of a sparse block structure described in (Polok, Ila, and
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Algorithm 1 Two Dense LU Decomposition Algorithms.
Require: That A is an invertible n×n matrix, P is n×n identity matrix.

1: function PIVOTING(A, P, k)
2: p = CHOOSEPIVOT(Ak:end,k) ◃ Choose a pivot from the lower portion of column k.
3: if p ̸= k then
4: SWAP(Ak,∗, Ap,∗) ◃ Swap the pivotal row with the next unreduced row in A.
5: SWAP(Pk,∗, Pp,∗) ◃ Swap the same rows in the permutation matrix P.
6: end if
7: return (A,P)
8: end function

9: function SUBMATRIXLU(Λ)
10: for k = 0 to n−1 do ◃ For each column in A.
11: (A, P) = PIVOTING(A, P, k)
12: for i = k+1 to n−1 do
13: Ai,k = Ai,k/Ak,k ◃ Divide by the chosen pivot.
14: end for
15: for j = k+1 to n−1 do ◃ Right-looking, exclusive.
16: for l = k+1 to n−1 do
17: Al, j = Al, j −Al,k ·Ak, j ◃ Scatter contributions to the so far unreduced submatrix.
18: end for
19: end for
20: end for
21: end function

22: function COLUMNLU(Λ)
23: for k = 0 to n−1 do ◃ For each column in A.
24: for j = 0 to k−1 do ◃ For all elements strictly above the pivot.
25: A j,k = A j,k/A j, j ◃ Divide U by the past pivots.
26: for l = j+1 to n−1 do ◃ Left-looking.
27: Al,k = Al,k −A j,k ·Al, j ◃ Gather contributions from the already factorized columns.
28: end for
29: end for
30: (A, P) = PIVOTING(A, P, k)
31: for i = k+1 to n−1 do
32: Ai,k = Ai,k/Ak,k ◃ Divide L by the chosen pivot.
33: end for
34: end for
35: end function

Smrž 2013). It is a column-major data structure similar to VBR (Du and Marrone 1992). It allows blocks
of different sizes in a single matrix where the edges of the blocks must be aligned with each other, forming
non-overlapping block rows and block columns. Each block is stored as a dense matrix, with the elements
of all blocks being serialized in a single pooled array. This improves cache coherency of in-order traversal
of the elements. Care is also taken for the blocks to be aligned in memory to allow vectorization using SSE
instructions.
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From the algorithmic point of view, each Ai, j is a dense matrix rather than a scalar value. Thus, the product
at line 27 of Algorithm 1 is actually a dense matrix product. Similarly, the division at line 25 is triangular
solution of the form L-1

j, j ·U j,k and the division at line 32 is another triangular solution, this time of the form
Li,k ·U -1

k,k where the triangular block Uk,k is on the right. Those expressions are both evaluated using forward
and back-substitution, respectively.

Another difference is the choice of the pivot block, which we refer to as the inter-block pivoting. For
element-wise sparse matrices, this can be done according to (1). For blockwise matrices, this formula cannot
be used directly and a way of reducing the blocks to scalar values needs to be devised. We tested a number of
different metrics, including trace or L1, L2 and L∞ norms of the block or of its diagonal, to no avail. Finally,
using a product of diagonal entries in a block permuted to have the largest diagonal values (Duff and Koster
1999) gave reasonable results. This stems from the fact that all the off-diagonal elements will be in sequence
divided by all the diagonal elements of the pivot block in the back-substitution mentioned above, and thus
the final scaling is equal to their product. We also use pivot weighting by taking block row-wise L∞ norm of
A. This helps to choose better pivots in matrices with uneven distribution of off-diagonal value magnitudes.

Packages such as CSparse perform pivoting by element renumbering, leading to unsorted CSC matrices (the
order of elements in each column is undefined). This potentially creates suboptimal memory access patterns
if the number of elements in each column is greater than the effective size of the CPU cache. The proposed
implementation addresses this problem differently and produces and maintains an ordered representation at
all times. To do that, a method described in (Gustavson 1978) is employed: a dense vector of the same size
as the current block column is used, along with a bit array to accumulate the values of the blocks and the
sparsity pattern, respectively. Once the decomposition of the current block column is finished, the contents
of this dense accumulator are scattered to the L and U matrices, in order.

An important difference is the factorization of the pivot block. This is a simple dense LU factorization1

and brings a choice of partial or full intra-block pivoting. Full pivoting has the advantage of revealing the
rank of this pivot block. If the block is rank deficient, care must be taken when evaluating Li,k ·U -1

k,k. If
the columns of Li,k corresponding to the zero diagonal entries in Uk,k are also null, the division needs to be
avoided otherwise the floating-point arithmetics would produce special values. If, on the other hand, those
columns are nonzero, using this pivot would lead to division by zero and a different pivot needs to be chosen.
If there is no full-rank pivot block in the current block column then either the factorization needs to fail, or
elements from multiple different blocks would need to be combined. In the proposed implementation, this
problem was handled by failing the factorization since it did not occur in the tested matrices.

In any case, the intra-block pivoting required by the pivot block factorization potentially reorders the rows
and columns of this block and the changes need to be reflected on the rest of the matrix. While pivoting
the columns affects only the current block column and can be applied immediately to all the other blocks,
pivoting the rows affects the already processed block row of L and future block rows in U . Since accessing
the matrix row-wise is prohibitive, the row permutation is only applied to the rows of U as they are produced
and the permutation in L is performed at the end, after the factorization finishes.

5 EXPERIMENTAL EVALUATION

The proposed algorithm was evaluated on matrices from the University of Florida Sparse Matrix Collec-
tion (Davis 1994). Since the matrices in this dataset do not contain any information about block struc-
ture, a modified algorithm, based on routines CSRKVSTR and CSRKVSTC described in Saad (1994), was
used to find block matrices with a particular block size and allowing a small amount of fill-in. In addi-
tion to that, we compared the implementations on block matrices associated with some standard SLAM

1Interestingly, the factorization of the pivot block does not immediately depend on or affect any other blocks.
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problems in robotics: Parking Garage (Kümmerle et al. 2011), KITTI Sequence 00 (Geiger et al. 2013),
Sphere 2500 (Kaess, Ranganathan, and Dellaert 2007) and BA problems in computer vision: Fountain-
P11 (Strecha et al. 2008), Lourakis bundle1 (Lourakis and Argyros 2004), Mazaheri bundle_adj (Davis
1994), Venice871 (Kümmerle et al. 2011), Fast & Furious 62 and Guildford Cathedral3.

All the matrices were pre-ordered using the same fill-reducing ordering, obtained by AMD of AA⊤ with
dense columns dropped and applied at the granularity of blocks. This means that all the tested methods
operated on identical inputs. The time to produce this ordering is not included in the timing results (since all
the methods would use the same ordering scheme). Ultimately, this slightly favors element-wise approaches
since the time complexity of the ordering algorithm is higher than linear in the size of the matrix (Heggernes,
Eisestat, Kumfert, and Pothen 2001) and thus ordering at the level of blocks is faster than ordering at the
level of elements would be.

The experiments were performed on the Salomon supercomputer, part of the IT4I Czech National Super-
computing Center. Each compute node is equipped with a pair of 12-core Xeon E5-2680 v3 running at
2.50 GHz and 128 GB of RAM. Note that these CPUs have turbo boost technology which adjusts the clock
frequency based on the available thermal envelope. This function was disabled for the benchmarks, so as to
not make the results dependent on the variations in the temperature. All of the processing times would be
lower with turbo boost enabled. The code was compiled as x64, and used 64-bit pointers. During the tests,
the computer was not running any time-consuming processes in the background. We used the g++ (gcc)
4.4.7 compiler (the proposed implementation is written in C++, while CSparse is written in C).

Each test was run at least ten times and until cumulative time of at least 5 seconds was reached, and the
average time was calculated in order to avoid measurement errors, especially on smaller matrices. Note
that each timing run was performed in a new process, so that there would be no cache reuse. We further
experimented with flushing the cache lines containing the data, using the combination of _mm_clflush()
and _mm_mfence() intrinsics. Furthermore, a 100 MB block of memory was read and written to make
sure that the cache was completely flushed (care was taken that these accesses would not bypass the cache).

The effect of thus flushed cache was a small slow-down, on average 3.80% for CSparse and 2.86% for
the proposed method (worst case 25.86% for CSparse and 14.43% for proposed). This effect was more
pronounced on smaller matrices, as the larger matrices do not fit in the cache at once anyway. The flushing
of the cache did not change the ranking of the methods on any of the tested matrices. The tests presented
in the remainder of the evaluations herein are without flushing the cache, as it seems more natural that the
matrix to be factorized is already (partially) in the cache (since the factorization function would be most
likely called on a matrix that was just produced by other computation). It also makes the presented results
more comparable to the results of other researchers. But note that there is still no cache reuse between
individual benchmark runs as those are performed each in a new process.

Apart from the obvious timing evaluation and also recording the statistics about the factorization sparsity,
relative factorization precision was evaluated, as:

∥PAQ−LU∥
∥A∥

, (2)

where P and Q are the block row and column permutation matrices (Q is only used in the proposed imple-
mentation, if full intra-block pivoting is applied).

Results for the SLAM and BA datasets can be seen in Table 1. In these datasets, the block partitioning is
easily anticipated (unlike in the rest of the benchmarks where the block structure was estimated and might

2Kindly provided by Double Negative Visual Effects, http://www.dneg.com/.
3Can be obtained at http://cvssp.org/impart/.

http://www.dneg.com/
http://cvssp.org/impart/
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Table 1: Results on SLAM and BA datasets. The times are in milliseconds unless specified otherwise. The
first group are SLAM datasets, followed by a BA dataset and finally Schur-complemented BA datasets.

CSparse Proposed
Name Size Nnz. Time LU nnz. Error Time LU nnz. Error
Garage 9966 285696 104.507 1135362 8.16·10−16 71.188 936360 3.53·10−16

KITTI 00 27246 477072 195.896 2078526 6.48·10−16 118.549 1673244 1.90·10−16

Sphere 2500 15000 268164 2595.784 6557052 1.46·10−15 1237.856 5190048 1.04·10−15

Fountain 23853 554427 1918.840 10602408 3.49·10−15 74.515 1112814 1.73·10−15

Lourakis 3115 31572 20.703 88473 7.55·10−16 13.011 86436 2.75·10−15

Mazaheri 3330 247068 149.431 793026 5.51·10−16 80.813 614880 2.94·10−16

Venice871 5226 5469048 125.990 s 26586570 4.30·10−15 57.254 s 26439624 1.17·10−15

FF6 960 137160 291.344 702228 1.21·10−15 162.147 604584 2.30·10−16

Cathedral 552 125244 82.581 278310 1.86·10−15 54.886 263592 3.06·10−16

not exactly map to the original variables in some cases). Note that the system matrices of these datasets are
symmetric but neither implementation took advantage of this fact, and the numbers of nonzeros (denoted
“Nnz.”) are reported for both halves of the matrix. It is a common practice in solving BA problems to apply
Schur complement as:

A =

(
C U
V L

)
(3)

Schur(A) =C−UL-1V , (4)

where the variables in A are partitioned in such a way that C contains the camera variables and L contains
the landmark variables. Due to the structure of the problem, L is block diagonal and easily invertible. The
solution to the linear system Ax = b then lies in decomposition of Schur(A) rather than of the entire A. To
reflect this in the tests performed here, the matrices of BA datasets in Table 1 are first Schur-complemented
and then the results are reported for the LU decomposition of this Schur complement. An exception was
made for the Fountain dataset due to its small size–the resulting times would be very close to zero.

The proposed implementation gets consistently better times and better precision, with the exception of the
Lourakis dataset. The precision is in the 10−16 to 10−15 range, which corresponds to the roughly 15 digits
that the double precision floating-point numbers can hold. The good speed is caused by the fact that these
matrices are diagonally dominant and the proposed implementation can perform most of the pivoting inside
of the blocks, reaching lower fill-in and thus also lower number of arithmetic operations than CSparse.

The results on the other matrices, from the University of Florida Sparse Matrix Collection, are in Table 2.
The matrices are grouped by block size, starting with 4×4 and ending with 6×6. Although the collection
contains much more block matrices, they typically contain mixtures of multiple block sizes. To limit the
size of the evaluation to a reasonable size, we decided to only select matrices with a single block size (note
that the implementation supports multiple block sizes, e.g. Fountain-P11 contains 6×6, 6×3, 3×6 and
3×3 blocks).

While the good precision and sparsity holds up, the speedup grows with block size and the proposed imple-
mentation is slightly slower for 4×4 blocks. Such behavior is to be expected from blocked implementation
where there are more nested loops and thus a larger ratio of control flow to arithmetics instructions. This
could be easily improved by loop unrolling, e.g. as suggested in Polok, Ila, and Smrž (2013). Note that
CSparse failed to factorize 12 of the tested matrices and so they were omitted to save space (on those matri-
ces, the average relative error of the proposed implementation was 5.648 ·10−16, with the worst case relative
error being 1.363 ·10−15). Additionally, several more matrices were omitted from groups of matrices having
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Table 2: Results on matrices from the University of Florida Sparse Matrix Collection. The times are in
milliseconds unless specified otherwise. The first group are matrices with 4× 4 blocks, followed by 5× 5
and 6×6 blocks. Note that the names of the matrices were abbreviated in some cases, in order to save space.

CSparse Proposed
Name Size Nnz. Time LU nnz. Error Time LU nnz. Error
HB/steam3 80 928 0.043 1068 1.37·10−17 0.132 1248 5.36·10−20

Simon/raefsky3 21200 1488768 8211.861 149·105 1.00·10−15 8800.133 133·105 5.56·10−16

Simon/venkat01 62424 1717792 5010.632 178·105 3.55·10−16 6870.423 179·105 1.77·10−16

Janna/CoupC3D 416800 223·105 4.023 h 151·107 4.70·10−16 3.103 h 148·107 5.25·10−16

Oberwolf./piston 2025 100015 13.396 177445 2.26·10−16 14.486 148600 6.91·10−17

Fluorem/GT01R 7980 430909 1608.026 4446585 7.95·10−16 1232.581 3744400 8.94·10−05

Schenk/shell1 504855 176·105 446.545 s 382·106 7.49·10−15 356.576 s 384·106 1.32·10−15

Schenk/shell10 151·104 527·106 2.541 h 168·107 5.07·10−14 1.515 h 168·107 8.29·10−15

Schenk/0_k101 503625 176·105 486.978 s 398·106 6.74·10−15 379.897 s 399·106 2.24·10−15

HB/bcsstk02 66 4356 0.285 4422 2.21·10−16 0.394 4752 1.49·10−16

HB/bcsstk14 1806 63454 52.663 366174 9.70·10−16 28.607 281952 3.20·10−16

Nasa/nasasrb 54870 2677324 20.933 s 407·105 1.28·10−15 8.769 s 302·105 6.15·10−16

Simon/olafu 16146 1015156 3094.454 7964682 4.25·10−16 1739.891 6871176 1.11·10−13

DNVS/shipsec1 140874 7813404 1458.87 s 314·106 5.75·10−16 295.690 s 210·106 9.31·10−16

DNVS/x104 108384 102·105 367.990 s 174·106 2.18·10−15 73.593 s 100·106 8.90·10−16

BenElechi/B.E.1 245874 132·105 172.599 s 180·106 1.83·10−15 101.651 s 180·106 7.23·10−16

the same structure and getting the same results (e.g. Schenk/AFE_af_shell1 through Schenk/AFE_af_shell9
or the Simon/venkat group).

While already giving good results, there are several ways to improve the implementation to be even faster.
In our previous work, we proposed fixed block size (FBS) optimization (Polok, Ila, and Smrž 2013), a form
of register unrolling that is conveniently accessible by using the C++ language, making different block sizes
or even their mixtures easily attainable via a simple interface and without having to manually rewrite or
optimize any code. Using this optimization makes this method faster also on matrices with 3× 3 blocks,
the proposed method is faster than CSparse on 31 out of 33 matrices with average speedup 2.46×. The
results of this optimization are plotted in Figure 1. This plot shows the speedup of the optimized algorithm
compared to the results reported in Tables 1 and 2 as “Proposed”. The speedup is greater for larger matrices
and for smaller block sizes, especially for 3×3 and 4×4 that fit well in the SSE registers. The smaller gains
on large block sizes is given by the fact that those are already quite efficient even without this optimization.
Note that the optimized method is never slower, and also that the precision of the results is identical to that
of the unoptimized version.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we proposed an implementation of intra-/inter-block pivoting scheme based on the maximum
diagonal product scoring of the pivot blocks. It serves as a showcase that limiting pivot search to relatively
small blocks can yield excellent precision while at the same time promoting locality of reference and reduc-
ing the number of nonzero elements in the resulting factorization, as shown by the experimental evaluation.
The proposed method was demonstrated on LU decomposition but is applicable also on other decomposition
types, such as QR or LDL⊤.

The evaluation presented here was in comparison with CSparse. While it is very popular, it is a simplical,
serial code. It would be interesting to compare the proposed algorithm to also other, more advanced imple-
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Figure 1: Relative speedup of the fixed block size (register blocking) optimization, compared to the unopti-
mized proposed algorithm.
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Figure 2: Quantitative evaluation of the compared algorithm performance in floating point operations per
second (FLOP/s). The bottom of the bars indicates worst-case performance (0.56 GFLOP/s for CSparse,
0.50 GFLOP/s proposed and 0.78 GFLOP/s proposed with FBS optimization).

mentations such as superLU (Li et al. 1999), MUMPS (Amestoy, Duff, L’Excellent, and Koster 2001) or
HSL MA50 (Duff and Reid 1996). This evaluation would be well beyond scope (and space) of this study
and we shall report it in a follow-up paper. A quantitative comparison of performance is in Figure 2, the
proposed implementation peaks at 5.714 GFLOP/s4, average is 2.537 GFLOP/s (single core performance).

The LU decomposition is also amenable to parallelization, which is another interesting direction, especially
with respect to GPU implementation. Finally, the block methods are orthogonal to multifrontal and supern-
odal methods, that should both increase the performance even more, by using frontal matrices or supernode
blocks and enabling dense computation on larger than the natural blocks.

4The figures were arrived at by calculating the number of FLOPs required for the factorization, using the functionality described
at https://sf.net/p/slam-plus-plus/wiki/Counting%20FLOPS%20in%20Sparse%20Matrix%20Operations/, and dividing that by av-
erage runtime (including the symbolic factorization) reported in Tables 1 and 2. The Fountain-P11 dataset was excluded as the
proposed implementation yields substantially more sparse factorization and the resulting figure would be unrealistic (31 GFLOP/s).

https://sf.net/p/slam-plus-plus/wiki/Counting%20FLOPS%20in%20Sparse%20Matrix%20Operations/
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