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Abstract— In this paper, we present a new modular ap-
proach for detection of inter-ictal spikes in intracranial iEEG
recordings from patients that are suffering from pharmaco-
resistant form of epilepsy. This new approach is presented in
the form of a detection framework consisting of three primary
modules: first level detector, second level feature extractor, and
third level detection classifier, where each module is responsible
for a specific functionality. This detection framework can be
perceived as a three slot system, where modules can be easily
plugged in their slots and replaced by a different module
or implementation on demand, in order to adapt the quality
of detection (measured in terms of sensitivity, precision or
inter-recording adaptability) and computational cost. Using
complex real-world data sets it was confirmed that the proposed
framework provides highly sensitive and precise detection, while
it also significantly reduces the computation time.

I. INTRODUCTION

Electrical signals measured directly from the brain, specif-
ically signal events known as inter-ictal spikes are one of
the essential biomarkers used for an epilepsy diagnosis and
research. It is believed that spikes participates in epileptiform
process [1][7]. The inter-ictal spikes can be recorded also by
the scalp EEG technique, but for better localization of their
source, usually for surgical treatment of epilepsy, it is nec-
essary to acquire intracranial recordings by depth electrodes
and/or subdural electrode grids. Recordings are usually ac-
quired in more than hundred channels simultaneously, and
recording process runs for several hours per patient. With
a common 5 kHz sampling rate that is used in order to
allow also detection of other biomarkers such as HFOs [10],
the generated data are of enormous size. These data would
have to be analyzed by medical doctors – neurologists –
manually. Although the gold standard for interictal spike
detection has been and still mainly is the manual evaluation,
it has been shown that higher consistency of results can be
achieved by automated detection algorithms [2]. Detection
algorithms can also save enormous amount of work for
reviewers and provide a faster data analysis for research or
even clinical practice. Several algorithms for spike detection
from scalp EEG already exist [9]. But algorithms [5][2] for
spike detection in intracranial EEG (iEEG) are much more
scarce and they rarely address computational efficiency and
speed [3].

In this paper, we present a new modular framework for
detection of inter-ictal spikes in intracranial iEEG recordings.
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Our framework is decomposed into three key modules: first
level detector, second level feature extractor, and third level
detection classifier. The modules were highly optimized in
terms of computation time and quality of data processing.
The objective is to confirm using complex real-world data
sets that the proposed framework provides highly sensitive
and precise classification and significantly reduces the com-
putation time in comparison with existing approaches.

II. SOURCE DATA

The proposed framework will be evaluated using signal data
that were recorded from patients suffering from pharmaco-
resistant form of epilepsy. The areas of brain where the stereo
electrodes have been positioned vary through patients. This
variability of signal source is useful for algorithms testing,
providing a complex good-quality dataset. Signals have been
recorded approximately for 30 minutes, each in 129 - 150
channels. Recordings also contain 6 non-iEEG channels such
as ECG, EOG, and calibration signals, which can be omitted
from processing. The recording device records the data with
25 kHz sampling rate, subsequently down-sampling them
into a 5 kHz range. To illustrate the enormous size of such
data recordings, the channel size is 5000 Hz * (30 min * 60
sec) * 4 bytes, where the average recording file contains 150
such channels, resulting into the file size of 5.4 GB.

As recordings of intracranial EEG are huge files and
terabytes of such data are available for processing, it is
crucial to optimize the proposed framework for the execution
time.

III. DETECTION FRAMEWORK

The proposed detection framework is constructed as a three
slot system which allows automated experiment performing
(Fig. 1). The modularity of our detection framework is
convenient because it provides possibility to easily replace
an implementation of a given module by another imple-
mentation, without the need of replacing modules in the
other slots. Obtained configuration can then automatically
be benchmarked and compared with other configurations
of the framework or other systems. The whole design is
implemented using the object oriented programming (OOP)
paradigm i C++. It is not necessary to fill all three slots of the
system. The detection framework can also work in several
“hybrid” configurations. One of these configurations can
employ only the first level detector, while feature extractor
and classifier slots are empty. This is useful when we want to
evaluate a detector without an influence of feature extraction
and classifier. We may also want to save the computational
time and memory requirements in an embedded device.



Another usage is to produce training and testing datasets for
the following levels. Other “hybrid” configurations are useful
when third-party detection algorithms are ported into our
framework structure. This is advantageous for the possible
comparison.

Fig. 1. Detection Framework

In this paper, we will present a configuration of the
detection framework which consists of all three modules.
These modules will be described in the order, in which
they are applied for signal data processing. Because of very
restricted space, a detailed description is devoted to the first
level detector and the configuration of remaining modules is
only briefly sketched.

A. First Level: Detector

The first level detector is a module responsible for marking
positions or small areas, where potential spikes are present.
As this module can greatly reduce the amount of data that
has to be processed by second and third level modules, its
design significantly influences the overall performance of the
framework. If this module misses a potential detection (such
as spike) in the signal, the second and third level will not
encounter this signal area, and thus they cannot increase the
sensitivity of the system above the sensitivity of the first
level module. The output of the this module, i.e. the potential
detections, can be marked in several ways, such as:

• first level trigger index, channel number
• start index, end index, channel number
• start index, top index, end index, channel number
• first level trigger index, start index, detection top index,

end index, channel number
The first level module used in our experiments consists of
several smaller internal modules, which are connected in a
pipeline way as shown in Fig. 2. Algorithm (Alg. 1) can be
perceived as a virtual energy capacitor (as we would describe
it), which can have constant discharge current or dynamic
discharge current proportional to the remaining energy stored
in the capacitor. This virtual capacitor is represented as a
rmax − rmin difference, where r stands for “recent”. The
input signal sample is first passed to a high pass Butterworth
filter of second order (fHP = 20 Hz). The output of this
filter is then passed to a low pass Butterworth filter of fourth
order (fLP = 50 Hz) in order to remove higher frequencies

Data: signal sample
Result: detected biomarkers
for each sample do

read sample;
filter high pass 20 Hz ( sample ) ;
filter low pass 50 Hz ( filtered sample ) ;
optionally store filtered sample to rotational buffer;
if filtered sample > rMax then

rMax = filtered sample;
end
if filtered sample < rMin then

rMin = filtered sample;
end
if rMax - rMin > current threshold then

if minimal time distance reached since last detection
then

spike detected;
end

end
decrease rMax;
increase rMin;
if optional second level is enabled then

filter high pass 1 Hz ( sample ) ;
filter low pass 35 Hz ( filtered sample ) ;
store filtered sample to rotational buffer;

end
end

Algorithm 1: First level detection algorithm design

(mostly interference) which are not necessary for the spike
detection. The output of this second filter is then compared
with rmax, and if it is greater, it is assigned to rmax variable.
The output of this second filter is then compared with rmin,
and if it is smaller, it is assigned to rmin variable. Then the
rmax − rmin difference is computed and compared against
a constant threshold. If this threshold is passed and was not
passed with a previous sample, the rising edge is detected and
the index position is marked as a center area with a possible
spike. At the end of processing of each sample, the rmax

value is decreased and rmin value is increased, what will
eventually lead to rmax − rmin difference falling below the
threshold. The decay of rmin and rmax value is independent
of the sampling rate.

Fig. 2. First Level Detector

B. Second Level: Feature Extractor

The purpose of this module is to extract and compute
features describing the signal present in the area of detection.



These features can be generic and relatively simple, such as
standard deviation of signal amplitude, or they can be more
complex, such as selected coefficients of frequency spectrum
or wavelet transformations. They can also be specialized for
characteristic description of a specific signal event such as
inter-ictal spikes, or high frequency oscillations. Because of
the OOP style of the framework design, it is possible to
run several feature extractor modules simultaneously in one
framework setup. In order to achieve the highest possible
modularity, there can be instantiated one feature extractor
module for each computed feature. It is also possible to have
one module that computes several features, which can be
enabled or disabled by a module parameter at run-time. Then
an automated experiment can be executed, and based on the
results, the feature extractor modules providing features with
the lowest differentiating ability can be disabled in order to
reduce computational time and power consumption. This ap-
proach is advantageous in battery powered devices operating
inside a shielded recording room or for the future use in fully
mobile (possibly wearable) devices. The core of this module,
the feature computation, is performed on signal area, which
is referenced by indexes, that are internally stored. Some
features are computed only inside the specified area, others
may also require an access to surrounding area, relative to the
event index range. Features can be computed after all signal
sections are processed by the first level detector and when
all potential detections are marked. However, this approach
requires to store all the signal data in RAM (or at least to
store the signal data surrounding each detection). While this
is possible with modern computer workstations (with 8+ GB
of RAM), another strategy has to be taken for embedded and
less-powerful devices.

When the signal data are passing through the first level
detector, they can optionally be stored in a rotational buffer
with a limited capacity whose size is usually optimized
according to the processors cache memory size. Optionally
more than one buffer can be used, if there is enough cache
memory to be split between them. The second level module
can be signaled automatically with specified sample/ms delay
after the first level triggered detection. Then the rotational
buffer can be processed while it is still present in the cache
memory. Employing the rotational buffer led to reduction of
the computation time and memory requirements. This reduc-
tion may vary based on how many features are computed and
how many times the buffer needs to be passed through.

We have implemented several generic and some special-
ized feature extraction algorithms. In the experiments, the
following generic features have been used: area average,
area standard deviation, area maximum, area minimum,
area maximum vs. minimum difference. We have also used
some specific features inspired by Barkmeiers algorithm [2]:
amplitude, left amplitude, right amplitude, left slope, right
slope and duration. The features for description of inter-
ictal spikes should be independent of the spike polarity
to achieve better training and classification results from
following modules.

C. Third Level: Detection Classifier

The third module slot is designated for a classifier responsi-
ble for classification of potential detections that are produced
by the first level detector and described by the features from
the second level module. The classifier can be implemented
in a standard way, i.e. it will assign detection into exactly
one class. The framework also supports a fuzzy classification,
where percentage possibility of belonging into several classes
can be defined. A simple implementation of this module can
be created as a hard-coded decision structure with variable
thresholds. While this may be tempting, we would advice
against it. It may work for signals and features which
for it was manually adapted to, but only if very effective
differentiating features are available. We propose to employ
a machine learning based classification algorithm such as
support vector machine (SVM), artificial neural network
(ANN) or decision tree (DT). The current framework setup
uses a standard SVM-based classifier [8][4] with linear base
function that classifies detections into exactly 2 classes.

D. Evaluation Platform

In order to fairly perform experiments with the proposed
detection framework, we have implemented an evaluation
platform capable of measuring parameters and properties of
the first level detector (computational time, signal time /
computational time ratio, signal samples / computation time
ratio, cache efficiency etc.), the second level feature extractor
(computational time per area, cache efficiency, etc.) and the
third level classifier (training cpu time, classification cpu time
etc.). Finally, the global statistical quality indicators (such
as sensitivity and precision) and performance indicators are
provided. Measurements can be performed in single- or
multi-thread way in a parallel computing environment with
multiple CPUs.

IV. EXPERIMENTS AND RESULTS

In order to evaluate the framework architecture and module
setup, our experiments are performed in two scenarios. First,
the framework is evaluated as a complete system. In the
second scenario, only second and third level modules are
applied on manually marked data. Our signal dataset contains
intracranial recordings from 10 different patients, which were
in various states. Data used in experiments also contains
noisy and seizure recordings in order to analyze how the
detection framework can handle such data input.

A. Manual Evaluation

A golden standard for spike detection practically does not
exist. It was shown [2][6] that the inter-reviewer variability
is huge. In order to at least partially suppress this inter-
reviewer variability and also number of overlooked spikes,
signals were reviewed by a two member group of biomedical
engineers. Only detections where a full agreement was
achieved have been considered. The signal shape got a
decision priority over the amplitude of detection in order to
include also spikes propagated from the surrounding area of
electrode. Detections made by proposed detector have been



visualized into the signal window by half-transparent marks
using fading green and red colors. The group of reviewers
has been counting missed spikes into one category (false
negatives), spike-free detections into another (false positives)
and correct detections (true positives) separately. The number
of true negatives would be hard to estimate because it is
the rest of the signal without marks. Results (Table I) have
been obtained from uniform subset of each recording with a
sensitive configuration of the first level detector (threshold =
50; constant decay = 15), in order to achieve high sensitivity
of the whole system, while potential false positives were
balanced out by the SVM classifier well trained on selected
feature set in order to increase precision. Variable settings
have been used the same for all recordings without any
change or manual adaptation.

TABLE I
DETECTION FRAMEWORK SENSITIVITY AND PRECISION

signal sensitivity [%] precision [%] spikes (TP)
recording 1 98.444 98.828 253
recording 2 100.00 93.678 163
recording 3 96.429 96.923 189
recording 4 97.512 99.157 588
recording 5 98.182 98.480 324
recording 6 99.618 86.424 261
recording 7 98.667 98.667 148
recording 8 99.625 96.727 266
recording 9 97.489 94.260 427

recording 10 97.692 99.219 127
overall sum 96.690 97.757 2746

Barkmeier algorithm 86.320 73.151 =

B. Features and Classification of Manual Detections

It is important to evaluate the framework setup as a com-
plete system, but in order to optimize second and third
level modules it is beneficial to do also an independent
evaluation without first level detector. The output of this
omitted first level module is simulated by manual detections
with consistent length. On purpose there are manual true
positives but also false positive markings containing areas
with and without spikes (or other biomarkers). The raw signal
recordings usually contain lot of various signal waves while
the inter-ictal spikes are a minority event from the point
of frequency of occurrence. For this reason training data
have been artificially balanced to contain about the same
amount of positive and negative detections. Evaluation has
been performed on testing data, which were not used in
the training process. Results (Table II) indicate, that used
combination of features can efficiently differentiate event-
containing and event-free signal areas.

TABLE II
FEATURE EXTRACTION AND CLASSIFICATION

signal sensitivity [%] precision [%] total marks
manually selected areas 97.26 96.10 539

C. Computational Performance

Compared to Barkmeier’s algorithm [2] (which we have
chosen because it has been used by researchers at Mayo
clinic) running in Matlab, which takes in average 32 minutes
to process the same 35 minutes long file, with 150 channels,
this first level detection algorithm implemented in C/C++
requires in average only 50 seconds running on the same
hardware (HP Z420 workstation Intel(R) Xeon(R) CPU E5-
1620). For the fairness of comparison we have also created
an implementation of Barkmeiers algorithm in C in a very
efficient manner, but it was still more than 5 times slower.

V. CONCLUSION

The proposed detection framework allows implementation
of modular efficient detection, description and classification
methods for inter-ictal spikes and other possible electro-
physiological biomarkers such as high frequency oscillations
in intracranial iEEG or even scalp EEG recordings. In
general it is possible to use framework architecture even
for different type of biomedical signals such as ECG, myo-
electrical signals, and even more-dimensional signal data
such as images. Thanks to its integration with evaluation
platform it is possible to perform automated experiments and
comparisons of different modules for each of the framework
slots.
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