
Multi-objective Evolution of Hash Functions for
High Speed Networks

David Grochol and Lukas Sekanina
Brno University of Technology, Faculty of Information Technology, IT4Innovations Centre of Excellence

Brno, Czech Republic
Email: igrochol@fit.vutbr.cz, sekanina@fit.vutbr.cz

Abstract—Hashing is a critical function in capturing and
analysis of network flows as its quality and execution time
influences the maximum throughput of network monitoring
devices. In this paper, we propose a multi-objective linear
genetic programming approach to evolve fast and high-quality
hash functions for common processors. The search algorithm
simultaneously optimizes the quality of hashing and the execution
time. As it is very time consuming to obtain the real execution
time for a candidate solution on a particular processor, the
execution time is estimated in the fitness function. In order to
demonstrate the superiority of the proposed approach, evolved
hash functions are compared with hash functions available in the
literature using real-world network data.

I. INTRODUCTION

Many hardware providers have announced support for 100
gigabit-per-second (Gb/s) networks to overcome current 10-
40 Gb/s solutions. Commercial companies, data and super-
computer centers, and other entities around the world are
now working towards launching 100 Gb/s networks in order
to benefit from faster communication and wider bandwidth
for high-throughput requesting applications such as high-
performance computing or high-quality video streaming. Man-
aging 100 Gb/s networks, however, requires more precise per-
formance monitoring (involving bandwidth monitoring, traffic
analytics and anomaly detection) than in the previous era.

In order to effectively monitor and analyze high speed
networks at the level of packet contents, software defined
monitoring (SDM) concept has been developed [1]. Having
less than 7 ns to process one packed in a 100 Gb/s network,
SDM performs the analysis using relatively simple (and so
fast) hardware whose functionality (i.e. rules of operation) are
defined in software. Unrecognized traffic is then processed by
sophisticated algorithms in software. The analysis is performed
at the level of flows, where one flow is defined by five
parameters within a certain time period: source and destination
IP address, source and destination port and transport protocol.
A memory address (slot) where the data of a given flow are
stored is computed with a suitable hash function.

In our previous work, we employed linear genetic pro-
gramming (LGP) to evolve high-quality hash functions for
the software part of SDM [2]. In a single-objective design
scenario and using real-world network traffic data, we obtained
hash functions comparable in terms of quality of hashing, but
faster than the state of the art hash functions. The objective
for LGP was to minimize the number of collisions a given

candidate hash function produces. As the hash function is
called very often, it has to be very fast. However, the execution
time of hash functions was not optimized. We just imposed
an indirect constraint on the execution time requesting that the
genotype must contain fewer than 12 instructions. Only simple
elementary instructions such as addition and logic operations
were allowed in the chromosome to minimize the execution
time.

The goal of this paper is to show that if the execution time of
a candidate hash function is formulated as a design objective
together with the quality of hashing and the evolutionary de-
sign is performed with a multi-objective LGP, even better hash
functions than those reported in paper [2] can be obtained.
We propose and analyze an approach capable of estimating
the execution time of a candidate hash function in the fitness
function. The total execution time is estimated as the number
of utilized instructions, where different weights are assigned
to different types of instructions to reflect their different
complexity. Scheduling and parallel execution of instructions
on modern pipelined processors are also considered.

The estimated execution time and the number of collisions
are then used as fitness functions in a multi-objective design
algorithm based on LGP and NSGA-II. Evolved hash functions
from the final Pareto front are compared with 11 hash func-
tions available in the literature and 2 hash functions evolved
in [2] using real-world network data.

The rest of the paper is organized as follows. Section II
introduces the concept of hashing and hash function design.
LGP and its utilization for hash function design in our pre-
vious approach is presented in Section III. Drawbacks of the
previous approach are analyzed in Section III-C. The proposed
multi-objective method is introduced in Section IV. Section V
summarizes the experiments performed in order to evaluate the
proposed method and compare resulting hash functions with
existing solutions. Conclusions are given in Section VI.

II. HASH FUNCTION DESIGN

This section surveys the principles of hash function de-
sign and their utilization in SDM. As this paper is devoted
to software implementations of hash functions on common
processors, circuit implementations of hash functions created
for hardware parts of SDM (such as [3]) will not further be
discussed. Moreover, we will not consider cryptographic hash

978-1-5090-4601-0/17/$31.00 c©2017 IEEE
1533

functions that have to exhibit additional properties [4]. They
are thus irrelevant for SDM.

A hash function is a mathematical function h that maps an
input binary string (of length D) to a binary string of fixed
length (R), h : 2D → 2R, where D >> R. The output value
is called hash value or simply hash [5].

The main purpose of hash functions is to locate (in constant
time) a data record for a given search key, avoiding thus a
sequential or log-time search in data records [5]. The quality
of hash function is given in terms of the access time to data and
table load factor (for a given memory size). The definition of
hash function implies the existence of collisions, i.e. h(x) =
h(y), where x, y are two input messages such that x 6= y.
Good hash functions generate a big change in the output for a
small change in the input. This is called the avalanche effect.

The hash function is typically called several times in order
to obtain desired address because the memory addressing
system can be designed as hierarchical, for example, in the
cuckoo hashing scheme [6]. Hence, it is important to optimize
not only the quality of hashing, but also the execution time,
which is crucial for SDM as the hash function is called very
often. Note that the worst case packet processing time is 7 ns
for 100 Gb/s networks.

Fig. 1. Hash table with separate chaining.

Collisions introduced by a hash function can be managed in
different ways in hash tables [7]. The most popular approach
is a separate chaining method which operates a list of records
having the same hash, see Fig. 1. Each slot in the table is
pointing to a linear list where the data are stored. The hash
value is computed for a given key and the data are stored
to the first empty slot in the list addressed by the hash. The
advantage is that the method requires only basic data structures
and simple operations on lists.

The literature provides us with various implementations
of hash functions including DJBHash [8], DEKHash [5],
FVN (Fowler-Noll-Vo) [9], One At Time, Lookup3 [10],
MurmurHash2, MurmurHash3 [11] and CityHash [12]. For
hashing of the network flows, the so-called XOR folding has
been proposed [13].

III. PREVIOUS WORK ON EVOLUTION OF HASH FUNCTIONS

Genetic programming (GP) has been used to provide various
hash functions. The fitness function reflecting the quality

double LGP (double x){
r[0] = x

r[2] = r[0] * r[0]
r[1] = r[2] + r[0]
r[3] = r[1] + r[0]
r[4] = r[1] + r[2]
r[0] = r[4] + r[3]
return r[0]
}

Fig. 2. Example of LGP individual.

of hashing is usually based on measuring the avalanche ef-
fect [14], [15] or the number of collisions [16]. Cryptographic
hash functions were designed with gene expression program-
ming in [17]. Circuit-based hash functions were obtained
in [18]. Hash functions are also employed in cache memories.
An example of GP-based optimization of hash functions for
particular applications is given in [19].

This section briefly presents LGP and our previous single-
objective LGP-based approach for the design of fast hash
functions in SDM [2]. In particular, it analyzes weaknesses
of the method that motivated the research presented in this
paper.

A. Linear Genetic Programming

Linear genetic programming (LGP) [20], [21], [22] is a
form of genetic programming in which candidate programs
are encoded as sequences of instructions and executed on a
register machine. Example of a candidate program is given in
Figure 2.

In LGP, every instruction typically includes an operation
(instruction code), one or two source registers and a destination
register. One-register instructions operate with one register as
the destination register (e.g. r0 = read sensor(); load constant
to register r1 etc.). Two-register instructions operate with
one source and one destination register (e.g. r0 = sin(r1);
r0 = bitwise rotation(r1)). Three-register instructions op-
erate with two source registers and one destination register
(e.g. r0 = r1+r2). The number of instructions in a candidate
program is variable, but the minimal and maximal values
are usually defined. The number of registers available in a
register machine is constant. The result is returned in a se-
lected register. The function (instruction) set contains general-
purpose (e.g. addition and multiplication) and domain-specific
(e.g. read sensor) instructions. LGP is usually used with basic
genetic operators (tournament selection, crossover, mutation).
However, advanced genetic operators were also proposed, for
example [23], [24].

B. LGP for Hash Function Design

In our previous work [2], LGP was used to deliver a special
hash function for hashing of network flows by means of a
hash table with separate chaining. Each network flow can be
uniquely identified by a 5-tuple. For IPv4, the 5-tuple contains

1534

source and destinations IP address (2× 32 bits), source and
destination ports (2× 16 bits) and transport protocol (8 bits).
As the network flow identifier has a constant length of 104
bits in SDM, the hash function evolved by LGP accepts only
104 bits. Restricting the input to 104 bits enabled to process
the whole input string in one step, without sequential reading
the input data and multiple executions of the hash function,
shortening thus the execution time.

In order to even simplify the problem, the 104 bit input
vector was reduced to 3 x 32 bits in such a way that the source
and destination IP addresses remain in the original format and
a new 32 bit vector is created from the source and destination
port (sp, dp) and transport protocol (tp) according to formula

((sp << 16) ∨ dp)⊕ tp.

No significant loss of information was reported after applying
this simple approach.

LGP operated with a 32 bit register machine. Universal hash
functions typically contain instructions such as logical XOR,
addition, multiplication and rotation. Hence, we included these
operations to our instruction set. Randomly created programs
composed of these instructions constituted the initial popula-
tion. We used standard genetic operators such as tournament
selection, one-point crossover and mutation.

A single objective search was guided by the fitness function
reflecting the quality of hashing. Let Ki inputs (keys) be
mapped into i-th memory slot by a candidate hash function h.
Then the fitness f(h) was defined as the weighted number of
collisions:

f(h) =
s∑

i=1

gi, where (1)

gi =

{
0 if Ki ≤ 1∑Ki

j=2 j
2 if Ki ≥ 2

(2)

where s is the number of memory slots. This function clearly
penalized candidate hash functions showing many collisions
and thus long lists in the hash table with separate chaining.
The objective was to minimize f(h).

The execution time was controlled indirectly, by formulat-
ing a constraint that the maximum chromosome size is 12
instructions.

C. Lessons Learned

Experiments reported in [2] confirmed that LGP can evolve
hash functions for SDM (i) that show at least the same quality
of hashing as common hash functions and (ii) that are faster
than these common functions. In order to perform a fair
comparison with conventional hash functions that are available
at the level of C code, evolved hash functions as well as 11
common hash functions were implemented in C, compiled
(with the code optimization parameter -O3) for the same
processor and executed many times to obtain the average exe-
cution time and quality on three data sets. One of the evolved
hash functions, LGPhash1, reduced the execution time by
35% on average with respect to Murmur3 hash function [11],

which is typically used in SDM. These results were obtained
with the instruction set consisting of addition, XOR and
shift operations. Enabling the multiplication operator in the
instruction set improved the quality of hashing insignificantly,
but the execution time increased by 5-10%. No improved was
obtained by increasing the maximum chromosome size to 20
instructions.

Although we evolved good hash functions, we revealed the
following drawbacks after detailed examination of the results:
(1) As the chromosome could contain up to 12 instructions,
we generated short and fast programs, but we did not optimize
the execution time. Resulting hash functions were selected
manually, on the basis of their functionality solely, i.e. we
potentially overlooked faster hash functions showing good
quality. Figure 3 reports the number of evolved hash functions
(y-axis) with a particular execution time (x-axis) in a 200
member LGP population. The execution time is the average
time from 20 independent runs of a particular hash function
compiled for a target processor (Intel XEON E5-2620v3) and
executed using a test set. The execution time of most hash
functions is concentrated in the 1 ms - 2 ms interval, where
we were looking for the best-performing hash functions for our
comparisons. However, there exist much faster hash functions
as seen around and below 1 ms on the x-axis.

100 101

Time [ms]

100

101

102

Fr
eq

ue
nc

y

Fig. 3. The number of hash functions with a particular execution time in a
200 member LGP population.

(2) Counting the number of instructions in the fitness
function can only indirectly reflect the execution time. The
reason is that particular instructions have different execution
times that have to be reflected in the correct estimate of the
total execution time of the hash function. We measured the
execution time of randomly generated 1 million instruction
programs consisting of just one type of instructions and
observed that multiplication is 3 times more expensive than
other instructions used in hash functions. This observation is

1535

consistent with clock cycles performed for given instructions
by our processor.

(3) As modern processors introduce parallel processing at
the level of instruction execution, real execution time depends
on how the instructions are scheduled for parallel hardware
pipelines. For example, if there are no dependencies between
the instructions they can be executed in parallel, reducing thus
significantly the total execution time of the hash function.

(4) The total execution time clearly depends on the quality
of the hash function because fast but weak hash functions will
generate many collisions and additional sequential processing
of items in the hash table. Hence, a multi-objective optimiza-
tion approach is needed.

IV. MULTI-OBJECTIVE EVOLUTION OF HASH FUNCTIONS

In order to eliminate the drawbacks reported in the previous
section and evolve hash functions showing good tradeoffs
between the execution time and quality of hashing, we will
construct the search algorithm as a multi-objective LGP mini-
mizing two objectives: (i) the number of collisions (according
to eq. 1) and (ii) the execution time. As it is very time
consuming to obtain the real execution time for a candidate
solution on a particular processor, the execution time will be
estimated.

A. Execution Time Estimation
At the level of chromosome, the number of instructions

can be restricted as recommended in [2]. However, a candi-
date fixed-size program can still contain unused code parts,
called bloat, which do not affect the fitness value (result).
There are two types of unused instructions. In the first case,
there are instructions whose result is not used by any other
instruction (structural redundancy). In the second case, there
are instructions whose execution does not affect contents
of registers (semantic redundancy). The proposed algorithm
estimates the execution time as the number of instructions that
will be executed when the candidate program is compiled and
redundant instructions are removed. Note that multiplication
is counted with weight 3, but this is omitted in the pseudo
codes to keep them more readable. It is assumed that there is
one register containing the output value.

Algorithm 1 removes structurally redundant instructions. In
a candidate program p, last instruction i which modifies the

Algorithm 1: Execution time estimation (simple)
Input: Candidate program p
Output: The number of used instructions

used-instructions = 0;1

used-registers ← Insert(output-register);2

while 〈 i ← getLastInstruction(p) 〉 do3

if DestinationRegister(i) ∈ used-registers then4

used-registers ← Insert(source-registers(i));5

Increment(used-instructions);6

remove instruction i from p;7

return used-instructions;8

output register is detected. Then, destination and source reg-
isters of instruction i are inserted to a set of used registers. In
the next step, the algorithm moves backward in the candidate
program and checks if a given instruction uses some registers
from the set of used registers as the destination register. If
so, source registers of such instruction are inserted to the set
of used instructions. Every instruction affecting content of the
output register thus increases the number of used instructions.
Weights are assigned to some instructions to reflect their
higher complexity.

Algorithm 2 performs a basic semantic analysis of a can-
didate program. It also captures the instruction level paral-
lelism [25] known as SIMD (Single instruction multiple data).
SIMD processing refers to a mechanism that enables to process
multiple data with a single instruction. Modern CPUs can
typically process 256 bits at once which means that eight 32-
bit operations can be executed in one instruction instead of
executing 8 instructions sequentially.

First, Algorithm 2 employs Algorithm 1 to remove struc-
turally redundant instructions. In the next step, it is determined
for all instructions when they can be executed. The ASAP (As
Soon As Possible) routine checks if some source registers of

Algorithm 2: Execution time estimation (advanced)
Input: Candidate program p
Output: The number of used instructions

used-instructions = 0;1

r ← remove structurally redundant instructions from p2

using Alg.1;
M ← create matrix for instructions;3

for i in r do4

M ← using ASAP and ALAP routines to determine5

when i can be executed;
while 〈 Some instruction(s) exist in M〉 do6

I ← find in M all instructions of the same type7

which can be executed together;
remove I from M ;8

increment(used-instructions);9

return used-instructions;10

Fig. 4. Example of scheduling for a program given in Fig. 2. Instructions 3
and 4 can be executed together.

1536

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

Number of instructions
0

10

20

30

40

50

60

70

N
um

be
r o

f i
ns

tru
ct
io
ns

 in
 a
ss

em
bl
y
co

de

Non-optimizable

Algorithm 2

Algorithm 1

Fig. 5. The number of instructions in assembly code for 400 randomly generated programs containing 1 - 39 instructions, where the number of instructions
was calculated according to Algorithm 1 (the median shown in green) and Algorithm 2 (the median is shown in blue). The size of non-optimizable programs
is shown using the black line.

instruction i are modified by some previous instructions. These
dependences are marked in matrix M . All instructions from
the beginning up to this modification can be executed together
with instruction i. If the destination register of instruction i
is used in some previous instruction j as destination register,
instruction j is deleted from M , because instruction i modifies
the destination register without using its value. The ALAP (As
Late As Possible) routine checks if the destination register of
instruction i is used in some following instructions as a source
register. If so, it is marked in M . If it is used as a destination
register, instruction i is removed from M , because its value
is not used. All instructions up to this modification can be
executed together with instruction i. ASAP and ALAP identify
all instructions that can be executed together.

In the next step, the algorithm identifies those instructions
(of the same type) that can be executed together using one
SIMD instruction on the CPU. It sequentially determines the
largest overlaps of instructions, removes them from M and
increases the number of used instructions. The routine is
repeated until some instruction(s) exist in matrix M . Example
of scheduling for the program given in Fig. 2 is shown in
Fig. 4. In this case, only instructions 3 and 4 can be executed
together. The last instruction has to be executed independently.
The total number of instructions estimated by Algorithm 2 is

4. Algorithm 1 outputted 5 instructions (the weights reflecting
the different complexity of instructions are not considered in
our example).

In order to validate the proposed method, we compared
the number of instructions produced by the C compiler for
programs whose size was estimated by Algorithm 1 and
Algorithm 2. We randomly generated 400 programs containing
exactly k instructions according to Algorithm 1. We repeated
the experiment, but the program size was assigned by Algo-
rithm 2. The idea behind this experiment is that programs
containing exactly k instructions according to Algorithm 1
have to be on average shorter in terms of assembly code
generated by the C compiler than programs containing exactly
k instructions according to Algorithm 2. The reason is that
Algorithm 2 can eliminate semantic redundancy and parallel
operations and hence “more instructions” are needed to reach k
instructions in the random program generator. Fig. 5 compares
Algorithm 1 and Algorithm 2 for k = 1 . . . 39 instructions.
Fig. 5 also contains the size of assembly code for manually
created programs that are known to be non-optimizable by the
compiler (black line). As the compiler adds some additional
instructions, the assembly code size (y-axis) is slightly greater
than estimated numbers (x-axis).

1537

Fig. 6. Evolved hash functions from the non-dominated set in Fig. 7.

TABLE I
LGP PARAMETERS

Parameter Value
Population size 200
Crossover probability 90 %
Mutation probability 15 %
Program length 20
Registers count/type 8/32 b – int
Constants {0x6a09e667, 0xbb67ae85,

0x3c6ef372, 0xa54ff53a,
0x510e527f, 0x9b05688c,
0x1f83d9ab, 0x5be0cd19,
0x428a2f98, 0x71374491}

Instruction set {RightRotation (1), XOR (1), + (1), * (3)}
(weight)
Tournament size 4
Maximum number 1000
of generations
Crossover type One-point

B. LGP and NSGA-II

The proposed implementation is based on LGP as used in
paper [2], but the search is conducted by means of NSGA-
II [26]. The maximum program size is 20 instructions in order
to provide more opportunities to find good tradeoffs. The func-
tion set includes typical instructions for hash function design
(addition, multiplication, logical XOR and right rotation). The
set of constants consists of the values that are used in the
initial phase of cryptographic hash function SHA-2 [27].

The initial population is randomly generated. Two fitness
functions are employed to measure (i) the collisions (according
to eq. 1) and (ii) the execution time (according to Algorithm 2).
All training vectors have to be evaluated to obtain the fitness
score.

V. EXPERIMENTS AND RESULTS

The experimental evaluation deals with evolved hash func-
tions and their analysis in terms of quality of hashing and
execution time. Results will be compared with conventional
hash functions and hash functions evolved in [2].

A. Network Data

The network data used in our experiments were collected
with a network monitoring device installed in our research
computer network. Network data were divided into three data
sets containing 20,000 (DataSet1), 50,000 (DataSet2) and
100,000 (DataSet3) identifiers of network flows. Note that the
identifiers of network flows are unique. DataSet1 is used as a
training set for LGP.

B. Hash Functions Used for Comparison

The comparison is intended for the hash table with separate
chaining. Evolved hash functions will be compared with
human-created hash function DJBHash, DEKHash, One At
Time, Lookup3, FVNHash, Murmur2, Murmur3, CityHash,
a special hash function XORHash optimized for network
flows [13], evolved hash functions available in the literature
(GPHash [15], [14] and EFHash [16]) and the best hash
functions LGPHash1 and LGPHash2 evolved for network
flows by LGP in [2]. A 16 bit hash table with separate chaining
is employed for testing all functions. As conventional hash
functions typically produce a 32-bit hash value, we created a
16-bit output using XOR folding [13].

C. Resulting Pareto fronts

In order to obtain the best setup of the algorithm, many
independent runs with different parameters of the algorithm

1538

were performed. Considering the obtained results and param-
eters given in paper [2], we used for final experiments the
setting which is summarized in Tab. I. Note that all LGP runs
reported in [2] stagnated after about 200 generations.

Fig. 7 shows Pareto fronts obtained from 30 independent
runs of LGP. Results of one of the runs, which contains the
best obtained solutions according to particular objectives (i.e.
a solution showing minimum collisions and a solution showing
the minimum number of instructions) were chosen for a
detailed inspection. The corresponding Pareto front containing
7 unique hash functions is given in Fig. 7 (blue squares).
For example, NSGAHash1 (see the C code in Fig. 6) is the
hash function consisting of just one instruction. Its quality of
hashing is not acceptable. On the other hand, NSGAHash7
(see the C code in Fig. 6) provides the best quality of hashing
(in the selected run), but its execution time is the longest one.

D. The Number of Collisions

The hash functions obtained from literature and evolved
hash functions were implemented in C programming language
and compiled with the identical compiler settings. All tests
were then performed with these implementations to ensure
fair comparisons.

Table II gives the number of collisions for all hash functions
on all data sets for 16 bit hash table. The best values are typed
in bold. It can be seen that the multi-objective LGP provides
hash functions with a very similar number of collisions as
other hash functions, but there are solutions (NSGAHash6 and
NSGAHash7) which excel over all available hash functions.

E. The Execution Time

Table III reports the average execution time obtained from
20 independent runs over all data sets. Note that hash functions
having low number of instructions (such as NSGAHash1,
NSGAHash2) do not show the shortest execution time. The
reason is that the number of collisions produced by these hash

3200 3400 3600 3800 4000 4200 4400 4600
Weighted number of collisions (1)

0

2

4

6

8

10

12

14

N
u
m
b
e
r
o
f
in
st
ru

ct
io
n
s

NSGAHash1

NSGAHash2

NSGAHash3

NSGAHash4

NSGAHash5

NSGAHash6

NSGAHash7

Fig. 7. Pareto fronts obtained from 30 independent runs. Selected hash
functions (blue squares) are given in Fig. 6.

TABLE II
THE NUMBER OF COLLISIONS.

Hash function The number of collisions
DataSet1 DataSet2 DataSet3

DJBHash 2835 15113 48925
DEKHash 2926 15247 49017
FVNHash 2756 14957 48780
One At Time 2821 14988 48636
lookup3 2742 15009 48737
Murmur2 2800 15050 48749
Murmur3 2744 14911 48763
CityHash 2807 14990 48647
XORHash 2864 15011 48575
GPHash 2777 15052 48750
EFHash 5317 25266 63175
LGPhash1 2667 15031 48680
LGPhash2 2746 15170 48835
NSGAHash1 2923 15677 49336
NSGAHash2 2746 15170 48835
NSGAHash3 2689 15575 49292
NSGAHash4 2692 15010 48715
NSGAHash5 2759 14975 48749
NSGAHash6 2650 14839 48680
NSGAHash7 2639 14975 48650

TABLE III
THE AVERAGE EXECUTION TIME.

Hash function Time [ms]
DataSet1 DataSet2 DataSet3

DJBHash 1.069 3.608 9.690
DEKHash 0.890 3.210 8.647
FVNHash 1.021 3.546 9.556
One At Time 1.361 4.568 12.024
lookup3 0.721 2.670 7.473
Murmur2 0.787 2.868 7.871
Murmur3 0.929 3.304 8.892
CityHash 0.760 2.736 7.603
XORHash 0.649 2.390 6.774
GPHash 1.448 4.749 12.406
EFHash 1.871 13.560 48.132
LGPhash1 0.591 2.913 6.588
LGPhash2 0.561 2.182 6.336
NSGAHash1 0.568 2.871 8.642
NSGAHash2 0.560 2.182 6.334
NSGAHash3 0.541 2.871 8.500
NSGAHash4 0.561 2.168 6.267
NSGAHash5 0.564 2.191 6.394
NSGAHash6 0.559 2.192 6.369
NSGAHash7 0.593 2.295 6.883

functions is higher which means that more time is needed
to accommodate incoming items in the table. NSGAHash4
provides the shortest execution time because a good tradeoff
between the number of collisions and the complexity of the
hash function was discovered. NSGAHash4 is even better than
hash functions LGPhash1 and LGPhash2 discovered by means
of a single-objective LGP in [2].

F. Overall Quality of Hash Functions

The quality of hashing can be expressed according to [28]
as:

Q =
m−1∑
j=0

bj(bj + 1)/2

(n/2m)(n+ 2m− 1)
, (3)

where bj is the number of items assigned to j-th slot, m is
the number of slots, and n is the total number of items. The

1539

TABLE IV
OVERALL QUALITY OF HASH FUNCTIONS.

Hash function Quality (Q)
DataSet1 DataSet2 DataSet3

DJBHash 1.005 1.004 1.006
DEKHash 1.012 1.012 1.012
FVNHash 0.999 0.998 1.001
One At Time 1.003 1.001 1.000
lookup3 0.999 1.000 0.999
Murmur2 1.001 1.001 1.000
Murmur3 0.999 0.998 1.001
CityHash 1.003 0.999 0.998
XORHash 1.007 0.999 0.997
GPHash 1.001 1.003 1.000
EFHash 1.338 4.045 6.312
LGPhash1 0.996 1.002 0.999
LGPhash2 0.999 1.003 1.001
NSGAHash1 1.010 1.476 1.566
NSGAHash2 0.999 1.003 1.001
NSGAHash3 0.996 1.470 1.560
NSGAHash4 0.996 0.999 1.998
NSGAHash5 0.998 0.998 1.000
NSGAHash6 0.992 0.995 0.999
NSGAHash7 0.993 0.999 1.001

numerator estimates the number of slots a hash function should
visit to find the require value. The denominator is the number
of visited slots for an ideal function that puts each item into
a random slot. An ideal function produces the outputs with a
nearly random distribution probability. If the hash function is
ideal, the formula should return 1, a good quality is between
0.95 and 1.05.

According to this criterion, evolved hash functions as well
as conventional hash functions were evaluated. The Q score
follows the trend of the quality indicator used in LGP (the
number of collisions) as we travel along the Pareto front.

VI. CONCLUSIONS

We proposed a multi-objective linear genetic programming
approach to evolve fast and high-quality hash functions for
common processors programmed as network flow monitoring
devices. It was shown using real world network data that
the proposed method provides better compromise solutions
(in terms of execution time and quality of hashing) than
commonly used hash functions and specialized hash functions
evolved with a single-objective LGP. Our future work will be
devoted to integrating the evolved hash functions to the SDM
concept.

ACKNOWLEDGMENTS

This work was supported by the Czech science foundation
project GP16-08565S.

REFERENCES

[1] L. Kekely, J. Kucera, V. Pus, J. Korenek, and A. Vasilakos, “Software
defined monitoring of application protocols,” IEEE Transactions on
Computers, vol. 65, no. 2, pp. 615–626, 2016.

[2] D. Grochol and L. Sekanina, “Evolutionary design of fast high-quality
hash functions for network applications,” in Proc. of the 2016 Genetic
and Evolutionary Computation Conference. ACM, 2016, pp. 901–908.

[3] R. Dobai, J. Korenek, and L. Sekanina, “Adaptive development of hash
functions in fpga-based network routers,” in 2016 IEEE Symposium
Series on Computational Intelligence. IEEE Computational Intelligence
Society, 2016, pp. 1–8.

[4] W. Mao, Modern cryptography: theory and practice. Prentice Hall
Professional Technical Reference, 2003.

[5] D. E. Knuth, “The art of computer programming (volume 3),” 1973.
[6] R. Pagh and F. F. Rodler, “Cuckoo hashing,” in Algorithms ESA 2001,

ser. LNCS 2161. Springer, 2001, pp. 121–133.
[7] W. D. Maurer and T. G. Lewis, “Hash table methods,” ACM Computing

Surveys (CSUR), vol. 7, no. 1, pp. 5–19, 1975.
[8] D. J. Bernstein, “Mathematics and computer science,”

https://cr.yp.to/djb.html, [ONLINE, accessed: 31. 1. 2016].
[9] G. Fowler, P. Vo, and L. C. Noll, “FVN Hash,”

http://www.isthe.com/chongo/tech/comp/fnv/, [ONLINE, accessed:
31. 1. 2016].

[10] B. Jenkins, “A hash function for hash table lookup,”
http://www.burtleburtle.net/bob/hash/doobs.html, [ONLINE, accessed:
31. 1. 2016].

[11] “Murmur hash functions,” https://github.com/aappleby/smhasher, [ON-
LINE, accessed: 31. 1. 2016].

[12] G. Pike and J. Alakuijala, “Introducing cityhash,” 2011.
[13] Z. Cao and Z. Wang, “Flow identification for supporting per-flow queue-

ing,” in Computer Communications and Networks, 2000. Proceedings.
Ninth International Conference on. IEEE, 2000, pp. 88–93.

[14] C. Estébanez, J. C. Hernández-Castro, A. Ribagorda, and P. Isasi, “Find-
ing state-of-the-art non-cryptographic hashes with genetic program-
ming,” in Parallel Problem Solving from Nature-PPSN IX. Springer,
2006, pp. 818–827.

[15] C. Estebanez, J. C. Hernandez-Castro, A. Ribagorda, and P. Isasi,
“Evolving hash functions by means of genetic programming,” in Pro-
ceedings of the 8th annual conference on Genetic and evolutionary
computation. ACM, 2006, pp. 1861–1862.

[16] J. Karasek, R. Burget, and O. Morskỳ, “Towards an automatic design
of non-cryptographic hash function,” in Telecommunications and Signal
Processing (TSP), 2011 34th International Conference on. IEEE, 2011,
pp. 19–23.

[17] S. Varrette, J. Muszynski, and P. Bouvry, “Hash function generation by
means of gene expression programming,” Annales UMCS, Informatica,
vol. 12, no. 3, pp. 37–53, 2013.

[18] H. Widiger, R. Salomon, and D. Timmermann, “Packet classification
with evolvable hardware hash functions - an intrinsic approach,” in
Biologically Inspired Approaches to Advanced Information Technology,
Second International Workshop, BioADIT 2006, 2006, pp. 64–79.

[19] P. Kaufmann, C. Plessl, and M. Platzner, “EvoCaches: Application-
specific Adaptation of Cache Mappings,” in Adaptive Hardware and
Systems (AHS). IEEE CS, 2009, pp. 11–18.

[20] M. Brameier and W. Banzhaf, Linear genetic programming. New York:
Springer, 2007.

[21] M. Oltean and C. Grosan, “A comparison of several linear genetic
programming techniques,” Complex Systems, vol. 14, no. 4, pp. 285–
314, 2003.

[22] G. Wilson and W. Banzhaf, “A comparison of cartesian genetic pro-
gramming and linear genetic programming,” in Genetic Programming.
Springer, 2008, pp. 182–193.

[23] M. Defoin Platel, M. Clergue, and P. Collard, “Maximum homologous
crossover for linear genetic programming,” in Genetic Programming,
ser. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2003, vol. 2610, pp. 194–203.

[24] C. Downey, M. Zhang, and W. N. Browne, “New crossover operators
in linear genetic programming for multiclass object classification,” in
Proceedings of the 12th annual conference on Genetic and evolutionary
computation. ACM, 2010, pp. 885–892.

[25] D. W. Wall, Limits of instruction-level parallelism. ACM, 1991, vol. 19,
no. 2.

[26] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast elitist non-
dominated sorting genetic algorithm for multi-objective optimization:
Nsga-ii,” in International Conference on Parallel Problem Solving From
Nature. Springer, 2000, pp. 849–858.

[27] “Secure hashing,” http://csrc.nist.gov/groups/ST/toolkit/secure hashing-
.html, [ONLINE, accessed: 31. 1. 2016].

[28] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers, Principles, Tech-
niques. Addison wesley, 1986.

1540

