
E

R
B

a

A
R
R
A
A

K
E
H
N
F
C

1

w
b
t
a
m
m
F
p
o
t
r
o
i
m
a

n
t
o
m
t

(

h
1

Applied Soft Computing 56 (2017) 173–181

Contents lists available at ScienceDirect

Applied Soft Computing

j ourna l h o mepage: www.elsev ier .com/ locate /asoc

volutionary design of hash function pairs for network filters

oland Dobai ∗, Jan Korenek, Lukas Sekanina
rno University of Technology, Faculty of Information Technology, Centre of Excellence IT4Innovations, Czech Republic

 r t i c l e i n f o

rticle history:
eceived 19 August 2016
eceived in revised form 22 February 2017
ccepted 6 March 2017
vailable online 12 March 2017

a b s t r a c t

Network filtering is a challenging area in high-speed computer networks, mostly because lots of filtering
rules are required and there is only a limited time available for matching these rules. Therefore, network
filters accelerated by field-programmable gate arrays (FPGAs) are becoming common where the fast
lookup of filtering rules is achieved by the use of hash tables. It is desirable to be able to fill-up these
tables efficiently, i.e. to achieve a high table-load factor in order to reduce the offline time of the network
eywords:
volutionary algorithm
ash function
etwork filter
ield-programmable gate array
uckoo

filter due to rehashing and/or table replacement. A parallel reconfigurable hash function tuned by an
evolutionary algorithm (EA) is proposed in this paper for Internet Protocol (IP) address filtering in FPGAs.
The EA fine-tunes the reconfigurable hash function for a given set of IP addresses. The experiments
demonstrate that the proposed hash function provides high-speed lookup and achieves a higher table-
load factor in comparison with conventional solutions.

© 2017 Elsevier B.V. All rights reserved.
. Introduction

Computer networks are a potentially dangerous environment
here the integrity and the security of shared data can be violated

y an attacker. The monitoring and filtering of the communica-
ion can be a countermeasure against attacks and other unlawful
ctivities such as the illegal sharing of copyrighted data. After a
onitoring network node receives a data packet the processing
ust be completed in the time given by the speed of the network.

or example, in future 400 Gbps networks there are only a cou-
le of nanoseconds available for performing all of the required
perations on the packet. On the other hand, the processing of
he packets requires time consuming operations such as finding
ecords in tables, updating data in other tables and external mem-
ry accesses. The performance of general-purpose processors is
nsufficient and, therefore, network monitors and filters are imple-

ented and accelerated, for example, in field-programmable gate
rrays (FPGAs) [1,2].

A common identification of the attacker is based on its Inter-
et Protocol (IP) address. The network monitor needs to lookup
he source IP address of the packet in various tables, e.g. in a table

f nodes for monitoring and blacklisting. These tables are imple-
ented usually as hash tables with constant worst-case lookup

ime [3,4]. Hash tables with linear worst-case lookup cannot be

∗ Corresponding author.
E-mail addresses: dobai@fit.vutbr.cz (R. Dobai), korenek@fit.vutbr.cz

J. Korenek), sekanina@fit.vutbr.cz (L. Sekanina).

ttp://dx.doi.org/10.1016/j.asoc.2017.03.009
568-4946/© 2017 Elsevier B.V. All rights reserved.
used because it is impossible to guarantee that the packet will be
processed in time. Linear lookup is the result of mapping more than
one IP addresses to the same table position which means that all
table records in the given position need to be compared during the
lookup.

Constant worst-case lookup can be achieved by perfect hash
functions [5] which map each IP address to a unique position in the
table and no additional search is required after identifying the table
position. However, the hash function has a relatively large memory
overhead requiring at least 2 bits per each IP address [6]. Inser-
tion of additional IP addresses into the table requires the rebuilding
(rehash) of the table which can take considerably longer than the
time available for filtering because the filter must be put offline for
rehashing, or a switch to an alternative filter is required. The disad-
vantages of perfect hashing motivated the researchers to consider
cuckoo hashing [7] as an alternative for hashing in FPGAs [8–11].

Cuckoo hashing uses two or more hash functions. These func-
tions map items to a different part of the hash table. The insertion
of a new item into the table is performed as follows. The hash is
computed for the item which determines its position in the table.
If the item is mapped to an occupied position then it pushes out
the previous occupant from that position just like the offspring
of the namesake European brood-parasitic bird cuckoo pushes out
the other eggs from the nest. The pushed-out item is rehashed by
another hash function into a different position of the hash table.

Cuckoo hashing with two hash functions h and q is shown in Fig. 1
where item 1 is hashed by h into the table, and item 2 is pushed-
out and is rehashed by q elsewhere into the table. The items are
repeatedly pushed-out and rehashed by using the available hash

dx.doi.org/10.1016/j.asoc.2017.03.009
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2017.03.009&domain=pdf
mailto:dobai@fit.vutbr.cz
mailto:korenek@fit.vutbr.cz
mailto:sekanina@fit.vutbr.cz
dx.doi.org/10.1016/j.asoc.2017.03.009

174 R. Dobai et al. / Applied Soft Com

f
i
t
m
o
h
r

b
w
a
g
p
s
t
A
a
r

i
t
t
fi
r
S

2

a
c
i
l
b
o
fi
c
c
t

2

a

Fig. 1. Cuckoo hashing with two hash functions.

unctions and, as a consequence, cuckoo hashing can rearrange the
tems in the table. It is possible that the same item is pushed-out
wice. In this case an unresolvable collision exists and the table

ust be rehashed with new hash functions just like in the case
f perfect hashing. However, the iterative rearrangement gives a
igher probability for the insertion to be successful. Perfect hash
equires time consuming rehashing more often [5,7].

The work presented in this paper uses cuckoo hashing for FPGA-
ased IP address filtering. A pipelined reconfigurable hash function
ith parallel computation is proposed. The proposed evolutionary

lgorithm (EA) fine-tunes the reconfigurable hash function for the
iven set of IP addresses selected for filtering/monitoring. The pro-
osed hash function provides the lookup of IP addresses at a speed
uitable for high-speed computer networks and achieves a higher
able-load factor in comparison with conventional hash functions.
s a consequence, the tables are filled up with more IP addresses
nd the filter will be offline less frequently due to rehashing or table
eplacement.

The rest of the paper is organized as follows. Sections 2 and 3
ntroduce the state-of-the-art of hashing in FPGAs and the evolu-
ionary design of hash functions, respectively. Section 4 deals with
he proposed FPGA-based system for IP address filtering. The recon-
gurable hash function is proposed in Section 5. The experimental
esults are discussed in Section 6 and the paper is concluded in
ection 7.

. Hashing in FPGA-based network filters

FPGA is a device consisting of universal, reconfigurable elements
rranged into a two-dimensional array and reconfigurable inter-
onnections between them. The desired functionality is mapped
nto various elements: Boolean functions usually into several
ookup tables (LUTs), larger memory blocks into collections of
lock random-access memories (BRAMs) and complex arithmetic
perations into digital signal processing (DSP) slices. These recon-
gurable elements are interconnected in order to achieve more
omplex functionality. The configuration for elements and inter-
onnections are assembled into the bitstream and uploaded into
he FPGA which result in the given configuration in the hardware.
.1. Hashing and collisions

There exists no accurate definition of hashes [12] but, in general,
 hash function processes a variable-length input and produces the
puting 56 (2017) 173–181

fixed-length output called hash. In hashing tables the hash is used
as the address for the item. For example, the hash computed for
the given IP address determines its location as the offset from the
beginning of the hash table.

More than one input can have the same hash, therefore, two or
more IP addresses can be assigned to the same table location. This
is called a collision and can have a negative effect on the lookup
time because all of these collided IP addresses need to be checked
and compared. Collisions occur more frequently when the table
utilization is more than 50% [12]. Neither such a low utilization
nor increased lookup time are acceptable in high-speed network
monitors implemented in FPGAs with limited memory resources.

2.2. Cuckoo hashing and challenges of FPGA implementations

Cuckoo hashing uses more than one hash functions which allows
us to achieve higher table utilization without collisions [7]. A col-
lision is resolved by rearranging the table items. Employing more
hash functions results in a higher number of records in the table
without collision. An unresolvable collision occurs usually with two
hash functions when around 50% of the table is already used, around
90% with three and 95% with four hash functions [8,13]. The use
of four hash functions, however, requires four memory accesses
which might be feasible by only using multiple memory interfaces
in parallel because one external memory access requires time very
close to what is available for filtering in 400 Gbps networks. Hash
tables for IP filters need to be in external memories because of
their size. Multiple memory interfaces are available in the latest
and most advanced 400 Gbps network cards based on FPGAs [1,2],
but just one filter application cannot occupy the whole memory
bandwidth because other filtering and monitoring applications are
required as well.

It is possible to place some small and limited number of IP
addresses into the same table position [14]. However, even two
sequential memory accesses for two items in a position can take
longer than the time available for the lookup. Furthermore, more
items in a table position multiplies the memory requirements and,
therefore, very limited internal memory resources like BRAMs can-
not be used.

Placing the conflicted IP addresses into another table is also pos-
sible [15]. This table can be implemented as content-addressable
memory but requires a considerable amount of resources in the
FPGA. The capacity of the additional memory is significant, requir-
ing about 1/64 to 1/16 the total capacity of the main hash table
[3].

Hash tables with cuckoo hashing use generic hash functions
which were developed to work well in general for various types
of inputs, but were not optimized for working together for cuckoo
hashing. Popular hash functions are the Jenkins hash functions like
lookup3, SpookyHash and functions used for cyclic redundancy
check (CRC) computation [3,11].

The work presented in this paper considers cuckoo hashing with
two functions only in order to limit the memory accesses. Fur-
thermore, the proposed approach requires no memory overhead.
The two hashes are computed with two instances of the proposed
reconfigurable hash function which are optimized to work well
together for cuckoo hashing. The goal of the optimization is to
improve the table utilization (table-load factor) without introduc-
ing any time or hardware overhead.

3. Evolutionary design of hash functions
Since there is no definition for the exact behavior of the hash
function one cannot use a deterministic algorithm for development
[12]. Characteristics such as output uniform distribution, table-load

t Computing 56 (2017) 173–181 175

f
h
a
v
d
t

u
r
g
E
r
C
v
fi
t
w
o
b

b
[
a
(
i
p

a
[
p

w
o
t

l
t
s
t
t
t

4

o
m
m
t
T
e

t

4

t
n
T
t
r
a
f
i

R. Dobai et al. / Applied Sof

actor, collision rate and avalanche effect can be used to evaluate
ash functions, but it is not known how to reverse this process
nd define the function which will have good characteristics for
arious inputs. General-purpose hash functions used today were
eveloped by experts with years of experience and are based on
heir intuitions for finding hash functions.

EAs can be successfully used for domains where the system
nder development cannot be well defined and is partly error
esilient, e.g. image filters, packet classifiers and other examples
iven in [16]. EAs work with a population of candidate solutions.
ach solution is evaluated and its fitness is determined. The fitness
eflects how good the solution is for solving the given problem.
andidate solutions with better fitness have a better chance to sur-
ive. The population is extended by new solutions created from the
ttest solutions. A certain number of generations are produced and
he population fitness usually improves over time if the EA is tuned
ell. The search is concluded when a limit is reached, e.g. the time

f evolution or the number of generations. The solution with the
est fitness is proclaimed as the result of the search.

Hash functions were developed by using EAs, more precisely
y genetic programming (GP) [17,18] and grammatical evolution
19]. The variable size of the candidate hash functions makes these
pproaches inefficient for FPGAs. Cartesian genetic programming
CGP) [20] uses fixed-size candidate solutions which map well
nto FPGAs. CGP-based hash function evolution was proposed for a
acket classifier [21].

State-of-the-art methods are using the avalanche effect [17]
s the fitness function or trying to minimize the collision rate
19]. These approaches are aimed at the development of general-
urpose hash functions.

The work presented in this paper evolves hash function pairs
hich work well together for cuckoo hashing and for the given set

f IP addresses. Therefore, the evolved hash functions are custom
ailored and not general purpose.

The preliminary results were published in [22] where a non-
inear feedback shift register (NLFSR) was used and optimized as
he hash function. However, these functions process the IP address
equentially (bit after bit) and, therefore, the lookup is multiple
imes slower than that of the parallel computation considered in
his paper. The proposed hash function pair significantly improves
he table-load factor, as it will be demonstrated later.

. IP address filtering

The system for IP address filtering is shown in Fig. 2. It consists
f three main parts: the software (SW), the FPGA and the external
emory (ext). The evolutionary design of hash functions is imple-
ented in SW. The hash function configurations are uploaded into

he FPGA where the IP address filtering is performed at high-speed.
he hash table containing the desired set of IP addresses is in the
xternal memory (ext).

The system is designed in such a way that it can be integrated
o commercially available monitoring solutions [2].

.1. IP address lookup in the FPGA

The IP address lookup is implemented in the FPGA in order
o achieve processing speed necessary for high-speed computer
etworks. The steps of the lookup are highlighted in Fig. 2: (a)
he content of the configuration register sets the configuration of
he hash function pair via multiplexers. The content can be even

andom in the beginning because the hash table is still empty
nd low table utilization can be achieved even with a “bad” hash
unction. (b) IP addresses selected for filtering/monitoring are sent
nto the FPGA and (c) inserted into the hash table by cuckoo
Fig. 2. IP address filtering with the evolution of new hash functions.

hashing. The insertion has a linear complexity because cuckoo
hashing may rearrange the previous contents prior to inserting
a new IP address. This is acceptable since network filters require
fast and uninterrupted lookup but can tolerate longer insertion
times. (d) Packet processing starts with the parsing and extraction
of the IP address. (e) The source IP address is looked-up in the hash
table. (f) The packet filter either drops the packet or performs log-
ging/monitoring if there is a match of the source IP address in the
hash table.

It can be desirable to optimize the hash functions for table uti-
lization after a time. The optimization is executed by the SW in
regular intervals and the resulted new hash functions are uploaded
into the FPGA. The upload is fast and is a matter of only a couple
of milliseconds because the IP addresses are pre-processed in the
SW. The network traffic can be stored in buffers when the traffic is
slow and the hash tables can be updated in the filter without any
packet loss.

4.2. Evolution of new hash function configurations

The goal of the evolution is to optimize the hash function pair
for the high table-load factor, i.e. to achieve that new IP addresses
could be inserted into the table, which was not possible with the
current hash functions. The evolution might ensure that the filter
could be extended with new IP addresses and delay the moment
when the IP filter needs to be replaced with hash tables of a higher
capacity.

The evolutionary optimization shown in Fig. 2 takes place as fol-
lows. (1) The whole process is guided by the EA which works with
a population of candidate hash function pairs. (2) The IP addresses
which are already in the filter are supplemented by addresses

which cannot be inserted into the hash table because of the limita-
tion of the hash functions in the filter. The new set of IP addresses is
used for training new candidate hash functions. (3) Each IP address
is hashed and (4) inserted into the hash table in the SW-based

176 R. Dobai et al. / Applied Soft Computing 56 (2017) 173–181

sh fun

s
t
w
t
A
o
c
o
a
E
o
T
d
h
t
i
c

4

d
n

h
a
b
p
s
i
s

d
e

4

a
c
t
t

t
t

5

w
t

Fig. 3. Proposed pipelined reconfigurable ha

imulator. (5) The IP address pushes-out the previous occupant at
he given table position which is rehashed into another position
ith the another hash function. Steps (3–5) are repeated until all

he collisions are resolved or an unresolved collision is detected.
n unresolved collision occurs if the first IP address is pushed-
ut again from the table. (6) If the collisions are resolved then the
ounter of the successful insertions is incremented and the process
f inserting a new IP address starts from step (2). (7) In the case of
n unresolvable solution, the content of the counter is used by the
A as the fitness of the candidate hash function pair. The process
f evaluating other candidate functions follows from step (1). (8)
he evolution is concluded after a pre-selected number of candi-
ate solutions is generated and evaluated. The configuration of the
ash function pair which achieved the best fitness is uploaded into
he FPGA. New IP addresses can now be added into the hash table
n the FPGA starting with step (b) after which the new IP addresses
an be found in the table and the packets are filtered/monitored.

.3. Evolutionary algorithm

Candidate hash functions are encoded using bitstrings which
efine the configurations for configurable hash function compo-
ents.

The evolution starts with a random population of � candidate
ash function pairs. The candidate hash functions are evaluated
nd their fitness is determined. The hash function pair with the
est fitness is selected and the other functions are discarded. The
opulation of � individuals is completed by creating � − 1 off-
pring solutions from the fittest hash function pair. An offspring
s spawned by copying the chromosome of the parent and making
everal random modifications, mutations in the chromosome.

This process of selection and reproduction is repeated until a
esired number of candidate hash function pairs is generated and
valuated.

.4. Fitness

Candidate hash function pairs are evaluated as follows. IP
ddresses are inserted into the hash table until an unresolvable
ollision is detected, i.e. the IP address cannot be inserted into the
able. The number of successful insertions is used as the fitness of
he candidate hash function pair.

This measurement reflects how well the function pair works
ogether and it directs the search towards pairs which achieve
ogether a high table-load factor.

. Reconfigurable hash functions for FPGA-based IP filters
In general, a hash function is a Boolean function h : Bx → By

here x is the number of input bits and y the number of bits in
he output hash.
ction component with parallel computation.

The hash function for an IP address version 4 requires the
processing of x = 32 inputs. The size of the output depends on the
required capacity of the hash table but it can be assumed that it has
at least y = 10 bits. Therefore, the problem of the hash function pair
design can be classified as hard.

A pipelined reconfigurable hash function component with par-
allel computation is proposed in this paper. The hash function was
developed with the goal of being parallel, i.e. process all the inputs
at once; and to be pipelined (i.e. produce a hash in each clock cycle).
Another goal was to help the search by only allowing such possi-
ble configurations which are all good for hashing with a reasonable
probability.

The proposed reconfigurable hash function component is shown
in Fig. 3 where I0, . . ., I31 are the bits of the IP address, F1, . . ., F43 are
reconfigurable function-blocks, Si,j are 1-bit registers for all j ∈ {0,
. . ., 12 − 1} and all i ∈ {0, . . ., 43}; all under the assumption that 12-
bit hashes are computed. Actually, two hash functions are used for
a hash function pair and the hash table has a capacity of 2 × 212 = 8k.
The seed (initial value) of the hash is (S0,11, . . ., S0,0) and the result
of the hash computation is (S43,11, . . ., S43,0).

The seed is propagated through 43 stages of the hash function
and is mixed with each input bit of the IP address. 32 stages are used
for processing the 32-bits of the IP address and additional 12 − 1
zeros are mixed into the hash value in 12 − 1 stages, where 12 is the
length of the hash in the example. These “zero stages” are used to
enforce one of the characteristic properties of good hash functions:
each input should have an influence on all of the outputs. Since
the last processed bit of the IP I31 influenced only S32,0, therefore,
12 − 1 additional stages are used in order to propagate the bit to
S32+12−1,0+12−1 = S43,11.

5.1. Processing in a stage

Each processing stage i + 1 performs two operations based on
bits Si,j of the previous state and input bit Ii:

1. The state bits Si,j are shifted in the direction from j = 0 to j = 11 by
one position and Si,11 is discarded.

2. Function block Fi+1 computes Si+1,0 as the combination of the
previous state bits Si,j and input bit Ii.

The result is the new state (Si+1,0, . . ., Si+1,11) = (Si+1,0, Si,1, Si,2, . . .,
Si,10) = (Fi+1, Si,1, Si,2, . . ., Si,10) by using the shifted previous state
(Si,1, . . ., Si,10) and Fi+1 as described previously in steps 1 and 2,
respectively.
Function blocks Fi+1 are reconfigurable as shown in Fig. 4 and
used as follows. Configuration bits Mi,0, . . ., Mi,11 enable/disable by
AND gates the state bits Si,0, . . ., Si,11 in the XOR gate. For example,
if Mi,0 = 0 then S′

i,0 = 0 and Si,0 does not influence the results, or else

R. Dobai et al. / Applied Soft Computing 56 (2017) 173–181 177

F

i
o

s
t
u
F
s
i

5

p
s
M
M
a
h

5

a
u
i
s

t
t
d
a
b
I
s
o
s

a
o
p
w
p
t
w
f

t
f

ig. 4. Reconfigurable function-block for stage i + 1 in the pipelined hash function.

f Mi,0 = 1 then S′
i,0 = Si,0 and therefore Si,0 will be applied to the

utput through the XOR gates.
The function block applies one or two AND operations to the

tate inputs. These are also included in the final result Fi+1 through
he XOR gate. The states are selected for these operations by the
se of multiplexers (MUXs) and configuration inputs selAi, . . ., selDi.
or example, if selAi = 0 then Ai = Si,0, if selAi = 11 then Ai = Si,11. The
econd, optional AND gate can be turned on/off by Eni. For example,
f Eni = 0 then Hi = 0, or if Eni = 1 then Hi = Ci ∧ Di.

.2. Chromosome for representing the candidate solution

A candidate solution is the configuration of the hash function
air and is represented by the chromosome in the EA. The chromo-
ome contains the following items for both hash functions: Mi,0, . . .,

i,12−1, selAi, selBi, selCi, selDi, Eni shown in Fig. 4 where Mi,0, . . .,
i,12−1, Eni ∈ {0, 1} and selAi, selBi, selCi, selDi ∈ {0, . . ., 12 − 1} for

ll i ∈ {0, . . ., 32 − 1 +12 − 1} considering 32-bit inputs and 12-bit
ash functions.

.3. Search space

The search space is significantly reduced because it does not
llow us to develop arbitrary Boolean functions. All of the config-
rations represent good mixing functions of the inputs with the

nitial seed. The EA can be more successful in this limited search
pace than if it would have to develop hash functions from scratch.

State bits Si,j are shifted in the direction from j = 0 to j = 11. On
he other hand, Fi+1 mixes some of the state bits and puts them to
he beginning of the shift. Therefore, input bits propagate in both
irections and are well mixed with the state bits. A more general
pproach would be to develop functions individually for all state
its, i.e. develop 43 × 12 function blocks instead of the current 43.
t is obvious that the search space would be much larger and the
earch will be probably less successful. The use of shifting and only
ne function-block per stage ensure a simpler complexity of the
earch, but also good mixing at the same time.

This behavior is motivated by NLFSRs. A Fibonacci-type NLFSR is
 shift register with a feedback function containing XOR and AND
perations over the state bits. However, NLFSR is sequential, i.e.
roduces one input in each clock cycle. The parallel version of NLFSR
ith the restriction of F1 = F2 = · · · = F43 would be equivalent to the
roposed hash function. By allowing for the inequality between
he function-blocks of the stages, one can develop a hash function
hich can be described as parallel NLFSR with changing feedback
unctions in each clock cycle.
The proposed hash function component includes another struc-

ural constraint in order to limit the search space. Feedback
unctions of NLFSRs with a maximal period mostly contain only
Fig. 5. Input sequencer for the pipelined hash function.

one or two AND operations between states [23]. This observation
motivated the structure of the proposed function-block which con-
tains one mandatory AND and a second which is optional and is
enabled/disabled by Eni as can be seen in Fig. 4.

5.4. Pipelined hash computation

Fig. 5 shows the input sequencer for the pipelined hash func-
tion. A 32-bit IP address can be inserted into the sequencer and the
previous addresses are shifted by one position in each clock cycle.
The outputs I0, . . ., I31 in Fig. 5 are interconnected with the inputs
in Fig. 3 while I0 is delayed for 0 clock cycle, I1 by 1 cycle, . . ., and I31
by 31 cycles. The reason for these delays of various sizes is that the
inputs are required in various sequential depths in the proposed
hash function component.

The input sequencer, together with the multi-stage implemen-
tation of the hash function, ensures that an IP address can be sent-in
in each clock cycle. The first hash will be computed with an initial
latency of 43 cycles, but after that a hash will be produced in each
clock cycle.

5.5. Comparison with conventional hash functions

Conventional general-purpose hash functions usually produce
32-, 64-, or 128-bit hashes. Consequently, the bit precision is
reduced to the size required by the hash table. One can select some
of the bits, or can combine them by XOR folding [24]. This gives
lots of possibilities and it is not known which will produce the best
results. The proposed hash function component produces hashes
with bit precision matching the requirements of the hash table
and, therefore, one does not need to address the transformation
of larger hashes to the desired precision. The design process con-
trolled by the EA guides the development of the hash function pair
and handles the transformation of the hashed key into the hash of
the desired precision.

It cannot be guaranteed that the results will be good, even with
the best general-purpose functions. These functions were devel-
oped to work well alone. The work presented in this paper considers
hash function pairs which are optimized to work well together for
cuckoo hashing.

The proposed hash function component is reconfigurable and
can be re-evolved when necessary. Alternatively, one can imple-
ment various conventional hash functions and evaluate them
during rehashing. However, the proposed reconfigurable hash

function component offers many more possible configurations in
comparison with the approach based on several manually imple-
mented conventional hash functions.

1 t Computing 56 (2017) 173–181

6

t
a
l
g
e
u
C
t
e
r
o

g
c
s
t
c

6

c
t
c
i
t
m
t
g
t
o
b

a
fi
t
d
i
c

t
t
s
i
b
p

I
d
3

6

n
s
s
m
fi
t
l
o

Fig. 6. Impact of coarse-grained mutations on the fitness.
78 R. Dobai et al. / Applied Sof

. Experimental results

The proposed reconfigurable hash function component,
ogether with the EA-based automated tuning for selected IP
ddresses, were implemented and evaluated. The FPGA-based fast
ookup of IP addresses was investigated in a XC7Z020 Zynq all pro-
rammable (AP) system-on-chip (SoC) device and the SW-based
volution in an Intel Xeon E5-2630 processor. The IP addresses
sed in the experiments were extracted from a firewall in the
zech national research and education network (CESNET). Hash
ables with a capacity of 8k records or more were considered. The
xperiments were statistically evaluated based on 30 independent
uns. The implementations of conventional hash functions were
btained from [25].

The EA works with � = 5 candidate hash function pairs in each
eneration. The size of the population was selected as the value
ommon for various applications [16,20,26,27] and the fact that it
eems to have a negligible influence on the quality of the final solu-
ions considering a constant number of generated and evaluated
andidate solutions.

.1. Tuning parameters for EA

The experiments revealed that the quality of evolved solutions
an be improved by employing two different kinds of muta-
ions during evolution. Coarse-grained mutation enforces and
onserves the equality between the configurable function blocks,
.e. F1 = F2 = · · · = F43. This is ensured by mutating only F1 and copying
he part of the chromosome of F1 into F2, F3, . . ., F43. Fine-grained

utation changes the configurable function blocks individually, i.e.
he function blocks can be different: F1 /= F2 /= · · · /= F43. Coarse-
rained mutation supports fast convergence in the beginning and
his is followed by fine-grained mutation for further improvement
f the candidate solutions. It should be noted that mutation is not
inary, it works at the level of chromosome components.

Coarse-grained mutation is performed in the first 20k gener-
tions of candidate hash function pairs and is followed by the
ne-grained mutation considering 200k total number of genera-
ions. These values were determined after observing the fitness
evelopment and switching to fine-grained mutation or conclud-

ng the search after the fitness did not improve significantly in
onsequent generations.

Fig. 6 shows the impact of the number of coarse-grained muta-
ions on the fitness. The box plot of 30 independent runs shows
he fitness value of the best candidate solution, i.e. the number of
uccessfully inserted IP addresses in a 8k hash table. The fitness
mproves by increasing the number of mutations and the variation
etween runs become less significant. The number of mutations
er chromosome of around 8 seems to be the optimal value.

Fig. 7 shows the impact of fine-grained mutations on the fitness.
t can be concluded that a too high mutation rate can be counterpro-
uctive and the number of mutations per chromosome of around

 seems to improve most the candidate solutions.

.2. Comparison with conventional and unconventional solutions

The proposed pipelined reconfigurable hash function compo-
ent was compared with conventional hash functions and the
tate-of-the-art unconventional CGP as well. The unconventional
olution was created as the GP-based approach [17], reimple-
ented as CGP with constant-size candidate solutions and the same
tness function that was considered for the proposed approach in
his paper. The CGP approach develops hash functions very simi-
ar to the conventional ones because it uses the same elementary
perations. The developed hash functions are sequential, therefore,
Fig. 7. Impact of fine-grained mutations on the fitness.

the lookup is much slower than in the case of the proposed hash
function component.

Conventional hash functions with the support for seed values
and 32-bit hashes were selected. The hash function pair was created
by using the same function with seeds 0 and 1, just like in the case
of the proposed hash function pair.

Table 1 shows the achieved results where the solutions marked
with (c) are created by cropping the 32-bit hashes and using the
least significant bits; and for the solutions with (f) the number of
hash bits were reduced using XOR folding. The table contains the
results for the best, the upper quartile (75%), the median (med.)
and the lower quartile (25%) of the unconventional solutions. The
number of successfully inserted IP addresses (Ins) and the table
utilization (%) for the 8k hash table are shown in the table for four
different IP address sets (Set 1–4) extracted from a firewall in the
backbone network of CESNET.
The cropped version of lookup3 achieves the best result for
Set 1 amongst the conventional hash functions. The folded Mur-
murHash3 is the best for Set 2, the cropped MurmurHash3 for Set

R. Dobai et al. / Applied Soft Computing 56 (2017) 173–181 179

Table 1
Comparison of inserted records with conventional hash functions.

Function Set 1 Set 2 Set 3 Set 4

Ins % Ins % Ins % Ins %

proposed (best) 5226 63.79 5235 63.9 5261 64.22 5173 63.15
proposed (75%) 5156 62.94 5132 62.65 5139 62.73 5121 62.51
proposed (med.) 5111 62.39 5081 62.02 5099 62.24 5070 61.88
proposed (25%) 5065 61.83 5036 61.47 5046 61.6 5044 61.57
CGP (best) 4922 60.08 4868 59.42 4872 59.47 4895 59.75
CGP (75%) 4799 58.58 4817 58.8 4829 58.95 4848 59.18
CGP (med.) 4783 58.39 4788 58.45 4804 58.64 4817 58.8
CGP (25%) 4758 58.08 4771 58.24 4768 58.2 4790 58.47
CRC32 (c) 3674 44.85 3425 41.81 3401 41.52 4176 50.98
MurmurHash3 (c) 4199 51.26 3827 46.72 4179 51.01 3384 41.31
MurmurHash3 (f) 3365 41.08 4364 53.27 3839 46.86 3074 37.52
SpookyHashV2 (c) 3528 43.07 3449 42.1 4121 50.31 2176 26.56
SpookyHashV2 (f) 3759 45.89 4260 52 4062 49.58 2128 25.98
lookup3 (c) 4516 55.13 4047 49.4 3996 48.78 3951 48.23
lookup3 (f) 4140 50.54 3656 44.63 3702 45.19 2914 35.57
fnv-1a (c) 3787 46.23 2926 35.72 1995 24.35 2583 31.53

3
o
t

u
t
q
s
w

v
o
f
s
r
r
q
E
t
m
f
t
b
b

fnv-1a (f) 3223 39.34 3557

 and CRC32 for Set 4. It is obvious that one needs to implement all
f these hash functions in order to be able to select the best one for
he given IP address set.

Conventional solutions achieve a table utilization of 30–55%. The
nconventional CGP reaches up to 58–60% and the proposed solu-
ions over 63%. The EA is well tuned and, therefore, even the 25%
uartile gives results of around 62%. One can select the best evolved
olution of the runs because the evolution is executed in parallel
ith the FPGA-based lookup.

The fitness development for Set 1 is shown in Fig. 8. Uncon-
entional solutions need just a couple of hundred generations for
utperforming lookup3, the best conventional solution. CGP per-
orms well, but the proposed hash function even with random
earch achieves higher fitness. It should be noted that it is not a pure
andom search since it uses the proposed representation which
educes the search space significantly. Further improvement in the
uality of solutions can be observed in the case of the proposed
A (fine-grained). The evolution with the coarse-grained muta-
ion seems to start stagnating around 0.2 × 105 generations. The

utation is switched to fine-grained at that point which results in
urther rapid improvement of the fitness. It can be concluded that

he evolution with coarse- and fine grained mutations achieves
etter results than by just using fine-grained mutation from the
eginning.

Fig. 8. Comparison of fitness development (median values).
43.42 2326 28.39 3949 48.21

The proposed EA fine-tunes the reconfigurable hash function
and this allows for the storing of a couple of hundred more IP
addresses in the hash table of the same size. This can be very use-
ful in practice because the IP filter can be used longer without
redesigning the whole system with larger hash tables.

6.3. Time required for evolution

The proposed hash function component computes 12-bit hashes
in 43 clock cycles for 32-bit inputs. The implemented FPGA-based
IP filter can be operated at 260 MHz which is limited by the critical
timing path through the reconfigurable function-blocks. The first
hash is computed with an initial latency of 1000/260 × 43 ≈ 165 ns.
Consequent hashes are produced in each clock cycle because an
IP address can be sent into the hash function in each clock cycle.
This gives 260 million hashes per second, and a hash in less than
1000/260 ≈ 4 ns which is fast enough for 400 Gbps networks.

Table 2 contains the achieved table utilization and average evo-
lution time for various table sizes. An 8k set was prepared for the
8k table, a 16k set for the 16k table where the IP addresses from
the 8k set were reused and extended with another 8k IP addresses,
etc. The 128k set for the 128k table contains the data from the 64k
set and another 64k new IP addresses.

It can be observed that the quality of solutions becomes lower
with larger tables. This is caused by the fact that a collision is more
probable with more IP addresses and the probability of resolving
these collisions is lower. A table utilization of 54.4% for a 128k table
is still good when one considers the results for conventional hash
functions (in the order as they are listed in Table 1): 41.03%, 31.94%,
16.15%, 49.84%, 48.74%, 38.06%, 48.80%, 29.77%, 50.42%.

A larger IP address set requires more time for evaluating the can-
didate solutions but it does not influence the search space because
the IP addresses remain the same size. Therefore, the time required
for evolution increases linearly with the size of the hash table.
Migration to IP addresses of version 6 will have a negative impact,
but currently only addresses of version 4 are used in the network
filter.

The 8k hash table provides enough filtering rules, but even hash
functions for larger tables can be evolved in a reasonable time. A
couple of hours are available for example in the night when the

network traffic is slow. It should be noted that parallel candidate
solution evaluation is possible and the time for the evolution can
be reduced significantly if several processors (computers) are used
together.

180 R. Dobai et al. / Applied Soft Computing 56 (2017) 173–181

Table 2
Table utilization and average evolution time for larger hash tables.

8k set 16k set 32k set 64k set 128k set

% h % h % h % h % h

63.79 1.51 60.8 3.99 58.21 6.12 55.98 7.89 54.4 16.7

evolve

6

i
S
s
6

6

V
m
t
a

c
p
s
t

g
i
r
t
t
i
c

T
C

Fig. 9. Example of an

.4. Example evolved hash function pair

An example of an evolved hash function pair is partially shown
n Fig. 9 where F and G are functions for the function-blocks, and

 and T are state bits for the two hash functions. The functions are
eeded with values 0 and 1. The evolved hash function pair achieves
3.79% table utilization.

.5. Required FPGA resources

The FPGA-based IP address filter was implemented using the
ivado tool with FlowPerfOptimizedHigh synthesis and Perfor-
anceExplore implementation options. The required resources for

he reconfigurable hash function are compared with the 32-bit par-
llel version of lookup3 in Table 3.

Lookup3 was implemented manually based on the software
ode. It requires 32-bit operations and registers. The hash com-
utation is done using seven operations of XOR, rotations and
ubtractions, and one addition. The most area consuming opera-
ions are the subtractions and additions.

The proposed hash function component uses only simple logic
ates. The area requirements are significant mainly because of
mplementing the reconfigurability in the functions-blocks. As a
esult, the implementation requires three times more LUTs and two

imes more registers than lookup3. The increased number of regis-
ers is caused by the processing of more stages (more cycles). The
nitial latency is three times longer, but the following IP addresses
an be computed at the same speed (one in each clock cycle).

able 3
omparison of implementations in Zynq AP SoC

lookup3 Evolved

Ratio

Clock cycles 16 44 2.75
Slice LUTs 358 951 2.66
Slice registers 1033 1664 1.61
Multiplexers 0 94
d candidate solution.

The proposed hash function component requires more FPGA
resources for implementation in comparison with conventional
hash functions. However, the proposed hash function can be recon-
figured and fine-tuned for the given set of IP addresses. On the other
hand, one needs to implement several conventional hash functions
and switch between them manually.

7. Conclusions

Optimization of cuckoo hashing for FPGA-based IP address
filtering was presented in this paper. The proposed pipelined recon-
figurable hash function component with parallel computation is
fine-tuned by the EA for the given set of IP addresses selected for
filtering/monitoring. The proposed hash function component pro-
vides the lookup of IP addresses at a speed suitable for high-speed
computer networks because with an initial latency it is able to
produce hashes in each clock cycle.

It is not necessary to stop the IP filter in order to optimize the
hash functions. The optimization can be performed when the net-
work traffic is slow and without any loss of packets.

The EA optimizes the hash configuration for high table utiliza-
tion. The experiments showed that the utilization can be improved
by 10% or more in comparison with even the best conventional hash
function.

Multiple external memory accesses decrease the throughput of
the IP filter because lookup takes longer. Single access results in a
high-speed, but at the cost of low table utilization. The proposed EA-
based approach is able to increase the utilization without sacrificing
the speed of the lookup.

Interesting future research includes the migration to IP
addresses of version 6 and is considering other uses of the proposed
hash function component in the field of network filtering.
Acknowledgment

This work was supported by The Ministry of Education, Youth
and Sports of the Czech Republic from the National Programme of

t Com

S
–

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

R. Dobai et al. / Applied Sof

ustainability (NPU II); project IT4Innovations excellence in science
 LQ1602.

eferences

[1] M. Attig, G. Brebner, 400 Gb/s programmable packet parsing on a single FPGA,
in: 2011 Seventh ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (ANCS), 2011, pp. 12–23, http://dx.doi.org/10.1109/
ANCS.2011.12.

[2] L. Kekely, J. Kucera, V. Pus, J. Korenek, A.V. Vasilakos, Software defined
monitoring of application protocols, IEEE Trans. Comput. 65 (2) (2016)
615–626, http://dx.doi.org/10.1109/TC.2015.2423668.

[3] L. Kekely, M. Zadnik, J. Matousek, J. Korenek, Fast lookup for dynamic packet
filtering in FPGA, in: 17th International Symposium on Design and
Diagnostics of Electronic Circuits & Systems, 2014, pp. 219–222, http://dx.doi.
org/10.1109/DDECS.2014.6868793.

[4] D. Tong, Y.-H.E. Yang, V.K. Prasanna, A memory efficient IPv6 lookup engine
on FPGA, in: International Conference on Reconfigurable Computing and
FPGAs, ReConFig, 2012, 2012, http://dx.doi.org/10.1109/ReConFig.2012.
6416760, art. no. 6416760.

[5] V. Pus, J. Korenek, Fast and scalable packet classification using perfect hash,
in: 7th ACM SIGDA International Symposium on Field-Programmable Gate
Arrays, FPGA’09, 2009, pp. 229–235, http://dx.doi.org/10.1145/1508128.
1508163.

[6] D. Belazzougui, F.C. Botelho, M. Dietzfelbinger, Hash, displace, and compress,
in: 17th Annual European Symposium on Algorithms, ESA 2009, Vol. 5757 of
Lecture Notes in Computer Science, 2009, pp. 682–693, http://dx.doi.org/10.
1007/978-3-642-04128-0 61.

[7] R. Pagh, F.F. Rodler, Cuckoo hashing, in: Algorithms – ESA 2001, Vol. 2161 of
Lecture Notes in Computer Science, 2001, pp. 121–133, http://dx.doi.org/10.
1007/3-540-44676-1 10.

[8] S. Pontarelli, P. Reviriego, J.A. Maestro, Parallel d-pipeline: a cuckoo hashing
implementation for increased throughput, IEEE Trans. Comput. 65 (1) (2016)
326–331, http://dx.doi.org/10.1109/TC.2015.2417524.

[9] T.N. Thinh, S. Kittitornkun, Massively parallel cuckoo pattern matching
applied for NIDS/NIPS, in: Fifth IEEE International Symposium on Electronic
Design, Test and Application, 2010, pp. 217–221, http://dx.doi.org/10.1109/
DELTA.2010.46.

10] L. Kekely, V. Pus, J. Korenek, Software defined monitoring of application
protocols, in: 2014 Proceedings IEEE INFOCOM, 2014, pp. 1725–1733, http://
dx.doi.org/10.1109/INFOCOM.2014.6848110.

11] M. Dvorak, J. Korenek, Low latency book handling in FPGA for high frequency

trading, in: 17th International Symposium on Design and Diagnostics of
Electronic Circuits & Systems, 2014, pp. 175–178, http://dx.doi.org/10.1109/
DDECS.2014.6868785.

12] A.G. Konheim, Hashing in Computer Science: Fifty Years of Slicing and Dicing,
Wiley-Interscience, New Jersey, USA, 2010.

[

puting 56 (2017) 173–181 181

13] D. Fotakis, R. Pagh, P. Sanders, P.G. Spirakis, Space efficient hash tables with
worst case constant access time, in: Proceedings of the 20th Annual
Symposium on Theoretical Aspects of Computer Science, Vol. 2607 of Lecture
Notes in Computer Science, 2003, pp. 271–282.

14] R. Panigrahy, Efficient hashing with lookups in two memory accesses, in:
Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms,
2005, pp. 830–839.

15] A. Kirsch, M. Mitzenmacher, U. Wieder, More robust hashing: cuckoo hashing
with a stash, in: 16th Annual European Symposium on Algorithms, ESA, Vol.
5193 of Lecture Notes in Computer Science, 2008, pp. 611–622, http://dx.doi.
org/10.1007/978-3-540-87744-8 51.

16] L. Sekanina, Evolvable hardware, in: Handbook of Natural Computing,
Springer Verlag, 2012, pp. 1657–1705, http://dx.doi.org/10.1007/978-3-540-
92910-9.

17] C. Estebanez, Y. Saez, G. Recio, P. Isasi, Automatic design of noncryptographic
hash functions using genetic programming, Comput. Intell. 30 (4) (2014)
798–831, http://dx.doi.org/10.1002/coin.12033.

18] M. Safdari, Evolving universal hash functions using genetic algorithms, in:
Proc. of the 11th Annual Conference Companion on Genetic and Evolutionary
Computation Conference: Late Breaking Papers, 2009, pp. 2729–2732, http://
dx.doi.org/10.1145/1570256.1570396.

19] P. Berarducci, D. Jordan, D. Martin, J. Seitzer, GEVOSH: using grammatical
evolution to generate hashing functions, in: Proc. of the Fifteenth Midwest
Artificial Intelligence and Cognitive Sciences Conference, 2004, pp. 31–39.

20] J.F. Miller, Cartesian Genetic Programming, Springer Berlin Heidelberg, 2011,
http://dx.doi.org/10.1007/978-3-642-17310-3.

21] H. Widiger, R. Salomon, D. Timmermann, Packet classification with evolvable
hardware hash functions – an intrinsic approach, in: 2nd International
Workshop on Biologically Inspired Approaches to Advanced Information
Technology, Vol. 3853 of Lecture Notes in Computer Science, 2006, pp. 64–79,
http://dx.doi.org/10.1007/11613022 8.

22] R. Dobai, J. Korenek, Evolution of non-cryptographic hash function pairs for
FPGA-based network applications, in: 2015 IEEE Symposium Series on
Computational Intelligence (International Conference on Evolvable Systems –
ICES), 2015, pp. 1214–1219, http://dx.doi.org/10.1109/SSCI.2015.174.

23] E. Dubrova, A list of maximum period NLFSRs, in: Cryptology ePrint Archive:
Report 2012/166, 2012 http://eprint.iacr.org/2012/166 (accessed 15.08.16).

24] FNV Hash. http://www.isthe.com/chongo/tech/comp/fnv/ (accessed
15.08.16).

25] SMHasher, A Test Suite Designed to Test the Distribution, Collision, and
Performance Properties of Non-Cryptographic Hash Functions. https://github.
com/aappleby/smhasher (accessed 15.08.16).

26] R. Dobai, L. Sekanina, Low-level flexible architecture with hybrid

reconfiguration for evolvable hardware, ACM Trans. Reconfig. Technol. Syst. 8
(3) (2015), http://dx.doi.org/10.1145/2700414, art. no. 20.

27] Z. Vasicek, L. Sekanina, Hardware accelerator of cartesian genetic
programming with multiple fitness units, Comput. Inform. 29 (6) (2010)
1359–1371.

dx.doi.org/10.1109/ANCS.2011.12
dx.doi.org/10.1109/ANCS.2011.12
dx.doi.org/10.1109/ANCS.2011.12
dx.doi.org/10.1109/ANCS.2011.12
dx.doi.org/10.1109/ANCS.2011.12
dx.doi.org/10.1109/ANCS.2011.12
dx.doi.org/10.1109/ANCS.2011.12
dx.doi.org/10.1109/ANCS.2011.12
dx.doi.org/10.1109/ANCS.2011.12
dx.doi.org/10.1109/TC.2015.2423668
dx.doi.org/10.1109/TC.2015.2423668
dx.doi.org/10.1109/TC.2015.2423668
dx.doi.org/10.1109/TC.2015.2423668
dx.doi.org/10.1109/TC.2015.2423668
dx.doi.org/10.1109/TC.2015.2423668
dx.doi.org/10.1109/TC.2015.2423668
dx.doi.org/10.1109/TC.2015.2423668
dx.doi.org/10.1109/TC.2015.2423668
dx.doi.org/10.1109/DDECS.2014.6868793
dx.doi.org/10.1109/DDECS.2014.6868793
dx.doi.org/10.1109/DDECS.2014.6868793
dx.doi.org/10.1109/DDECS.2014.6868793
dx.doi.org/10.1109/DDECS.2014.6868793
dx.doi.org/10.1109/DDECS.2014.6868793
dx.doi.org/10.1109/DDECS.2014.6868793
dx.doi.org/10.1109/DDECS.2014.6868793
dx.doi.org/10.1109/DDECS.2014.6868793
dx.doi.org/10.1109/ReConFig.2012.6416760
dx.doi.org/10.1109/ReConFig.2012.6416760
dx.doi.org/10.1109/ReConFig.2012.6416760
dx.doi.org/10.1109/ReConFig.2012.6416760
dx.doi.org/10.1109/ReConFig.2012.6416760
dx.doi.org/10.1109/ReConFig.2012.6416760
dx.doi.org/10.1109/ReConFig.2012.6416760
dx.doi.org/10.1109/ReConFig.2012.6416760
dx.doi.org/10.1109/ReConFig.2012.6416760
dx.doi.org/10.1145/1508128.1508163
dx.doi.org/10.1145/1508128.1508163
dx.doi.org/10.1145/1508128.1508163
dx.doi.org/10.1145/1508128.1508163
dx.doi.org/10.1145/1508128.1508163
dx.doi.org/10.1145/1508128.1508163
dx.doi.org/10.1145/1508128.1508163
dx.doi.org/10.1145/1508128.1508163
dx.doi.org/10.1007/978-3-642-04128-0_61
dx.doi.org/10.1007/978-3-642-04128-0_61
dx.doi.org/10.1007/978-3-642-04128-0_61
dx.doi.org/10.1007/978-3-642-04128-0_61
dx.doi.org/10.1007/978-3-642-04128-0_61
dx.doi.org/10.1007/978-3-642-04128-0_61
dx.doi.org/10.1007/978-3-642-04128-0_61
dx.doi.org/10.1007/978-3-642-04128-0_61
dx.doi.org/10.1007/978-3-642-04128-0_61
dx.doi.org/10.1007/978-3-642-04128-0_61
dx.doi.org/10.1007/978-3-642-04128-0_61
dx.doi.org/10.1007/978-3-642-04128-0_61
dx.doi.org/10.1007/3-540-44676-1_10
dx.doi.org/10.1007/3-540-44676-1_10
dx.doi.org/10.1007/3-540-44676-1_10
dx.doi.org/10.1007/3-540-44676-1_10
dx.doi.org/10.1007/3-540-44676-1_10
dx.doi.org/10.1007/3-540-44676-1_10
dx.doi.org/10.1007/3-540-44676-1_10
dx.doi.org/10.1007/3-540-44676-1_10
dx.doi.org/10.1007/3-540-44676-1_10
dx.doi.org/10.1007/3-540-44676-1_10
dx.doi.org/10.1007/3-540-44676-1_10
dx.doi.org/10.1109/TC.2015.2417524
dx.doi.org/10.1109/TC.2015.2417524
dx.doi.org/10.1109/TC.2015.2417524
dx.doi.org/10.1109/TC.2015.2417524
dx.doi.org/10.1109/TC.2015.2417524
dx.doi.org/10.1109/TC.2015.2417524
dx.doi.org/10.1109/TC.2015.2417524
dx.doi.org/10.1109/TC.2015.2417524
dx.doi.org/10.1109/TC.2015.2417524
dx.doi.org/10.1109/DELTA.2010.46
dx.doi.org/10.1109/DELTA.2010.46
dx.doi.org/10.1109/DELTA.2010.46
dx.doi.org/10.1109/DELTA.2010.46
dx.doi.org/10.1109/DELTA.2010.46
dx.doi.org/10.1109/DELTA.2010.46
dx.doi.org/10.1109/DELTA.2010.46
dx.doi.org/10.1109/DELTA.2010.46
dx.doi.org/10.1109/DELTA.2010.46
dx.doi.org/10.1109/INFOCOM.2014.6848110
dx.doi.org/10.1109/INFOCOM.2014.6848110
dx.doi.org/10.1109/INFOCOM.2014.6848110
dx.doi.org/10.1109/INFOCOM.2014.6848110
dx.doi.org/10.1109/INFOCOM.2014.6848110
dx.doi.org/10.1109/INFOCOM.2014.6848110
dx.doi.org/10.1109/INFOCOM.2014.6848110
dx.doi.org/10.1109/INFOCOM.2014.6848110
dx.doi.org/10.1109/INFOCOM.2014.6848110
dx.doi.org/10.1109/DDECS.2014.6868785
dx.doi.org/10.1109/DDECS.2014.6868785
dx.doi.org/10.1109/DDECS.2014.6868785
dx.doi.org/10.1109/DDECS.2014.6868785
dx.doi.org/10.1109/DDECS.2014.6868785
dx.doi.org/10.1109/DDECS.2014.6868785
dx.doi.org/10.1109/DDECS.2014.6868785
dx.doi.org/10.1109/DDECS.2014.6868785
dx.doi.org/10.1109/DDECS.2014.6868785
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0060
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0060
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0060
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0060
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0060
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0060
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0060
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0060
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0060
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0060
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0060
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0060
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0060
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0060
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0060
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0060
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0060
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0065
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0065
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0065
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0065
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0065
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0065
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0065
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0065
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0065
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0065
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0065
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0065
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0065
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0065
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0065
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0065
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0065
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0065
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0065
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0065
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0065
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0065
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0065
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0065
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0065
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0065
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0065
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0065
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0065
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0065
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0065
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0065
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0065
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0065
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0065
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0065
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0065
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0065
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0065
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0065
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0065
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0065
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0065
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0065
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0070
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0070
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0070
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0070
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0070
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0070
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0070
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0070
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0070
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0070
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0070
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0070
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0070
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0070
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0070
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0070
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0070
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0070
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0070
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0070
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0070
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0070
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0070
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0070
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0070
dx.doi.org/10.1007/978-3-540-87744-8_51
dx.doi.org/10.1007/978-3-540-87744-8_51
dx.doi.org/10.1007/978-3-540-87744-8_51
dx.doi.org/10.1007/978-3-540-87744-8_51
dx.doi.org/10.1007/978-3-540-87744-8_51
dx.doi.org/10.1007/978-3-540-87744-8_51
dx.doi.org/10.1007/978-3-540-87744-8_51
dx.doi.org/10.1007/978-3-540-87744-8_51
dx.doi.org/10.1007/978-3-540-87744-8_51
dx.doi.org/10.1007/978-3-540-87744-8_51
dx.doi.org/10.1007/978-3-540-87744-8_51
dx.doi.org/10.1007/978-3-540-87744-8_51
dx.doi.org/10.1007/978-3-540-92910-9
dx.doi.org/10.1007/978-3-540-92910-9
dx.doi.org/10.1007/978-3-540-92910-9
dx.doi.org/10.1007/978-3-540-92910-9
dx.doi.org/10.1007/978-3-540-92910-9
dx.doi.org/10.1007/978-3-540-92910-9
dx.doi.org/10.1007/978-3-540-92910-9
dx.doi.org/10.1007/978-3-540-92910-9
dx.doi.org/10.1007/978-3-540-92910-9
dx.doi.org/10.1007/978-3-540-92910-9
dx.doi.org/10.1007/978-3-540-92910-9
dx.doi.org/10.1002/coin.12033
dx.doi.org/10.1002/coin.12033
dx.doi.org/10.1002/coin.12033
dx.doi.org/10.1002/coin.12033
dx.doi.org/10.1002/coin.12033
dx.doi.org/10.1002/coin.12033
dx.doi.org/10.1002/coin.12033
dx.doi.org/10.1002/coin.12033
dx.doi.org/10.1145/1570256.1570396
dx.doi.org/10.1145/1570256.1570396
dx.doi.org/10.1145/1570256.1570396
dx.doi.org/10.1145/1570256.1570396
dx.doi.org/10.1145/1570256.1570396
dx.doi.org/10.1145/1570256.1570396
dx.doi.org/10.1145/1570256.1570396
dx.doi.org/10.1145/1570256.1570396
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0095
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0095
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0095
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0095
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0095
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0095
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0095
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0095
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0095
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0095
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0095
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0095
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0095
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0095
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0095
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0095
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0095
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0095
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0095
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0095
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0095
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0095
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0095
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0095
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0095
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0095
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0095
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0095
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0095
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0095
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0095
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0095
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0095
dx.doi.org/10.1007/978-3-642-17310-3
dx.doi.org/10.1007/978-3-642-17310-3
dx.doi.org/10.1007/978-3-642-17310-3
dx.doi.org/10.1007/978-3-642-17310-3
dx.doi.org/10.1007/978-3-642-17310-3
dx.doi.org/10.1007/978-3-642-17310-3
dx.doi.org/10.1007/978-3-642-17310-3
dx.doi.org/10.1007/978-3-642-17310-3
dx.doi.org/10.1007/978-3-642-17310-3
dx.doi.org/10.1007/978-3-642-17310-3
dx.doi.org/10.1007/978-3-642-17310-3
dx.doi.org/10.1007/11613022_8
dx.doi.org/10.1007/11613022_8
dx.doi.org/10.1007/11613022_8
dx.doi.org/10.1007/11613022_8
dx.doi.org/10.1007/11613022_8
dx.doi.org/10.1007/11613022_8
dx.doi.org/10.1007/11613022_8
dx.doi.org/10.1007/11613022_8
dx.doi.org/10.1109/SSCI.2015.174
dx.doi.org/10.1109/SSCI.2015.174
dx.doi.org/10.1109/SSCI.2015.174
dx.doi.org/10.1109/SSCI.2015.174
dx.doi.org/10.1109/SSCI.2015.174
dx.doi.org/10.1109/SSCI.2015.174
dx.doi.org/10.1109/SSCI.2015.174
dx.doi.org/10.1109/SSCI.2015.174
dx.doi.org/10.1109/SSCI.2015.174
http://www.eprint.iacr.org/2012/166
http://www.eprint.iacr.org/2012/166
http://www.eprint.iacr.org/2012/166
http://www.eprint.iacr.org/2012/166
http://www.eprint.iacr.org/2012/166
http://www.eprint.iacr.org/2012/166
http://www.isthe.com/chongo/tech/comp/fnv/
http://www.isthe.com/chongo/tech/comp/fnv/
http://www.isthe.com/chongo/tech/comp/fnv/
http://www.isthe.com/chongo/tech/comp/fnv/
http://www.isthe.com/chongo/tech/comp/fnv/
http://www.isthe.com/chongo/tech/comp/fnv/
http://www.isthe.com/chongo/tech/comp/fnv/
http://www.isthe.com/chongo/tech/comp/fnv/
http://www.isthe.com/chongo/tech/comp/fnv/
https://www.github.com/aappleby/smhasher
https://www.github.com/aappleby/smhasher
https://www.github.com/aappleby/smhasher
https://www.github.com/aappleby/smhasher
https://www.github.com/aappleby/smhasher
dx.doi.org/10.1145/2700414
dx.doi.org/10.1145/2700414
dx.doi.org/10.1145/2700414
dx.doi.org/10.1145/2700414
dx.doi.org/10.1145/2700414
dx.doi.org/10.1145/2700414
dx.doi.org/10.1145/2700414
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0135
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0135
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0135
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0135
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0135
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0135
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0135
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0135
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0135
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0135
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0135
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0135
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0135
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0135
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0135
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0135
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0135
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0135
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0135
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0135
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0135
http://refhub.elsevier.com/S1568-4946(17)30132-1/sbref0135

	Evolutionary design of hash function pairs for network filters
	1 Introduction
	2 Hashing in FPGA-based network filters
	2.1 Hashing and collisions
	2.2 Cuckoo hashing and challenges of FPGA implementations

	3 Evolutionary design of hash functions
	4 IP address filtering
	4.1 IP address lookup in the FPGA
	4.2 Evolution of new hash function configurations
	4.3 Evolutionary algorithm
	4.4 Fitness

	5 Reconfigurable hash functions for FPGA-based IP filters
	5.1 Processing in a stage
	5.2 Chromosome for representing the candidate solution
	5.3 Search space
	5.4 Pipelined hash computation
	5.5 Comparison with conventional hash functions

	6 Experimental results
	6.1 Tuning parameters for EA
	6.2 Comparison with conventional and unconventional solutions
	6.3 Time required for evolution
	6.4 Example evolved hash function pair
	6.5 Required FPGA resources

	7 Conclusions
	Acknowledgment
	References

