
Deliverable-2.6: RINA simulator

advanced functionality incorporating

use-case specific models

Deliverable Editor: Vladimir Vesely, Faculty of Information

Technology, Brno University of Technology (FIT-BUT)

Publication date: 7-December-2015

Deliverable Nature: Software/Report

Dissemination level

(Confidentiality):

PU (Public)

Project acronym: PRISTINE

Project full title: PRogrammability In RINA for European Supremacy of

virTualIsed NEtworks

Website: www.ict-pristine.eu

Keywords: RINA Simulator, OMNeT++, simulation models

Synopsis: This document describes RINASim, your discrete event

simulation framework of native RINA networks.

The research leading to these results has received funding from the European Community's Seventh Framework

Programme for research, technological development and demonstration under Grant Agreement No. 619305.

Deliverable-2.6: RINA simulator

2

Copyright © 2014-2016 PRISTINE consortium, (Waterford Institute of Technology, Fundacio Privada

i2CAT - Internet i Innovacio Digital a Catalunya, Telefonica Investigacion y Desarrollo SA, L.M.

Ericsson Ltd., Nextworks s.r.l., Thales Research and Technology UK Limited, Nexedi S.A., Berlin

Institute for Software Defined Networking GmbH, ATOS Spain S.A., Juniper Networks Ireland Limited,

Universitetet i Oslo, Vysoke ucenu technicke v Brne, Institut Mines-Telecom, Center for Research and

Telecommunication Experimentation for Networked Communities, iMinds VZW.)

List of Contributors

Deliverable Editor: Vladimir Vesely, Faculty of Information Technology, Brno University

of Technology (FIT-BUT)

fit-but: Vladimir Vesely, Tomas Hykel, Marcel Marek, Ondrej Rysavy, Jerabek Kamil,

Ondrej Lichtner

i2cat: Eduard Grasa

upc: Sergio Leon Gaixas

uio: Peyman Teymoori

tssg: Micheal Crotty

Disclaimer

This document contains material, which is the copyright of certain PRISTINE consortium

parties, and may not be reproduced or copied without permission.

The commercial use of any information contained in this document may require a license

from the proprietor of that information.

Neither the PRISTINE consortium as a whole, nor a certain party of the PRISTINE

consortium warrant that the information contained in this document is capable of use, or that

use of the information is free from risk, and accept no liability for loss or damage suffered by

any person using this information.

Deliverable-2.6: RINA simulator

3

Executive Summary

Simulation is widely accepted validation and verification tool to test and prove new

technologies. Simulation runs can reveal design flaws, performance drawbacks and other

weak points. Simulation results are able to enhance development process of researchers and

programmers. Hence, the implementation of the Recursive Internet Architecture Simulator

(RINASim) is a natural step to support the design and development of the RINA SDK.

RINASim is independent full-fledged simulation framework of native RINA networks for

OMNeT++ discrete event simulator. RINASim allows its user to inspect RINA behavior in

different deployment topologies. Moreover, RINASim offers flexible development of new

policies, which may directly impact and alter interprocess communication. Furthermore,

RINASim has easily extensible statistic collection system, which provides accurate results

gathering and evaluation.

Previous Deliverable 2.4 outlined RINASim basic functionality. Since that time, RINASim

has significantly matured in terms of both width and depth of its functionality. This document

provides detailed RINASim user guide together with a description of basic RINA principles that

influenced RINASim design and development.

Deliverable-2.6: RINA simulator

4

Table of Contents

1. Introduction .. 11

2. Brief Theory .. 14

2.1. Nature of applications and application protocols ... 14

2.2. Core Terms ... 15

2.3. Connection-oriented vs. connection-less .. 16

2.4. Delta-t synchronization ... 17

2.5. Separation of mechanism and policy ... 17

2.6. Naming and addressing .. 18

3. Installation and configuration .. 20

3.1. Support .. 20

3.2. OMNeT Installation .. 20

3.2.1. Windows Installation ... 20

3.2.2. Linux installation ... 21

3.3. RINASim Installation ... 21

3.3.1. The IDE way ... 22

3.3.2. The command line way ... 23

3.3.3. Makefile ... 24

3.4. OMNeT Handbook ... 24

3.4.1. Basics ... 24

3.4.2. Simulator and IDE ... 27

3.4.3. Tips and Tricks .. 29

4. High-level design ... 31

4.1. Nodes .. 31

4.2. DAF Design .. 32

4.2.1. DIF Allocator ... 32

4.2.2. IPC Resource Manager .. 33

4.3. DIF Design ... 33

4.3.1. Enrollment .. 34

4.3.2. Delimiting .. 36

4.3.3. Data Transfer with Error and Flow Control .. 36

4.3.4. Relaying and Multiplexing .. 37

4.3.5. SDU Protection .. 38

4.3.6. Flow Allocator ... 39

4.3.7. Resource Allocator .. 45

4.3.8. RIB Daemon .. 46

4.3.9. Common Distributed Application Protocol ... 46

Deliverable-2.6: RINA simulator

5

4.4. Policy Framework ... 50

4.4.1. Description ... 50

4.4.2. Using the policy framework .. 51

4.4.3. Example usage ... 52

4.5. Results Analysis ... 53

4.5.1. Collecting Statistics ... 53

4.5.2. Tracefiles ... 55

5. Components ... 57

5.1. Used Template .. 57

5.2. Nodes .. 58

5.3. DAF Modules ... 59

5.3.1. Application Process ... 60

5.3.2. Application Entity .. 61

5.3.3. DAFEnrollment .. 63

5.3.4. DIF Allocator ... 66

5.3.5. IPC Resource Manager .. 68

5.3.6. Common Distributed Application Protocol ... 70

5.4. DIF Modules ... 72

5.4.1. Delimiting .. 73

5.4.2. Enrollment .. 75

5.4.3. Error and Flow Control Compound module .. 77

5.4.4. EFCP Instance ... 80

5.4.5. DTP .. 82

5.4.6. DTP State ... 84

5.4.7. DTCP ... 85

5.4.8. DTCP State .. 87

5.4.9. Flow Allocator ... 88

5.4.10. Relaying and Multiplexing Task ... 91

5.4.11. Resource Allocator .. 94

5.4.12. RIB Daemon .. 96

5.4.13. Routing ... 99

6. Policies ... 101

6.1. Used Template .. 101

6.2. Flow Allocator policies .. 101

6.2.1. AllocateRetry ... 101

6.2.2. MultilevelQoS .. 102

6.2.3. NewFlowRequest ... 103

6.3. EFCP policies ... 103

Deliverable-2.6: RINA simulator

6

6.3.1. DTP: InitialSequenceNumber .. 106

6.3.2. DTP: RTTEstimator ... 107

6.3.3. DTP: RcvrTimerInactivity ... 108

6.3.4. DTP: SenderInactivityTimer .. 108

6.3.5. DTCP: ECN ... 109

6.3.6. DTCP: ECNSlowDown ... 109

6.3.7. DTCP: LostControlPDU .. 110

6.3.8. DTCP: NoOverridePeak .. 110

6.3.9. DTCP: NoRateSlowDown ... 111

6.3.10. DTCP: RateReduction ... 111

6.3.11. DTCP: RcvFlowControlOverrun ... 112

6.3.12. DTCP: RcvrAck ... 113

6.3.13. DTCP: RcvrControlACK ... 113

6.3.14. DTCP: RcvrFlowControl ... 114

6.3.15. DTCP: ReceivingFlowControl ... 114

6.3.16. DTCP: ReconcileFlowConflict .. 115

6.3.17. DTCP: RetransmissionTimerExpiry .. 116

6.3.18. DTCP: SenderAck ... 116

6.3.19. DTCP: SenderAckList ... 117

6.3.20. DTCP: SendingAck ... 117

6.3.21. DTCP: SndFlowControlOverrun ... 118

6.3.22. DTCP: Transmission Control .. 119

6.4. Resource Allocator Policies .. 119

6.4.1. AddressComparator ... 119

6.4.2. PDU Forwarding Generator ... 120

6.4.3. QueueAlloc .. 121

6.4.4. PDU Forwarding Generator ... 121

6.4.5. QueueIDGen .. 122

6.5. RMT Policies .. 122

6.5.1. MaxQueue .. 123

6.5.2. Monitor .. 123

6.5.3. PDUForwarding ... 124

6.5.4. Scheduler .. 124

6.6. Routing policies .. 124

6.6.1. Variants .. 125

7. Policy-driven Features ... 126

7.1. Congestion Avoidance .. 126

7.1.1. Legacy Random Early Detection ... 126

Deliverable-2.6: RINA simulator

7

7.1.2. TCP-like congestion avoidance ... 126

7.2. Scheduling .. 127

7.2.1. Delay-loss .. 127

7.2.2. Enhanced Delay-Loss .. 128

7.3. Routing .. 129

7.3.1. Distance Vector (legacy) ... 129

7.3.2. Link-state (legacy) ... 129

7.3.3. TSimple Link-state .. 129

7.3.4. TSimple Distance-vector ... 130

7.3.5. Routing domain ... 131

7.4. Forwarding .. 132

7.4.1. MiniTable ... 132

7.4.2. MultiMiniTable .. 133

7.5. PDU Forwarding Table Generator ... 134

7.5.1. HopsSingle1Entry .. 134

7.5.2. HopsSingleMEntries .. 134

7.5.3. LatencySingle1Entry .. 135

7.5.4. LatencySingleMEntries .. 135

8. Demonstration scenarios .. 137

8.1. Running a Scenario .. 137

8.1.1. From the IDE ... 137

8.1.2. From the Command Line .. 138

8.2. Used Template .. 138

8.3. Demo Network ... 138

8.3.1. Motivation .. 138

8.3.2. Network Graph .. 139

8.3.3. Description ... 140

8.3.4. omnetpp.ini .. 151

8.3.5. config.xml .. 153

8.4. Demonstration: Congestion .. 157

8.4.1. Motivation .. 157

8.4.2. Description ... 158

8.4.3. Major events .. 159

8.4.4. omnetpp.ini .. 161

8.4.5. config.xml .. 166

8.5. Demonstration: Routing .. 174

8.5.1. Motivation .. 174

8.5.2. Description ... 174

Deliverable-2.6: RINA simulator

8

8.5.3. Configurations .. 175

8.5.4. omnetpp.ini .. 176

8.5.5. config.xml .. 180

8.5.6. QoS.xml ... 181

8.5.7. connections.xml ... 191

9. Conclusions .. 192

References .. 195

Deliverable-2.6: RINA simulator

9

List of Figures

1. Application Protocol and Application Entities relationship .. 14

2. DIF, DAF, DAP and IPCP illustration .. 16

3. IPCP local identifiers overview ... 18

4. Import Wizard ... 22

5. Project Explorer ... 23

6. OMNeT module structure ... 25

7. Parent/children modules .. 25

8. Example of a simple module .. 25

9. Example of a compound module .. 26

10. Example of a network module .. 26

11. Four routers topology .. 27

12. OMNeT component architecture ... 27

13. Basic OMNeT++ parts .. 28

14. Event logging window .. 28

15. Enable parallel build through IDE .. 29

16. RINASim official source code highlighter .. 30

17. Example of RINA network with three levels of DIFs and different nodes 31

18. Distributed Application Process components .. 32

19. IPC Process components ... 34

20. Initiating process Enrollment State Diagram .. 35

21. Responding process Enrollment State Diagram .. 35

22. Message passing between RINA components ... 36

23. EFCP instance divided into DTP and DTCP part ... 37

24. Flow allocation process ... 40

25. Flow Allocator operation ... 42

26. Flow Allocator Instance operation of initiating IPCP ... 43

27. Flow Allocator Instance operation of responding IPCP before the flow was allocated ... 44

28. Flow Allocator Instance operation after the flow was allocated 45

29. Establishment phase on initiating process ... 49

30. Establishment phase on responding process .. 49

31. Data transfer phase on initiating/responding process .. 50

32. Default policy settings ... 51

33. Overridden policy settings ... 53

34. Results analysis ... 55

35. Host nodes structure examples .. 58

36. Router nodes structure examples ... 59

37. DAF components for RINASim .. 59

Deliverable-2.6: RINA simulator

10

38. Application Process ... 60

39. Application Entity .. 61

40. DAF Enrollment .. 63

41. DIF Allocator ... 66

42. IPC Resource Manager .. 68

43. CDAP module ... 70

44. IPCP’s DIF components for RINASim ... 73

45. Enrollment ... 75

46. EFCP module with dynamically created Delimiting and EFCP instance modules 78

47. EFCP Instance ... 80

48. Data Transfer Protocol module ... 82

49. DTP State module ... 84

50. Data Transfer Control Protocol module .. 85

51. DTCP State module ... 87

52. Flow Allocator ... 88

53. RMT ... 91

54. Resource Allocator .. 94

55. RIB Daemon .. 96

56. Routing .. 99

57. Demo network graph ... 139

58. Visualization RA’s available QoS-cubes .. 141

59. Visualization of Directory mappings ... 142

60. Content of BottomLayerA’s NFlowTables of BorderRouterA and InteriorRouter 145

61. Data transfer phase illustration .. 150

62. Content of TopLayer ipcProcess1 NFlowTables for HostA and HostB 151

63. Network topology .. 158

64. The corresponding RINA stack ... 159

65. The congestion window size ... 160

66. The RMT queue length ... 160

67. Network topology .. 175

Deliverable-2.6: RINA simulator

11

1. Introduction

This deliverable provides the specification, design and implementation details of RINASim

- Simulator of RINA implemented in OMNeT++ tool. The aim of this report is to provide

comprehensive information on RINASim helping researchers and practitioners to understand

the underlying concepts and to utilize the simulator in their experiments.

RINA presents a new approach to network architecture and as such the extra information and

supporting tools should be provided to understand fully various concepts included. Chapter 2

denotes a fundamental theory behind RINA, which served as the cornerstone for RINASim

development. The presentation starts with a discussion on the character of applications in

RINA environment. RINA applications run as processes that utilize network through application

entities (AE). Each AE employs communication protocol to govern data transfer and controls

necessary internetworking tasks, which stands for the interprocess communication (IPC).

Processes that can establish IPC are organized in a Distributed IPC Facility (DIF), which

represents a layer in RINA. Next, the following core principles of RINA are discussed:

• differences between the connection-oriented or connectionless style of communication and

their impact on data transport in RINA,

• the role of Delta-T protocol on the design of communication patterns in RINA, mainly the

importance of Delta-T for design protocols with soft-state,

• identification of mechanisms and policies, where former stands for fixed functionality of

IPCS, while latter specifies additional features, and

• the naming and addressing model introduced with RINA.

RINASim is a simulator developed in OMNeT tools, which is one of the most used networking

simulators today. To efficiently use RINASim one needs to know the basics of OMNeT at

least. While RINASim consists of predefined simulation modules for many of RINA concepts

and policies, to fully exploit the simulation environment C programming skills are necessary

too. Chapter 3 contains information on the installation of OMNeT, acquiring RINASim from

public GitHub repository and installing it in OMNeT++. Also, the reader will get information on

running the simulation of RINA models provided together with the RINASim. The information

presented in Chapter 3 should be sufficient for RINASim novice to start with the simulator as

a tool for learning RINA or doing research in networking, respectively.

Chapter 4 provides a high-level concept overview of RINA DIF and DAF parts and their

interaction. This overview serves to identify the key concepts that are delivered in the form

of simulation components and models in RINASim. The presentation follows a top-down

approach, discussing RINA nodes first, then moving focus to DAF and DIF design. In DIF

Deliverable-2.6: RINA simulator

12

design, all important mechanisms are described. They consist of enrollment that takes places

when IPCP joins the existing DIF. Then, data transfer that covers data delimiting, error and

flow control, their relaying and multiplexing is presented. The functions of flow allocator and

resource allocator are specified. These two components are important for setting necessary

resources to establish a flow between two endpoints. Information on respective end points of the

flow is taken from RIB served by RIB daemon. Finally, an overview of the important properties

of Common Distributed Application Protocol (CDAP) is given. The presented information

serves as a foundation for the design of RINASim components presented in next.

Chapter 5 thoroughly describes all the implementation specifics of available RINASim

simulation modules. The design of RINASim architecture was driven by the requirement for the

tight correspondence between the structure of the RINA specification and proposed simulation

model. While the tight correspondence may not lead to an efficient implementation of RINA

stack, for simulation model this does not represent an issue. Contrary, the correspondence

between the specification structure and the simulation model makes the understading easier

for the users. The specification was transformed to simulation model following the well-

defined design template, which provides necessary information to anyone who wish to extend

the RINASim with new mechanisms or policies. Thus, Chapter 5 is the ultimate source of

information for RINASim contributors.

RINA introduces policies as a way to specified additional features or optional functionality.

Chapter 6 briefly describes currently implemented policies in RINASim that are related

to Flow Allocation, EFCP, Resource Allocation, Relay and Multiplexing functionality and

Routing. Provided information documents each policy by describing its purpose, specifying and

explaining parameters and localizing the policy implementation in the source code.

One of the purposes of RINASim is to support research on various RINA policies. The role of the

simulator is mainly in the evaluation phase. Chapter 7 provides information about policy-driven

advanced behavior. In this chapter, models implementing congestion avoidance and control,

scheduling, routing and forwarding policies are documented.

The other intention of RINASim is to provide a tool for carrying out experiments using simulator

scenarios. Chapter 8 contains Demo scenario together with three experimental setups. Each

setup is defined in terms of network topology definition, description of network functions and

behavior accompanied by simulation configuration files. Possible users of RINASim may find

the information presented in this chapter interesting. The demo scenario is a comprehensive

guideline on the usage of RINASim simulator.

RINASim evolved from a simple simulator to a complex simulation environment that

implements many of RINA mechanisms and policies. It is available from the GitHub repository

and run in the current OMNeT++ environment. It can be used for research of RINA Policies

Deliverable-2.6: RINA simulator

13

as well as for evaluation of various network scenarios. This deliverable contains information

on design and implementation of RINASim. Next it provides the guideline for installation and

deploying RINASim. Finally, the present deliverable demonstrates the utilization of RINASim

on three network scenarios.

Deliverable-2.6: RINA simulator

14

2. Brief Theory

The purpose of this chapter is to provide future RINASim user with a short introduction to

RINA concepts. These concepts and ideas formulated the design and development of the whole

RINASim. Others may consider this chapter as a useful source of condensed information about

RINA.

2.1. Nature of applications and application protocols

Is application a part of IPC environment or not? The set of Internet applications was rather

simplistic before WWW – one application with a single instance using only one protocol. Hence,

there is nearly no distinction between an application and its networking part. However, the web

completely changed this situation – one application protocol may be used by more than one

application and also one application may have many application protocols.

Following terms are recognized in the frame of RINA, and their relationship is depicted in

below:

• Application Process (AP) – Program instantiation to accomplish some purpose;

• Application Entity (AE) – AE is the part of AP, which represents application protocol and

application aspects concerned with communication.

Figure 1. Application Protocol and Application Entities relationship

There may be multiple instances of the Application Process in the same system. AP may have

multiple AEs, each one may process different application protocol. There also may be more

than one instance of each AE type within a single AP.

All application protocols are stateless; the state is and should be maintained in the application.

Thus, all application protocols modify shared state external to the protocol itself on various

objects (e.g. data, file, HW peripherals). Because of that, there is only one application protocol

Deliverable-2.6: RINA simulator

15

that contains trivial operations (e.g., read/write, start/stop). Data transfer protocols modify state

internal to the protocol, the only external effect is the delivery of SDUs.

2.2. Core Terms

The data transport and internetworking tasks together (generally known as networking)

constitute inter-process communication (IPC). IPC between two APs on the same operating

system needs to locate processes, evaluate permission, pass data, schedule tasks and manage

memory. IPC between two APs on different systems works similarly plus adding functionality

to overcome the lack of shared memory.

In traditional networking stack, the layer provides a service to the layer immediately above

it. As RINA name suggests, recursion and repeating of patterns is the main feature of the

whole architecture. Layer recursion became more popular even in TCP/IP with technologies

like Virtual Private Networks (VPNs) or overlay networks (e.g., OTV). Recursion is a natural

thing whenever we need to affect the scope of communicating parties. However, so far it was

just recursion of repeating functions in existing layers. RINA is based on following core ideas:

— “Networking is interprocess communication…and IPC only!” [rina-intro]

— “Application Processes communicate via a service provided by a distributed

application that provides IPC. The application processes that make up this

Distributed IPC Facility provide a protocol that implements an IPC mechanism,

and a protocol for managing distributed IPC (routing, security and other

management tasks).” [networking-is-ipc]

In ISO/OSI or TCP/IP, there is a set of layers each with completely different functions. RINA

on the other hand yields idea of the single generic layer with fixed mechanisms but configurable

policies. This layer is in RINA called Distributed IPC Facility (DIF) – a set of cooperating

APs providing IPC. There is not a fixed number of DIFs in RINA; we can stack them according

to application or network needs. From the DIF point of view actual stack depth is irrelevant,

DIF must know only (N+1)-layer above and (N-1)-layer below. DIF stacking partitions network

into smaller, thus, more manageable parts.

The concept of RINA layer could be further generalized to Distributed Application Facility

(DAF) – a set of cooperating APs in one or more computing systems, which exchange

information using IPC and maintain shared state. A DIF is a DAF that does only IPC.

Distributed Application Process (DAP) is a member of a DAF. IPC Process (IPCP) is

special AP within DIF delivering inter-process communication. IPCP is an instantiation of DIF

membership; computing system can perform IPC with other DIF members via its IPC process

Deliverable-2.6: RINA simulator

16

within this DIF. An IPCP is specialized DAP. The relationship between all newly defined terms

is depicted in figure below:

Figure 2. DIF, DAF, DAP and IPCP illustration

DIF limits and encloses cooperating processes in the one scope. However, its functionality is

more general and versatile apart from rigid TCP/IP layers with dedicated functionality (i.e., data-

link layer for adjacent node communication, a transport layer for reliable data transfer between

applications). DIF provides IPC to either another DIF or to DAF. Therefore, DIF uses a single

application protocol with generic primitive operations to support inter-DIF communication.

2.3. Connection-oriented vs. connection-less

The clash between connection-oriented and connectionless approaches (that also corrupted

ISO/OSI tendencies) is from RINA perspective quite easy to settle. Connection-oriented and

connectionless communication are both just functions of the layer that should not be visible

to applications. Both approaches are equal, and it depends on application requirements which

one to use. On the one hand, connectionless is characterized by the maximal dissemination of

the state information and dynamic resource allocation. On the other hand, connection-oriented

limits the dissemination and tends toward static resource allocation. The first one is good for low

volume stochastic traffic. The second one is useful for scenarios with deterministic traffic flows.

If the applications request the allocation of communication resources, then layer determines

what mechanisms and policies to use. Allocation is accompanied with access rights and

Deliverable-2.6: RINA simulator

17

description of QoS demands (e.g., what minimum bandwidth or delay is needed for correct

operation of application).

2.4. Delta-t synchronization

All properly designed data transfer protocols are soft-state. There is no need for explicit state

synchronization (hard-state) and tools like SYNs and FINs are unnecessary.

Initial synchronization of communicating parties is done with the help of Delta-t protocol

(see [delta-t-spec] and [delta-t-features]). Delta-t was developed by Richard Watson, who

proposed time-based synchronization technique. He proved that conditions for distributed

synchronization were met if the following three timers are realized: a) Maximum Packet

Lifetime (MPL); b) Maximum time to attempt retransmission a.k.a. maximum period during

sender is holding PDU for retransmission while waiting for a positive acknowledgment (a.k.a.

R-timer); c) Maximum time before Acknowledgement (a.k.a. A-timer).

Delta-t assumes that all connections exist all the time. Synchronization state is maintained

only during the activity, but after 2-3 MPL periods without any traffic it may be discarded

which effectively resets the connection. Because of that, there are no hard-state (with explicit

synchronization) protocols only soft-state ones. Delta-t postulates that port allocation and

synchronization are distinct.

2.5. Separation of mechanism and policy

We understand term mechanism as the fixed part and policy as the flexible part of IPC. Just to

remind the reader that mechanism is fixed, the policy is flexible part of any IPC.

If we clearly separate them, we discover that there are two types of mechanisms:

• tightly-bound that must be associated with every PDU, which handle fundamental aspects

of data transfers;

• loosely-bound that may be associated with some data transfer PDUs, which provide

additional features (namely reliability and flow control).

Both groups are coupled through state-vector maintained separately per flow; every active flow

has its state-vector holding state information. For instance, the behavior of retransmission and

flow control can be heavily influenced by chosen policies and they can be used independently

on each other.

This implies that only single generic data transfer protocol based on Delta-t is needed, which

may be governed by different transfer control policies. This data transfer protocol modifies state

internal to its PM, where application protocol (carried inside) modifies state external to PM.

Deliverable-2.6: RINA simulator

18

2.6. Naming and addressing

Application Process communicates in order to share state. We mentioned that AP consists

of AEs. We need to differentiate between different APs and also different AEs within the

same AP. Thus, RINA is using Application Process Name (APN) as globally unambiguous,

location-independent, system-dependent name. Application Process Instance Identifier (API-

id) differentiates between multiple instances of the same AP in the system. Application Entity

Instance Identifier (AEI-id), which is unambiguous for a single AP, helps us to identify

different AE instances of same Application Entity Name (AEN) within AP. Application

Naming Information (ANI) references a complete set of identifiers to name particular

application; it consists of four-tuple APN, API-id, AEN, and AEI-id. The only required part of

ANI is APN; others are optional. Distributed Application Name (DAN) is globally unambiguous

name for a set of system-independent APs.

Figure 3. IPCP local identifiers overview

IPC Process has APN to identify it among other DIF members. An RINA address is a synonym

for IPCP’s APN with a scope limited to the layer and structured to facilitate forwarding.

APN is useful for management purposes but not for forwarding. Address structure may be

topologically dependent (indicating the nearness of IPCPs). APN and address are simply two

different means to locate an object in different context. There are two local identifiers important

for IPCP functionality – port-id and connection-endpoint-id. Port-id binds this (N)-IPCP and

(N+1)-IPCP/AP; both of them use the same port-id when passing messages. Port-id is returned

Deliverable-2.6: RINA simulator

19

as a handle to the communication allocator and is unambiguous within a computing system.

Connection-endpoint-id (CEP-id) identifies a shared state of one communication endpoint.

Since there may be more than one flow between the same IPCP pair, it is necessary to distinguish

them. For this purpose, Connection-id is formed by combining source and destination CEP-

ids with QoS requirements descriptor. CEP-id is unambiguous within IPCP and Connection-

id is unambiguous between a given pair of IPCPs. Figure below depicts all relevant identifiers

between two IPCPs.

Watson’s delta-t implies port-id and CEP-id in order to help separate port allocation and

synchronization. RINA’s connection is a shared state between N-PMs – ends identified by

CEP-ids. RINA’s flow is when connection ends are bound to ports identified by port-ids. The

lifetimes of flow and its connection(s) are independent of each other.

The relationship between node and PoA is relative – node address is (N)-address, and its PoA

is (N-1)-address. Routes are sequences of (N)-addresses, where (N)-layer routes based on this

addresses (not according to (N-1)-addresses). Hence, the layer itself should assign addresses

because it understands address structure.

Deliverable-2.6: RINA simulator

20

3. Installation and configuration

The section explains how to install, configure and deploy the RINASim environment.

RINASim installation is a straightforward process with two phases: 1) obtain the project;

2) compile the project, which creates one static library (librinasimcore containing

simulation core) and one dynamic library (librinasim also containing various policies

linked together with core). Nevertheless, this tutorial will dive into details regarding installation

and setup process.

3.1. Support

FIT-BUT provides support for the current developer master branch version. Users can:

1. contact developers via mail (comment headers of source code should contain the author’s

email);

2. try to post problems as a new tickets via [ops-rinasimtickets] webpage;

3. join shared developers Skype group chat and send

him/her message (just past the following text into

Skype skype:?chat&blob=ucdWTg4wJEILgDahhm9tTuUxGQ8Yr3F2UJTH-

n6lE8qVZfOJKdVUREJ4YyTb91lKEZ3JoOgS9biF003e) ;

4. use official RINASim mailing list and join rinasim@fit.vutbr.cz1;

3.2. OMNeT Installation

RINASim is developed in OMNeT 4.6, but its source codes are fully backward compatible with

older (i.e., 4.5) and also newer (i.e., 5.0) OMNeT versions that support C++11 language standard

and GCC 4.9.2 compiler. All source codes (including master and other thematic branches) are

publicly available on the project’s GitHub repository [github-kvetak]. Apart from this official

channel, RINASim stable release snapshots are periodically published on Open Source Project

repository [ops-rinasim].

3.2.1. Windows Installation

1. Download source codes from the official web pages [omnetpp-dwnld]. Beware that in a case

of 64-bit platform, the simulator, and its libraries are still compiled for a 32-bits architecture.

1 mailto:rinasim@fit.vutbr.cz

mailto:rinasim@fit.vutbr.cz
mailto:rinasim@fit.vutbr.cz

Deliverable-2.6: RINA simulator

21

2. Unpack the source code archive. Preferably to a folder residing on the hard disk root (like

C:\omnetpp-45).

3. Execute the mingwenv.cmd program.

4. In an open MinGW prompt, type ./configure . Check whether you have all the

prerequisites.

5. Execute make , then wait until the whole project successfully builds itself.

6. Run OMNeT++ IDE from MinGW prompt by typing omnetpp , or use shortcut in

<install-dir>\ide\omnetpp.exe

7. If you plan to run outside IDE simulations, then you have to add <install-dir>\bin\ to the

PATH .

3.2.2. Linux installation

1. Among prerequisities are the following packages: build-essential gcc g+

+ bison flex perl tcl-dev tk-dev libxml2-dev zlib1g-dev

default-jre doxygen graphviz libwebkitgtk-1.0-0 openmpi-bin

libopenmpi-dev libpcap-dev

2. Download source codes from the official webpages [omnetpp-dwnld].

3. Unpack the source code archive with tar xvfz omnetpp-4.6-src.tgz .

4. Type . setenv to add the directory to PATH.

5. Execute ./configure && make , then wait until the whole project successfully builds

itself.

6. Optionally create shortcuts by running make install-menu-item and make

install-desktop-icon

7. Run the OMNeT IDE by typing omnetpp or using shortcut.

3.3. RINASim Installation

The reader is advised to clone one of the following repositories containing RINASim:

• Latest official stable release on OpenSourceProjects repository:

git clone https://opensourceprojects.eu/git/p/pristine/

rinasimulator/rinasim rinasim

https://opensourceprojects.eu/git/p/pristine/rinasimulator/rinasim
https://opensourceprojects.eu/git/p/pristine/rinasimulator/rinasim

Deliverable-2.6: RINA simulator

22

• Current developers master branch, which should always contain runnable code:

git clone https://github.com/kvetak/RINA.git rinasim

Once you have any version of RINASim source codes then you can start with RINASim

installation:

3.3.1. The IDE way

1) Open the OMNeT IDE and start project import, menu item File → Import….

2) Choose General and option Existing Projects into workspace.

3) Depending on the form of your source codes, choose either Select root directory or Select

archive file.

Figure 4. Import Wizard

https://github.com/kvetak/RINA.git

Deliverable-2.6: RINA simulator

23

4) Conclude import via the Finish button. Now RINASim should be available in the Project

Explorer under folder rina

Figure 5. Project Explorer

5) Build the rina project by Project → Build project.

3.3.2. The command line way

1) Prepare the console environment:

• on Windows: Execute the mingwenv.cmd batch file inside the OMNeT++ folder.

• On UN*X platforms: Open a console, navigate to the OMNeT++ folder and run . ./

setenv .

2) Enter the root directory of RINASim.

Deliverable-2.6: RINA simulator

24

3) Build RINASim by invoking make .

3.3.3. Makefile

RINASim source code is split between policies (folder with the same name) and simulator

core (folder src). We have removed a circular dependency between these folders. This

allowed RINASim source codes to compile based on two automatically created Makefiles

(in policies and src) and one master Makefile (in the root). Thanks to that,

developers should not experience random rebuilds of the whole project now. Currently,

compiling src folder creates static library librinasimcore.a , which contains only

RINASim core without policies. Subsequently, policies folder is compiled into dynamic

library librinasim.so/dll which contains both RINASim core and policies and allows

to run simulations.

3.4. OMNeT Handbook

OMNeT is a discrete event simulator that is freely available for academic purposes. A page

dedicated to the simulator and its community is [omnetpp-main]. It is a general simulator that

is easily extensible because of its modular nature. Additional frameworks include:

• INET and ANSAINET - wired computer networks [omnetpp-inet] and [omnetpp-ansa]

• INETMANET and MIXIM - wireless and mobile computer networks [omnetpp-mixim]

• OverSim - peer-to-peer computer networks [omnetpp-oversim]

• Veins - traffic and mass transportation networks [omnetpp-veins]

• Castalia - wireless sensor networks [omnetpp-castalia]

A comprehensive OMNeT manual covering simulation core is available at [omnetpp-manual]

or for people familiar with simulation is more suitable its quick-reference variant [omnetpp-ide].

3.4.1. Basics

OMNeT is using a hierarchical structure of simulation modules. Top level system modules

consist of submodules or so-called compound modules that could be either further divided

according to a child-parent scheme, or that are undividable and thus named simple modules.

Deliverable-2.6: RINA simulator

25

Figure 6. OMNeT module structure

OMNeT is the object-oriented simulator that leverages two languages: 1) NED for network

topology description and modules interconnections; 2) C++ for simulation modules behavior.

Modules communicate with each other by sending messages (either in the form of PDUs or timer

notifications). Messages could be received either from neighbor modules or the same module

(self-messages). A module may contain input (for receiving) and output (for sending) gates.

Connections are created between gates. The connection can exist between sibling modules or

modules with the parent-child relationship.

Figure 7. Parent/children modules

3.4.1.1. Simple modules

The NED language describes module´s structure (file with *.ned extension) and C++

implements its functionality (files with *.cc and *.h extensions).

Figure 8. Example of a simple module

Keyword simple defines module´s name TestModule where expected implementation should

be in TestModule.cc and TestModule.h. The module contains two subsections - parameters and

gates - where both are optional. In parameters section, different properties and variables (int,

string, double, xml, etc.) are set. Parameters could be set on fixed value here, or dynamically in

omnetpp.ini file that accompanies every simulation. Section gates consist of gates definitions

(in the demo there are two gates, one input gate called in, and one output gate called out).

Deliverable-2.6: RINA simulator

26

3.4.1.2. Compound modules

Compound modules aggregate multiple modules into a larger comprehensive unit.

Figure 9. Example of a compound module

The name of a compound module follows after the keyword "module" (in the example it is

Router). Section parameters and gates have the same semantics as in the case of any simple

module. Section submodules define references together with the name of imported submodules.

Section connections define how input and output gates are bound together (for instance the IP

layer gate named tcpOut is connected with TCP’s ipIn). The output gate is marked as #-, the

input as -→ and bidirectional connections as ←→.

3.4.1.3. Network modules

The highest level of abstraction is provided by network modules that describe the whole

topology of a different compound and simple modules. Once again it is outlined in the NED

language but with the different starting keyword "network".

Figure 10. Example of a network module

Deliverable-2.6: RINA simulator

27

The previous snippet is an example of a simulation network with four routers interconnected

in a ring topology.

Figure 11. Four routers topology

3.4.2. Simulator and IDE

OMNeT uses the following component architecture:

Figure 12. OMNeT component architecture

• Sim - Discrete event simulator core;

• Envir - Libraries shared by any user code consisting of event scheduler and dispatcher.

Catches and handles exceptions;

• Cmdenv/Tkenv - Libraries for graphical or command line user interface. Allow interactive

execution of simulations with step-by-step debugging and logging;

• Model Component Library - User implemented simulation modules;

• Executing Model - Compiled model of a given simulation scenario.

The OMNeT IDE is using Eclipse since version 4. A basic IDE introduction is available at

[omnetpp-demo]. The most relevant keyboard shortcuts consist of:

• Ctrl + B = build (compile) simulation modules inside project;

• Ctrl + F11 = run target simulation (either NED file or omnetpp.ini);

Deliverable-2.6: RINA simulator

28

• Ctrl + Tab = switching between NED description and associated C++ source codes;

• Alt + Left/Right Arrow = switching between tabs;

• Ctrl + Space = Intelligent helper.

The following picture describes basic OMNeT++ IDE parts:

Figure 13. Basic OMNeT++ parts

Tcl/Tk environment starts after a simulation is successfully compiled and executed. The first

window is for simulation visualization, and the second windows are for event logging:

Figure 14. Event logging window

Deliverable-2.6: RINA simulator

29

3.4.3. Tips and Tricks

This subsection contains few tricks that may come handy for any developer using RINASim.

3.4.3.1. Parallel build

Parallel build significantly increases the time of project compilation. OMNeT supports a parallel

building of source codes since version 4.6 for any environment (including Windows platform).

It is advised to check whether parallel build is enabled using _Project -> Properties_ windows

and section _C/C Build_ tab Behaviour (see figure below)

Figure 15. Enable parallel build through IDE

3.4.3.2. Visual aid

We created RINASim own code highlighter to get visual help during source navigation. It can

be downloaded from this link [omnetpp-highlight]. Integration into IDE is straight-forward

process. Just copy content of the file into \samples\.metadata\.plugins\org.eclipse.core.runtime

\.settings\ inside your OMNeT++ installation directory. Illustration of highlighting is in the

figure below.

Deliverable-2.6: RINA simulator

30

Apart from that is recommended to use EditBox section highlighter, which is freely available

(see [omnetpp-editbox]) Eclipse IDE plugin. It can be installed into OMNeT++ IDE using

official Eclipse plugin manager, go to Help # Install New Software.

Figure 16. RINASim official source code highlighter

Deliverable-2.6: RINA simulator

31

4. High-level design

To understand RINA architecture means to know each of its elements. This chapter starts with

a description of high-level RINA network nodes and then goes deeper and outlines various IPC

Management and IPCP components.

4.1. Nodes

There are only three basic kinds of nodes in RINA network (illustrated in the figure below).

Each type represents computing system running RINA:

• Hosts – end-devices for IPC containing AEs in the top layer; they employ two or more DIF

levels;

• Interior routers – interim devices, which are interconnecting (N)-DIF neighbors via

multiple (N-1)-DIFs; they employ two or more DIF levels;

• Border routers – interim devices, which are interconnecting (N)-DIF neighbors via (N-1)-

DIFs, where some of (N-1)-DIFs are reachable only through (N-2)-DIFs; they employ three

or more DIF levels.

Figure 17. Example of RINA network with three levels of DIFs and different nodes

Deliverable-2.6: RINA simulator

32

As seen in Figure above, the main difference between node kinds is in an overall number of

DIF levels present in a computing system. Due to the limited number of network interface cards

(NIC), Hosts usually have a single 0-DIF (connected to the physical medium) and a few 1-

DIFs leveraging on this lowest level DIF. Interior routers have potentially a lot of 0-DIFs (for

each interface) but only a few relaying 1-DIFs. Border routers also perform relaying but serve

as gateways between those (N-1)-IPCs, which are not connected directly. Thus, (N-2)-DIF is

needed to reach physical medium.

4.2. DAF Design

IPC Management is an integral part of any DAP responsible for managing supporting DIFs

and providing their services to participating APs. IPC Management consists of following

components depicted in Figure below:

Figure 18. Distributed Application Process components

Only IPC Resource Manager and DIF Allocator interface are exclusive to IPC Management,

other components are also present in IPC Process and described later.

4.2.1. DIF Allocator

The primary task of DIF Allocator (DA) is to return a list of DIFs where destination application

may be found given ANI and access control information. Additional and more complex DA

description is available in [RINA-layer-discovery]. DA contains and works with multiple

mapping tables to provide its services:

• Naming information table – provides association between APN and its synonyms;

Deliverable-2.6: RINA simulator

33

• Search table – provides mapping between requested APN and the list of DAs where to find

it next;

• Neighbor table – maintains a list of adjacent peers when trying to reach other DAs;

• Directory – contains records mapping APNs with access rights to the list of supporting DIFs

including DIF’s name, access control information and provided QoS.

4.2.2. IPC Resource Manager

IPC Resource Manager (IRM) (see specification [IRM-spec]) as its name suggests, it manages

DAF resources. This involves multiple different tasks:

• IRM processes allocate calls by delegating them to appropriate local IPCPs in relevant DIFs;

• IRM manages DA queries and acts upon their responses. When the DA response contains

more than one DIF, IRM chooses which DIF to use;

• IRM manages the use of flows between AEs and DIFs. IRM may choose to multiplex a

single or multiple AE flows into a single/multiple flows to a set of DIFs;

• IRM initiates joining or creating DAF and/or DIF. IRM acts upon the DAF, or DIF lost (e.g.,

sending notifications or perform subsequent actions).

4.3. DIF Design

IPC Process is instance within DIF, which allows the computing system to do IPC with

other DIF members. Each IPC process performs (secure/reliable) data transport, (authenticated)

enrollment, (de)allocation of resources, routing, management and more. Functions could be

categorized under one of following categories: a) data transfer; b) data transfer control; and

c) IPC management. Each category with different processing timescale and complexity – a) is

simplest and performed the most often, c) the least often but the functionality is rather complex.

Deliverable-2.6: RINA simulator

34

Figure 19. IPC Process components

IPC provides API to a DIF/DAF above, which requested its service. Basic IPC API offers

four operations: allocate (allocates communication resources); deallocate (releases previously

allocated resources); send (passes SDU to IPC) and receive (retrieves SDU from IPC). Calls

may be further subdifferentiated as allocate request, allocate response, deallocate submit and

deallocate deliver.

Graphical representation of IPC Process and its most important components is depicted in

Figure above. A brief description of each component and their functionality is provided below

figure. Some components outlined below also contain policy descriptions. Those policies are

mentioned because they are relevant to our contribution.

4.3.1. Enrollment

Enrollment takes place whenever IPCP joins existing DIF. IPCP newcomer creates a

connection with other IPCP (which is already a member) allocating (N-1)-flow. Enrollment

occurs after successful connection establishment. Enrollment procedure of a new member

should be dependent on a connection use-case. For instance, there may be a different exchange

of messages for: a) the new member joining DIF for the first time; b) the IPCP that had been

already a member of DIF and right now is rejoining. The new member either tells or gets its

address to/from a DIF. Enrollment procedure is codified in [Enroll-spec].

Detail description of Enrollment operation is provided in Figures below. Transitions are denoted

with “input / action” labels. There are two different FSMs. The first figure describes initiating

process right after finished CACE Phase. The second figure shows responding process after

Deliverable-2.6: RINA simulator

35

CACE Phase. Only correct transitions are shown. Either Initiating or Responding process can

invoke deallocate in any state.

Figure 20. Initiating process Enrollment State Diagram

Figure 21. Responding process Enrollment State Diagram

Both processes are using CDAP messages for communication.

Deliverable-2.6: RINA simulator

36

4.3.2. Delimiting

SDU in RINA is a contiguous chunk of data. IPC might fragment SDU (when passing it down) or

combine user-data (when passing it up). Hence, the operation performed by Delimiting module

(for specification see [Delim1] and [Delim2]) is to delimit SDU into/from PDU’s user-data

preserving its identity. Employed mechanism indicates the beginning and/or the end of SDUs.

Either internal (special pattern) or external (SDU length in PCI) delimiting could be used.

Encapsulation/Decapsulation of data messages happens in RINA components lying in the data

path. The figure below depicts this process DIF/DAF together with messages nomenclature.

Figure 22. Message passing between RINA components

4.3.3. Data Transfer with Error and Flow Control

Error and Flow Control Protocol (EFCP) is split into two independent PMs coupled

and coordinated through a state vector. As EFCP name suggests, EFCP guarantees data

transfer and data control. Full EFCP functionality is described in [EFCP-spec]. However, these

specifications are currently being revisited.

Deliverable-2.6: RINA simulator

37

Data Transfer Protocol (DTP) implements mechanisms tightly coupled with transported

SDUs, e.g., reassembly, sequencing. DTP PM operates on a data PDU’s PCI with fields

requiring minimal processing – source/destination addresses, QoS requirements, Connection-

id, optionally sequence number or checksum. DTP carries user-data.

Data Transfer Control Protocol (DTCP) implements mechanisms that are loosely coupled

with transported SDUs, e.g., (re)transmission control using various acknowledgment schemes

and flow control with data-rate limiting. DTCP functionality is based on Watson’s Delta-t and

DTCP PM processes control PDUs. DTCP provides error and flow control over user-data.

There is EFCP instance (EFCPI) module per every active flow. EFCPI consists of DTP

and DTCP submodules. DTCP policies are driven by the quality of service demands. DTCP

submodule is unnecessary for flows that do not need it, i.e., flows without any requirements for

reliability or flow control. The relationship between DTP and DTCP is illustrated in the figure

below. Depicted are also data transfer and data control transfer paths. Control traffic stays out

of the main data transfer.

Figure 23. EFCP instance divided into DTP and DTCP part

4.3.4. Relaying and Multiplexing

Relaying and Multiplexing Task (RMT) modules have two main responsibilities – relaying

and multiplexing as characterized in [RMT-spec]. The goal of multiplexing is to pass PDUs

from EFCPIs and RIB Daemon to appropriate (N-1)-flows and reverse of that. Relaying handles

incoming PDUs from (N-1)-ports that are not directed to its IPCP and forwards them to other

(N-1)-ports using the information provided by its forwarding policy.

RMT instances in hosts and bottom layers of routers usually perform just the multiplexing

task, while RMTs in top layers of interior/border routers do both multiplexing and relaying. In

addition to that, RMTs in top layers of border routers perform flow aggregation.

Each (N-1)-port handled by RMT has its set of input and output buffers. The number of buffers,

their monitoring, their scheduling discipline and classification of traffic into distinct buffers are

all matter of policies.

Deliverable-2.6: RINA simulator

38

RMT is a straightforward high-speed component. As such, most of its management (state

configuration, forwarding policy input, buffer allocation, and data rate regulation) is handled by

the Resource Allocator, which makes the decisions based on observed IPC process performance.

Each IPC process has to solve the forwarding problem: given a set of EFCP PDUs and (N-1)-

flows leading to various destinations, to which flow should be each PDU forwarded? In RINA,

the decision is handled by the RMT and its PDUForwardingPolicy. The PDUForwardingPolicy

may consist of looking up the PDU’s destination in its forwarding table (resembling the

forwarding mechanism in traditional TCP/IP routers), but it is not a requirement; other

experimental forwarding paradigms (such as forwarding based on topological addressing) may

not require a forwarding table at all. When in need of deciding for an output (N-1)-port for a

PDU, the PDUForwardingPolicy is given the PDU’s PCI and then it returns a set of (N-1)-

ports to which the PDU has to be sent. This provides enough granularity to implement multiple

communication schemes apart from unicast (such as multicast or load-balancing) because the

decision is left to the PDUForwardingPolicy. E.g., a simple forwarding policy would return a

single (N-1)-port based on PDU’s destination address and QoS-id, whereas in case of a load-

spreading policy and multiple (N-1)-ports leading to the same destination, the policy could split

traffic by PDUs' flow-ids and always return a single (N-1)-port from the set.

4.3.5. SDU Protection

SDU Protection is the last part of the IPC Process data path, before an SDU is handed over to an

underlying DIF. It is responsible for protecting SDUs from untrusted (N-1)-DIFs by providing

mechanisms for lifetime limiting, error checking, data integrity protection and data encryption.

It also provides mechanisms for data compression or other two-way manipulations that depend

on the (N-1)-flow used and can increase the effectiveness of other SDU Protection mechanisms.

All the mechanisms provided by the SDU Protection module are encapsulated in two primary

functions: protect_sdu and unprotect_sdu. These functions are called by the RMT, connecting

the SDU Protection module to the rest of the IPC Process components. The protect_sdu

function is called after the RMT decides which (N-1)-port will the SDU be passed to whereas

the unprotect_sdu function is the first function called after receiving data from an (N-1)-port.

Due to different levels of trust an (N)-DIF can have towards different (N-1)-DIFs, SDU

Protection handles each (N-1)-flow on it’s own. This gives us the ability to skip some SDU

Protection mechanisms in favor of performance for trusted networks while still being protected

from untrusted networks. This is controlled by using different policies that could look like the

following:

• Null SDU Protection policy that performs no transformations

Deliverable-2.6: RINA simulator

39

• Basic SDU Protection which applies lifetime limiting (TTL) and error checking (CRC)

• Cryptographic SDU Protection which extends the Basic policy by adding cryptographic

encryption of data and an integrity check using a cryptographic hash of the content

4.3.6. Flow Allocator

Flow Allocator (FA) processes allocate/deallocate IPC API calls and further management of all

IPCP’s flows. FA instantiates a Flow Allocator Instance to manage each flow; FA is controller/

container for all Flow Allocator Instances.

Flow Allocator Instance (FAI) is created upon allocate request call, and it manages a given

flow for its whole lifetime. FAI handles creating/deleting EFCPI(s) while maintaining a single

flow’s connection. FAI returns port-id to the allocation requestor upon satisfactory allocation

as a referencing handle. FAI participates only on port allocation, not on synchronization, which

is the responsibility of EFCPI. The FAI maintains a mapping between flow’s local port-id and

connection’s local CEP-id.

FA contains Namespace Management (NSM) interface for assigning and resolving names

(including synonyms) within DIF. This activity involves maintaining the table with entries that

map requested ANI to IPCP’s address.

Flow object contains all information necessary to manage any given flow between

communicating parties. It is carried inside create/delete flow request/response messages

controlling FA and FAI operation. Flow object contains: source and destination ANI, source

and destination port-ids, connection-id, source and destination address, QoS requirements, a set

of policies, access control information, hop-count, current and maximal retries of create flow

requests.

Flow allocation processes for (N)-DIF between two APs on different systems is depicted in the

Figure below. It assumes that relevant (N-1)-flows have been already allocated using the same

principle as the one being described but on different DIF’s rank.

Deliverable-2.6: RINA simulator

40

Figure 24. Flow allocation process

• AP1 issues allocate request that is delivered to IPCP A.1. If it is valid and well-formed,

then it spawns FAI to manage requested flow. FAI resolves AP3’s APN to one of DIF A

addresses (A.3). It instantiates EFCPI (with CEP-id) and creates bindings between EFCPI

and RMT. Create flow request is sent as the last step;

• Create flow request arrives at “System 2”. IPCP A.2’s FA processes the request and discuss

NMS. It discovers that request is not intended for any local AP. FA looks up the destination

discovering that A.3 should be a next-hop. FA forwards the request to “System 3”;

• The request arrives at IPCP A.3. Over there, FA determines by querying NMS that

create flow request destination address is its address. Thus, destination AP resides on this

system. FAI is spawned and determine whether the request can be accommodated. If not

then negative create flow response is sent back to the requestor. Otherwise, FAI notifies

destination AP with allocate request;

• If destination AP accepts or rejects the request then either positive, or negative allocate

response is returned to FAI. Based on the response, FAI binds port-id, instantiates EFCPI,

creates bindings. Flow object is updated (with local port-id and CEP-id) and sent back as

positive/negative create flow response. Response is just relayed (not processed) on interior

routers (IPCP A.2);

Deliverable-2.6: RINA simulator

41

• Originating A.1’s FAI receives create flow response and updates relevant flow object. If

the response is positive, then, FAI notifies source AP with positive allocate response and

APs may commence data transfer. If the response is negative, then FAI invokes retry policy

to correct flow creation or deal appropriately with failure (i.e., passing negative allocate

response).

Original specification [FA-spec] were refined as the subject of this thesis contribution. Detail

description of flow allocation and deallocation is provided in Figures below. Transitions are

denoted with “input / action” labels. FA and FAI maintain state for any given flow and refuse

inappropriate transitions (e.g., initiating deallocation before the allocation is successful). These

transitions are omitted for clarity. There are four different FSMs. The first figure depicts FA

operation reacting upon notification from RIBd. Second and third figures show flow allocation

procedure for initiating and responding FAIs. The last figure illustrates flow’s lifecycle after

successful allocation, and it is mutual for both initiating and responding FAIs.

NewFlowRequstPolicy is invoked after FAI’s instantiation. Policy subtasks involve both 1)

evaluation of access control rights; and 2) translation of QoS requirements specified in allocate

request to appropriate RA’s QoS-cubes. AllocateRetryPolicy occurs whenever initiating FAI

receives negative create flow response. This policy allows FAI to reformulate the request and/

or to recover properly from failure. AllocateNotifyPolicy controls a proper time when source AP

is going to be notified of the result of allocation by initiating FAI. It may be either when EFCPI

is created, or when allocation is confirmed by destination or any other notification strategy may

be employed. SeqRollOverPolicy is invoked simultaneously by both initiating and responding

FAIs whenever PDU’s sequence number threshold is reached. The policy usually spawns new

EFCPIs and changes bindings.

Deliverable-2.6: RINA simulator

42

Figure 25. Flow Allocator operation

Deliverable-2.6: RINA simulator

43

Figure 26. Flow Allocator Instance operation of initiating IPCP

Deliverable-2.6: RINA simulator

44

Figure 27. Flow Allocator Instance operation of responding IPCP before the flow was allocated

Deliverable-2.6: RINA simulator

45

Figure 28. Flow Allocator Instance operation after the flow was allocated

4.3.7. Resource Allocator

If a DIF has to support different qualities of service, then various flows will have to be allocated

to different policies and traffic for them treated differently. Resource Allocator (RA) delineated

in [RA-notes] is a component accomplishing this goal by handling management of various IPCP

resources, namely it:

• controls creating/deleting and enlarging/shrinking of RMT queues;

• modifies EFCPI’s DTCP policy parameters;

• controls creating/deleting of (N-1)-flows and their assignment to appropriate RMT queue(s);

• manages QoS classes and their assignment to RMT queue(s);

• maintains routing information affecting RMT’s relaying or initiates congestion control.

RA maintains a catalog of meters and dials by monitoring various management resources. Each

catalog item can be manipulated and shared with other IPC processes within DIF.

Generating information necessary for PDUForwardingPolicy is one of the tasks of RA, namely

its subcomponent called PDU Forwarding Table Generator. For this purpose, RA uses pieces

of information provided by other sources, most notably the RoutingPolicy.

The RoutingPolicy exchanges information with other IPCPs in the DIF in order to generate

a next-hop table for each PDU (usually based on the destination address and the id of the

Deliverable-2.6: RINA simulator

46

QoS class the PDU belongs to). The next-hop table is then converted into a PDU Forwarding

Table with input from the PDU Forwarding Table Generator, by selecting an N-1 flow for each

"next-hop". RoutingPolicy may resemble distance vector and link-state routing protocols used

in today’s Internet, but the current research is also aimed at other paradigms such as topological/

hierarchical routing, greedy routing or MANET-like routing.

4.3.8. RIB Daemon

All information maintained by IPC tasks such as FA, RA, and others is available and updated

through RIB Daemon (RIBd) described in [mobj-spec] and [RIB-notes]. Information exchange

is necessary to coordinate the distributed IPC. Different update strategies for various types of

information may be used to synchronize state between different DIF member subsets.

Resource Information Base (RIB) is a logical database of information accessible via RIB

Daemon. By logical database, we mean that some of RIB information may be stored in the

dedicated database and the rest of IPCP components. Periodic or solicited events can cause RIB

to be queried/updated by IPCP peers via management CDAP messages. RIBd provides an API

to perform an operation on both local and remote RIB.

4.3.9. Common Distributed Application Protocol

RINA principles postulate that there is only a single application protocol required and this is

the Common Distributed Application Protocol (CDAP). DIFs use CDAP for all non-data

communication (i.e., IPC management such as maintaining RIB, controlling flow allocation,

joining a DIF). DAFs may not use CDAP for backward compatibility. However, CDAP

expressiveness should allow the transition of legacy protocols. CDAP is based and patterned on

two existing protocols – ACSE (see [isoiec-15953] and [isoiec-10035-1]) for the establishment

phase, CMIP [isoiec-9596-1] for the data transfer phase.

CDAP subpart for data transfer is object-oriented (with built-in scope and filter support) protocol

offering six primitive operations: create; delete; read (i.e., get value); write) (i.e., put or set

value); start (i.e., execute action) and stop (i.e., suspend action). The collection of objects is

dependent on used AE, which provides access rights to them.

CDAP has modular structure composed of three submodules to provide flexibility:

• The common application connection establishment (CACE) submodule;

• The authentication (Auth) submodule provides authentication of the communication

endpoints. A range of submodules will be available to support different kinds (e.g., none

authentication, shared password, certificates) of authentication policies employing various

cryptographic tools (e.g., a-/symmetric ciphers for confidentiality, MAC codes for integrity);

Deliverable-2.6: RINA simulator

47

• The CDAP submodule.

CDAP offers following eighteen message types summarized in Table below [CDAP]:

Opcode Description

M_CONNECT Initiate a connection from a source

application to a destination application

M_CONNECT_R Response to M_CONNECT carries

connection information or an error indication

M_RELEASE Orderly close of a connection

M_RELEASE_R Response to M_RELEASE carries final

resolution of close operation

M_CREATE Create an application object

M_CREATE_R Response to M_CREATE carries result of

creating request, including identification of

the created object

M_DELETE Delete a specified application object

M_DELETE_R Response to M_DELETE, carries result of

deletion attempt

M_READ Read the value of a specified application

object

M_READ_R Response to M_READ carries part or all of

object value or error indication

M_CANCELREAD Cancel a prior read issued using M_READ

for which a value has not been completely

returned

M_CANCELREAD_R Response to M_CANCELREAD indicates

outcome of cancelation

M_WRITE Write a specified value to a specified

application object

M_WRITE_R Response to M_WRITE carries result of

write operation

M_START Start the operation of a specified application

object, used when the object has operational

and non-operational states

Deliverable-2.6: RINA simulator

48

Opcode Description

M_START_R Response to M_START indicates the result

of the operation

M_STOP Stop the operation of a specified application

object, used when the object has operational

and non-operational states

M_STOP_R Response to M_STOP indicates the result of

the operation

Connection management between two applications is divided into two traditional phases –

establishment and data transfer. An AP issues allocate request to underlying DIF’s IPCPC

specifying the destination APN and QoS requirements. If the allocation is successful, IPCP

returns port-id to be used as a handle for all communication leveraging this flow. When the

previous phase is completed, CACE sends a M_CONNECT message to start authentication

using Auth submodule. Additional message exchange might follow in order to support different

authentication mechanisms. If it is successful then the connection is established and CDAP

transits to data transfer phase.

Another contribution is further refinement of CACE specifications [CACEP]. Detail description

of CDAP operation is provided in Figures below. Once again transitions are denoted with

“input / action” labels. There are three different FSMs. The first figure depicts establishment

phase on initiating the process. The second figure shows the same but from the perspective of the

responding process. The third figure outlines data transfer phase for both initiator and responder

once they successfully reach “Established“. For the sake of readability, only correct transitions

are shown. Incorrect transitions upon receiving unexpected CDAP message terminate from

any state in “Error” marked as “wrong input”. Both initiator and responder might “indicate

deallocation”, thus entering “Deallocating” state at any given moment.

Deliverable-2.6: RINA simulator

49

Figure 29. Establishment phase on initiating process

Figure 30. Establishment phase on responding process

Deliverable-2.6: RINA simulator

50

Figure 31. Data transfer phase on initiating/responding process

Depending on whether (N-1)-flow should be preserved or not, the transition from

“Deallocating” (based on keepFlow boolean) may delete any state associated with connection

and transit to the “Null” state.

4.4. Policy Framework

RINA specifications present the proposed network architecture as a generic framework where

mechanisms are intended to perform basic common functionality and policies are defined to

select the most appropriate implementation of variable functionality. Thus, it is desired to design

RINASim in a way that allows for the definition of policies and their smooth integration in the

simulation models.

Hence, RINASim provides support for user-modifiable policies specifying the behavior of

miscellaneous parts of RINA stack functionality. The separation of mechanism and policy

is achieved by splitting the policy procedures into their separate modules — i.e. each policy

invocation is done by calling an appropriate method of the proper policy’s module.

An overview of available policies and policy implementation can be found in Sections 6 & 7.

4.4.1. Description

To minimize the need for modifying existing C++/NED source codes, the RINASim policy

framework is based on OMNeT++ NED module interfaces. Each policy inside the DAF &

DIF architectures is represented by a placeholder interface and the type of desired policy

implementation is then determined at the simulation setup phase by a parameter placed in an

Deliverable-2.6: RINA simulator

51

INI config file. This allows for virtually unlimited amount of user policy implementations to be

defined and easily switchable via the configuration files.

In the default setting, each policy of each submodule uses its default policy implementation

specified in the encompassing submodule’s NED file (this default policy is usually a no-op

placeholder). E.g., the default policies used by the Relaying and Multiplexing task are visible

in /src/DIF/RMT/RelayAndMux.ned:

string schedPolicyName = default("LongestQFirst");

string qMonitorPolicyName = default("SimpleMonitor");

string maxQPolicyName = default("TailDrop");

Default policies loaded by the simulation:

Figure 32. Default policy settings

4.4.2. Using the policy framework

Each policy consists of a NED module interface (e.g. "policies/DIF/RA/QueueAlloc/

IntQueueAlloc.ned") and a C++ implementation interface (e.g. "policies/DIF/RA/QueueAlloc/

QueueAllocBase.{cc,h}").

In case of creating a new policy implementation, the policy writer has to

• create a new simple NED module implementing the policy’s interface, and

• implement this module by creating a new C++ class inheriting from the base C++ class and

redefining desirable methods.

A new policy implementation can be loaded by setting a proper

parameter of the encompassing module in the configuration file (e.g.

Deliverable-2.6: RINA simulator

52

"host.ipcProcess0.resourceAllocator.queueAllocPolicyName = "QueuePerNFlow""). The

parameter value has to match the name of the NED policy implementation module. Otherwise,

the simulation framework will issue a fatal error in the initialization phase of the simulation.

4.4.3. Example usage

4.4.3.1. Use case

A user is working with the simulation scenario SimpleRelay[PingFC] which presents an

example of two hosts communicating through an interior router that is prone to congestion due

to queuing delay.

<pic>

The user wishes to modify the simulation scenario configuration so that the top IPC process of

the interior router uses RED queuing discipline, by which some of the PDUs get dropped early

to prevent congestion.

4.4.3.2. Solution

The first step consists of implementing the policy. In this case, the policy implementations

needed for simulating the RED algorithm are already available in RINASim:

• REDMonitor (/policies/DIF/RMT/Monitor/REDMonitor), an implementation of

QMonitorPolicy

• REDDropper (/policies/DIF/RMT/MaxQueue/REDDropper), an implementation of

MaxQPolicy

When the policy implementations are ready, we need to reconfigure the default settings in

omnetpp.ini so the simulation uses them instead of the default ones.

**.interiorRouter.relayIpc.relayAndMux.maxQPolicyName = "REDDropper"

**.interiorRouter.relayIpc.relayAndMux.qMonitorPolicyName = "REDMonitor"

Note: The OMNeT++ IDE makes the parameter specification easier thanks to its auto-assist

feature (Ctrl + Space lists all available policy implementations).

Now, when the reconfigured simulation is run, it uses the specified RED policies:

Deliverable-2.6: RINA simulator

53

Figure 33. Overridden policy settings

4.5. Results Analysis

RINASim can record a detailed log about your message exchanges and collect various

parameters values during the simulation run. This section outlines two features that are actually

being implemented and used inside RINASim to gather data for research.

4.5.1. Collecting Statistics

OMNeT++ inherently supports signal-based statistic collection, see [omnetpp-stats] on which

this subsection is loosely-based.

Signals are used to expose variables for result collection without telling where, how, and whether

to record them. With this approach, modules only publish the variables, and the actual result

recording takes place in listeners. Listeners may be added by the simulation framework (based

on the configuration), or by other modules (for example by dedicated result collection modules).

The general guideline when creating a new placeholder for statistic analysis is:

1. Add @statistic properties to the simple module’s NED file. A @statistic

property defines the name of the statistic, which signal(s) are used as input, what processing

steps are to be applied to them (e.g. smoothing, filtering, summing, differential quotient),

and what properties are to be recorded (minimum, maximum, average, etc.) and in

which form (vector, scalar, histogram). Accompany statistic declaration with source signal

definition, but beware that statistic signal MUST NOT contain hyphen character in their

name.

2. Later run the simulation and generate files with results (*.sca, *.vci, *.vec and *.anf). Inspect

these results double-clicking on *.anf file, which will open OMNeT++ build in results

analyzer.

Deliverable-2.6: RINA simulator

54

General OMNeT++ statistic definition examples:

@signal[qlen](type=int); // optional

@statistic[queueLength](source=qlen; record=max,timeavg,vector?);

@statistic[dropCount](source=count(drop); record=last,vector?);

@statistic[droppedBytes](source=sum(8*packetBits(pkdrop));

 record=last,vector?);

RINASim statistic definition example based on /src/DAF/IRM/IRM.ned file:

@signal[IRM_PassUp](type=bool);

@signal[IRM_PassDown](type=bool);

@statistic[irm-up](title="msg passed up"; source=count(IRM_PassUp);

 record=last);

@statistic[irm-down](title="msg passed down"; source=count(IRM_PassDown);

 record=last);

Deliverable-2.6: RINA simulator

55

Figure 34. Results analysis

4.5.2. Tracefiles

RINASim’s implementation of RMT can generate a trace file that contains a list of actions

undertaken on every PDU during the simulation.

4.5.2.1. Usage

Trace file generation is enabled by the pduTracing parameter of the RelayAndMux

compound module (e.g. **.relayAndMux.pduTracing = true).

The resulting file with a .tr extension is stored in the /results/ directory of chosen simulation.

4.5.2.2. Description

The lines are written in chronological order, and their format resembles that of ns-2 trace files:

event time node ipcp pduType pduSize flags flow DIF srcAddr

dstAddr seq id

Deliverable-2.6: RINA simulator

56

field format

event r (receive) / s (send) / + (enqueue) / -

(dequeue) / d (drop)

time event timestamp in seconds

node node name

ipcp IPC process name

pduType PDU type

pduSize PDU size in bits

flags PDU flags

flow flow-id (srcCEP + dstCEP + qosID)

DIF DIF name

srcAddr source address

dstAddr destination address

seq PDU sequence number

id packet ID (unambiguous in scope of whole

simulation)

4.5.2.3. Example output

+ 102.000346959997 interiorRouter ipcProcess0 DataTransferPDU 168 00000000

 27469590451 Layer01 3 1 5 1831

- 102.000346959997 interiorRouter ipcProcess0 DataTransferPDU 168 00000000

 27469590451 Layer01 3 1 5 1831

s 102.000346959997 interiorRouter ipcProcess0 DataTransferPDU 168 00000000

 27469590451 Layer01 3 1 5 1831

r 102.000348719997 interiorRouter ipcProcess1 DataTransferPDU 176 00000000

 216369211 Layer02 2 4 6 1804

+ 102.000348719997 interiorRouter ipcProcess1 DataTransferPDU 176 00000000

 216369211 Layer02 2 4 6 1804

- 102.000348719997 interiorRouter ipcProcess1 DataTransferPDU 176 00000000

 216369211 Layer02 2 4 6 1804

Deliverable-2.6: RINA simulator

57

5. Components

This subsection provides a general overview of RINASim components design, which includes

high-level abstract models of computing systems (like hosts and routers) and also their

low-level submodules (like IPCP). In general, a structure of RINASim models follows the

structure proposed in the RINA specification. This intentional correspondence enables anyone

understanding the RINA specifications to easily orient in RINASim too. Though this structure

does not always stand for the most natural representation of RINA concepts in simulation

models, it provides a framework for evaluating properties of the architecture and to identify

missing or inaccurate information in the original specification. During the design of simulation

models, we were able to determine several places where specifications should be refined

to provide complete and unambiguous information. Following lines reflect RINASim design

relevant to the up-to-date version of RINA specifications and underlying mechanism and

policies.

It is assumed that for experimenting with RINA concepts these components will be extended

to the required policies depending on the character and goals of the target experiments. As

mentioned in previous chapters, these components also compose predefined RINA nodes used

for experimental simulation models to demonstrate properties of different RINA applications.

Thus, the information provided in this chapter may be interesting to anyone who participates on

RINA design and wants to perform experiments with different mechanisms and policies.

5.1. Used Template

Each atomic RINA component is described using the following set of information:

1. Visual representation of component structure

2. Narrative description of the functionality provided by the component

3. List of the component’s submodules

4. Relevant source files containing code of the component’s implementation

5. NED design structure (e.g., used dynamic and static gates, registered signals, configurable

parameters and properties)

6. Available policies (a list of available user-definable policies)

7. C++ implementation notes (e.g., interface, base class, children classes, notable methods and

attributes)

8. Overview of current limitations and future development plans

Deliverable-2.6: RINA simulator

58

5.2. Nodes

RINASim offers a variety of high-level models simulating the behavior of independent

computing system. These models can be employed to set quickly up simulation experiments.

Through parameterization and extension, it is possible to test different deployments and settings.

Based on the RINA specifications, we can distinguish between the following node types:

• Host nodes, which represent devices or systems that run distributed applications. These

nodes implement the full RINA stack and, also, contains an application process(es). AP

instances are configured to communicate with each other to simulate the behavior of an

arbitrary RINA application. Currently, there are several predefined host nodes depending on

a number of APs and AEs. The figure below illustrates some of host nodes internal structure.

The most of depicted hosts contain two IPCPs, which models usual end-system with a single

NIC. The host may provide only single IPCPs, which would allow IPC with only one directly

connected neighbor. Alternatively, host may contain more than two IPCPs; (0)-rank IPCPs

represent multiple NICs, and (1+)-rank IPCPs represent different DIFs host memberships;

Figure 35. Host nodes structure examples

• Routers (intermediate nodes), which can be either interior or border. A router is a device

that interconnects different underlying DIFs and often does not run user applications. Just

as in RINA specification, there are either interior or border routers depending on DIF stack

depth (influenced partially also by a number of interfaces). The figure below illustrates two

interior routers and one border router simulation models.

Deliverable-2.6: RINA simulator

59

Figure 36. Router nodes structure examples

Of course, there are many more possible combinations of host and router configurations than

the ones currently defined in RINASim. However, the aim of providing predefined node models

is not to cover all of the possible combinations but rather to offer the most used ones enabling to

set quickly up simulation scenarios. Defining new node or router with suitable structure is not a

complicated task. Nevertheless, the present collection of available models seems to be enough.

5.3. DAF Modules

DAF components can be divided into three submodules: a) Application Processes (containing

one or more Application Entities), which represents IPC endpoints; b) IPC Resource Manager,

which interconnects APs and available IPCPs; c) DIF Allocator, which helps during APN

discovery and management process. Components relationship and internal structure (described

below) are depicted below.

Figure 37. DAF components for RINASim

Deliverable-2.6: RINA simulator

60

5.3.1. Application Process

The ApplicationProcess is a core component of DAF.Currently, this module is a

placeholder for possible RINA applications.

Figure 38. Application Process

5.3.1.1. Submodules

The ApplicationProcess modules consists of the two submodules as follows:

• applicationEntity – same submodule as in the case of DAF components

description;;

• apManagement – contains Enrollment module and dynamically spawned

ManagementAEs;

5.3.1.2. Source codes

Relevant sources for this component are located in /src/DAF.

Filename(s) Description

ApplicationProcess.ned ApplicationProcess core simple module

5.3.1.3. NED design

• Gates utilized by this submodule are as follows:

applicationProcess.southIo;

applicationEntity.aeIo;

apManagement.southIo;

• None of ApplicationProcess has abstract data structures configurable via config.xml file.

Deliverable-2.6: RINA simulator

61

5.3.1.4. Available policies

No policies are currently associated with this module.

5.3.1.5. C++ implementation

• This module has no signals that is receiving or emitting.

Limitations

• It is container only.

Future work

• This module should represent the core of an RINA application. As such it should be

programmable instead of representing only empty container module.

5.3.2. Application Entity

The Application Entity (AE) is created for each flow representing a connection between two

applications. The AE is responsible for:

• enforcing access control, i.e., to evaluate whether the requesting Application Process has

access to the requested Application Process,

• monitoring and managing the associated flow during its duration.

Figure 39. Application Entity

5.3.2.1. Submodules

The AE consists of two submodules:

Deliverable-2.6: RINA simulator

62

• Interface for the AE module "iae" - AE module interface,

• Common Distributed Application Protocol module

"commonDistributedApplicationProtocol". This module sends and receives CDAP

messages on behalf of "iae".

5.3.2.2. Source codes

Component sources are located in /src/DAF/AE

It consists of following files:

Filename(s) Description

ApplicationEntity.ned Compound module holding all the AE

functionality submodules

IAE.ned OMNeT++ NED interafce definition

AEBase.h/.cc Base class for general AE functionality

intended for inheritance and extensions

AE.ned AE simple module generally with one-flow

scheduling flow (de)allocation

AE.h/.cc Implementation of AE core functionality

AEListeners.h/cc AE listeners

AEPing.ned AEPing simple module

AEPing.h/.cc AE with Ping-like application behavior

5.3.2.3. NED design

The IAE is specified before implementation starts. Default AE type is AE.ned.

parameters:

 string aeType = default("AE");

submodules:

 iae: <aeType> like IAE

5.3.2.4. C++ Implementation

Registered signals that the AE module is emitting:

SIG_AE_AllocateRequest

SIG_AE_DeallocateRequest

SIG_AE_DataSend

Deliverable-2.6: RINA simulator

63

SIG_AERIBD_AllocateResponsePositive

SIG_AERIBD_AllocateResponseNegative

Registered signals that the AE module is receiving:

SIG_AE_Enrolled

SIG_CDAP_DateReceive

SIG_FAI_AllocateRequest

SIG_FAI_DeallocateRequest

SIG_FAI_DeallocateResponse

SIG_FAI_AllocateResponsePositive

SIG_FAI_AllocateResponseNegative

5.3.2.5. Future work

1. Revisiting the interfaces would be necessary to adjust interfaces to recent development.

2. Create new streaming application capable of congesting the resources allocated for the flow

within the DIF.

5.3.3. DAFEnrollment

The DAFEnrollment module controls initial communication between two IPCP’s, Flow

allocation and dynamic Application Entity creation and finalization.

Figure 40. DAF Enrollment

5.3.3.1. Submodules

The DAFEnrollment modules consists of two auxiliary submodules that maintain the state

information:

• enrollment – this module implements the core functionality;

• enrollmentStateTable – this module maintains status of active flows;

Deliverable-2.6: RINA simulator

64

5.3.3.2. Source codes

Relevant sources for this component are located in /src/DAF/Enrollment.

Filename(s) Description

EnrollmentModule.ned DAFEnrollment compound module that is

part of every node

Enrollment.ned DAFEnrollment core simple module

DAFEnrollment.h/.cc Implementation of DAFEnrollment core

functionality

DAFEnrollmentBase.h/.cc Base class for general DAFEnrollment

functionality intended for inheritance and

extensions

EnrollmentStateTable.ned State table simple module

DAFEnrollmentStateTable.h/.cc Implementation of state table functionality

DAFEnrollmentStateTableEntry.h/.cc Single record for state table, basically

destination APN as key and source APN,

CACE Connection status, Enrollment status

DAFEnrollmentObj.h/.cc Implementation of DAFEnrollment object

maintaining information exchanged during

enrollment phase

DAFOperationObj.h/.cc Implementation of DAFEnrollment object

maintaining information exchanged after

enrollment phase

DAFEnrollmentListeners.h/.cc Enrollment listeners

DAFEnrollmentNotifierBase.h/.cc Base class for general DAFEnrollment

Notifier functionality intended for

inheritance and extensions

DAFEnrollmentNotifier.h/.cc Implementation of DAFEnrollment Notifier

core functionality

DAFEnrollmentNotifierListeners.h/.cc DAFEnrollment Notifier listeners

5.3.3.3. NED design

• DAFEnrollment and its submodules do not have any gates. The module communicates using

signals only.

Deliverable-2.6: RINA simulator

65

• None of DAFEnrollment has abstract data structures configurable via config.xml file.

5.3.3.4. Available policies

No policies are currently associated with this module.

5.3.3.5. C++ implementation

• Registered signals that the DAFEnrollment and its submodules are emitting:

SIG_ENROLLMENT_CACEDataSend

SIG_ENROLLMENT_DataSend

SIG_ENROLLMENT_StartEnrollmentRequest

SIG_ENROLLMENT_StartEnrollmentResponse

SIG_ENROLLMENT_StopEnrollmentRequest

SIG_ENROLLMENT_StopEnrollmentResponse

SIG_ENROLLMENT_StartOperationRequest

SIG_ENROLLMENT_StartOperationResponse

SIG_ENROLLMENT_Finished

SIG_AEMGMT_ConnectionResponsePositive

SIG_AERIBD_AllocateResponseNegative

SIG_AERIBD_AllocateResponsePositive

• Registered signals that the DAFEnrollment and its submodules are receiving:

SIG_FAI_AllocateResponsePositive

SIG_FAI_AllocateRequest

SIG_AE_Enrolled

SIG_RIBD_StartEnrollmentRequest

SIG_RIBD_StartEnrollmentResponse

SIG_RIBD_StopEnrollmentRequest

SIG_RIBD_StopEnrollmentResponse

SIG_RIBD_StartOperationRequest

SIG_RIBD_StartOperationResponse

SIG_RIBD_ConnectionResponsePositive

SIG_RIBD_ConnectionResponseNegative

SIG_RIBD_ConnectionRequest

5.3.3.6. Limitations

• This module does not support deallocation.

• The module cannot be configured.

Deliverable-2.6: RINA simulator

66

5.3.3.7. Future work

1. Deallocation of the module should be supported.

2. An implementation that allows to send application-specific data in DAF enrollment phase

should be provided.

5.3.4. DIF Allocator

The difAllocator module handles locating a destination application based on its name.

DIF Allocator is a component of the DAP’s IPC Management that takes ANI and access

control information and returns a list of DIF-names through which the requested application is

available. Moreover, the difAllocator module provides statically configured knowledge

about simulation network graph.

Figure 41. DIF Allocator

5.3.4.1. Submodules

The difAllocator modules consists of five auxiliary submodules that maintain state

information:

• da – core functionality;

• namingInformation – mapping between APN synonyms;

• directory – mapping between APN and DIF-names;

• searchTable – mapping between APN and peer DA instance where to continue search;

• neighborTable – mapping between peer DA and neighboring DA instances.

5.3.4.2. Source codes

Relevant sources for this component are located in /src/DAF/DA.

Deliverable-2.6: RINA simulator

67

Filename(s) Description

DIFAllocator.ned DIF Allocator compound module that is part

of every node

DA.ned DA core simple module

DA.h/.cc Implementation of DA core functionality

NamingInformation.ned Synonyms naming table simple module

NamingInformation.h/.cc Implementation of Synonyms naming table

functionality

NamingInformationEntry.h/.cc Single record for naming table, basically

APN as key and list of assigned synonyms

(other APNs)

Directory.ned Directory mapping simple module

Directory.h/.cc Implementation of Directory mapping

functionality

DirectoryEntry.h/.cc Single directory record, which contains APN

as primary key and list of Addresses

SearchTable.ned" Searching table simple module

SearchTable.h/.cc Implementation of Searching table

functionality

SearchTableEntry.h/.cc Implementation of Auth core functionality

NeigborTable.ned" Neighbor table simple module

NeigborTable.h/.cc Implementation of Neighbor table

functionality

NeigborTableEntry.h/.cc Implementation of Auth core functionality

5.3.4.3. NED design

• DIF Allocator and its submodules do not have any gates.

• DIF Allocator and its submodules abstract data structures are configurable via config.xml

file.

5.3.4.4. Available policies

No policies are currently associated with this module.

Deliverable-2.6: RINA simulator

68

5.3.4.5. C++ implementation

• DIF Allocator does not receive/emit any signals. Usage of DIF Allocator components is

done via direct function calls.

5.3.4.6. Limitations

• SearchTable does not have any impact on current RINASim functionality.

5.3.4.7. Future work

1. Define interface for DIF allocator;

2. The content of NeighborTable should not be used for FA delivery. Use dynamic Routing

information instead.

5.3.5. IPC Resource Manager

The ipcResourceManager module currently queries DA module to find suitable IPCP

and relays communication between AE and IPCP. The ipcResourceManager consists of

two submodules:

Figure 42. IPC Resource Manager

5.3.5.1. Submodules

The IPC Resource Manager consists of two submodules:

• irm - This module acts as a broker between APs and IPCs and handles AP flow

(de)allocation calls

• connectionTable - This module maintains the necessary state for IRM proper

functionality (the state of the N-1 flows).

Deliverable-2.6: RINA simulator

69

5.3.5.2. Source codes

Component sources are located in /src/DAF/IRM. It consists of following files:

Filename(s) Description

IPCResourceManager.ned IPC Resource Manager compound module

that is part of Host nodes

IRM.ned IRM simple module

IRM.h/.cc Implementation of IRM core functionality

IRMListeners.h/cc Listeners that catches signals, which IRM

should process

ConnectionTable.ned Connection Table simple module

ConnectionTable.h/.cc Connection Table implementation as a table

storing state of AP communication

ConnectionTableEntry.h/.cc Single Connection Table entry with all its

properties

5.3.5.3. NED design

• IRM and its submodules utilizes following gates:

IPCResourceManager.northIo

IRM.aeIo

IRM.southIo_

IPCResourceManager.southIo

• None of IRM submodules has abstract data structures configurable via config.xml file.

5.3.5.4. Available policies

No policies are currently associated with this module.

5.3.5.5. C++ Implementation

• Registered signals that IRM module is emitting:

IRM-AllocateRequest

IRM-DeallocateRequest

Deliverable-2.6: RINA simulator

70

• IRM handles direct API calls from AP, mainly the ones that are related to the flow

(de)allocation data-path.

5.3.5.6. Future work

1. Define interfaces for both IRM and Connection Table;

2. Change "IRM.aeIo" gate name to something more meaningful.

5.3.6. Common Distributed Application Protocol

The commonDistributedApplicationProtocol submodule provides a simple

object-based protocol for distributed applications.

Figure 43. CDAP module

5.3.6.1. Submodules

Currently, it is the part of RIBd and AE. CDAP is modeled as a compound module consisting

of five main submodules:

• cace – Common Application Connection Establishment protocol instance processing

M_CONNECT and M_RELEASE requests and responses;

• auth – providing authentication services during connection initialization); cdap

(providing usual CDAP message exchange;

• cdapSplitter – delivering messages to appropriate upper submodules;

• cdapMsgLog – logger for an accounting of processed messages.

5.3.6.2. Source code

Relevant sources for this component are located in /src/DAF/CDAP.

Deliverable-2.6: RINA simulator

71

Filename(s) Description

CommonDistributedApplicationProtocol.ned CDAP compound module that is part of

ApplicationEntity and RIBDaemon modules

CACE.ned CACE simple module

CACE.h/.cc Implementation of CACE core functionality

CACEListeners.h/.cc Listeners that catch signals during

enrollment procedure

Auth.ned Auth simple module

Auth.h/.cc Implementation of Auth core functionality

AuthListeners.h/.cc Listeners that catch signals during

enrollment procedure

CDAP.ned CDAP simple module

CDAP.h/cc Implementation of CDAP core functionality

CDAPListeners.h/cc Listeners that catch signals, which CDAP

later processes

CDAPSplitter.ned CDAP splitter module

CDAPSplitter.h/cc Implementation of a CDAP splitter that

forwards them to the appropriate CDAP

module according to the CDAP message

type.

CDAPMsgLog.ned CDAP simple module

CDAPMsgLog.h/cc Implementation of CDAP message logger

functionality which records incoming/

outgoing messages that pass through

"cdapSplitter".

CDAPMsgLogEntry.h/cc Single CDAP message logger entry with all

of its properties

CDAPMessage.msg OMNeT++ CDAP message definition file

CDAPMessage_m.h/.cc C++ implementation of CDAP message

classes

5.3.6.3. NED design

• CDAP module contains seed invokationId parameter.

• Data-path of interconnected gates for messages:

Deliverable-2.6: RINA simulator

72

cdapSplitter.caceIo

cdapSplitter.authIo

cdapSplitter.cdapIo

cdapSplitter.southIo

caceIo.splitterIo

authIo.splitterIo

cdapIo.splitterIo

• None of CDAP submodules has abstract data structures configurable via config.xml file.

5.3.6.4. Available policies

No policies are currently associated with CDAP and its submodules.

5.3.6.5. C++ implementation

• Registered signals that the CDAP and its submodules are emitting:

SIG_CDAP_DateReceive

SIG_CACE_DataReceive

• Registered signals that the CDAP and its submodules are processing:

SIG_AE_DataSend

SIG_RIBD_DataSend

SIG_RIBD_CACESend

5.3.6.6. Limitations

1. Auth module is currently still placeholder.

5.3.6.7. Future work

1. Together with AE define CDAP call API.

5.4. DIF Modules

All currently implemented DIF components are enclosed to the IPCProcess container module

(instantiation of IPCP). The IPCProcess contains following submodules, and overall structure

is shown in below:

Deliverable-2.6: RINA simulator

73

Figure 44. IPCP’s DIF components for RINASim

5.4.1. Delimiting

The delimiting module handles SDUs in the form of SDUData from N+1 DIF and produces

UserDataField for EFCP module. In the opposite direction, it accepts UserDataFieldD and

produces SDUData to N+1 DIF. Encapsulation process is done according to Delimiting process

and uses these classes: SDUData → Data → PDUdata → UserDataField

It is capable of fragmentation and concatenation of incoming SDUs. Fragmentation is based

on maxPDUsize. Concatenation takes incoming SDUs and puts them in single PDUData

until maxPDUSize is met or until Delimiting Timer expires. If SDU with the size smaller

than maxPDUSize is received or fragment is generated, the DelimitingTimer is scheduled.

DelimitingTimer specifies the maximum time the SDU can be retained in an attempt to

concatenate it with subsequent SDU. SDUs that size is bigger than maxPDUSize*0.8 are not

held, and it is processed immediately.

PDUData class has overridden methods for encapsulate()/decapsulate to take/ return Data class.

Moreover, it is possible to encapsulate several Data packets into one PDUData.

The SDU marked as the first fragment contain the whole SDU, and the rest of the fragments are

empty. All non-first fragments are deleted upon de-fragmentation, but the first_fragment SDU

is passed to N+1 DIF only if all fragments are present.

Deliverable-2.6: RINA simulator

74

5.4.1.1. Submodules

The delimiting module does not contain any submodule.

5.4.1.2. Source codes

Relevant sources for this component are located in /src/DIF/Delimiting/.

Filename(s) Description

Data.cc/h Enhanced implementation of generated Data

packet class.

Data.msg Message definition for representing SDUs

and SDU fragments.

Delimiting.cc/h Implementation of delimiting functions.

Delimiting.ned Delimiting module

DelimitingTimers.msg Timers related to delimiting

PDUData.cc/h Enhanced msg class for encapsulating

multiple messages.

PDUData.msg Message class for PDUData

UserDataField.h/.cc Implementation of User Data Field message.

UserDataField.msg Message class for UserDataField

5.4.1.3. NED design

• Delimiting unitilizes following gates: northIo; //towards FAI southIo[0]; //towards DTP

• Delimiting module does not have abstract data structures configurable via config.xml file.

5.4.1.4. Available policies

No policies are currently associated with this module.

5.4.1.5. C++ implementation

• Delimiting does not receive/emit any signals.

5.4.1.6. Limitations

• Delimiting expects that the received UserDataField are in order and complete.

• Delimiting does not control maxSDUsize on incoming data from N+1 DIF.

Deliverable-2.6: RINA simulator

75

5.4.1.7. Future work

1. To enable replaceable policies for incoming SDUs from N+1 DIF and User Data Fields

from EFCP.

5.4.2. Enrollment

The Enrollment module controls initial communication (enrollment phase) between two

IPCP’s. It contains functionality for IPCP address assignment.

Figure 45. Enrollment

5.4.2.1. Submodules

The Enrollment modules consists of two submodules that provide the functionality and

maintains the state information during enrollment:

• enrollment – implements the core functionality;

• enrollmentStateTable – maintains states of active flows;

5.4.2.2. Source codes

Relevant sources for this component are located in /src/DIF/Enrollment.

Filename(s) Description

EnrollmentModule.ned Enrollment compound module that is part of

every node

Enrollment.ned Enrollment core simple module

Enrollment.h/.cc Implementation of Enrollment core

functionality

Deliverable-2.6: RINA simulator

76

Filename(s) Description

EnrollmentBase.h/.cc Base class for general Enrollment

functionality intended for inheritance and

extensions

EnrollmentStateTable.ned State table simple module

EnrollmentStateTable.h/.cc Implementation of state table functionality

EnrollmentStateTableEntry.h/.cc Single record for state table, basically

destination APN as key and source APN,

CACE Connection status, Enrollment status

EnrollmentObj.h/.cc Implementation of Enrollment object

maintaining information exchanged during

enrollment phase

OperationObj.h/.cc Implementation of Enrollment object

maintaining information exchanged after

enrollment phase

EnrollmentListeners.h/.cc Enrollment listeners

EnrollmentNotifierBase.h/.cc Base class for general Enrollment Notifier

functionality intended for inheritance and

extensions

EnrollmentNotifier.h/.cc Implementation of Enrollment Notifier core

functionality

EnrollmentNotifierListeners.h/.cc Enrollment Notifier listeners

5.4.2.3. NED design

• Enrollment and its submodules do not have any gates. They communicate using signals.

• Enrollment and its submodules abstract data structures are configurable via config.xml file.

5.4.2.4. Available policies

No policies are currently associated with this module.

5.4.2.5. C++ implementation

• Registered signals that the Enrollment module and its submodules are emitting consist of

following:

Deliverable-2.6: RINA simulator

77

SIG_ENROLLMENT_CACEDataSend

SIG_ENROLLMENT_DataSend

SIG_ENROLLMENT_StartEnrollmentRequest

SIG_ENROLLMENT_StartEnrollmentResponse

SIG_ENROLLMENT_StopEnrollmentRequest

SIG_ENROLLMENT_StopEnrollmentResponse

SIG_ENROLLMENT_StartOperationRequest

SIG_ENROLLMENT_StartOperationResponse

SIG_ENROLLMENT_Finished

• Registered signals that the Enrollment and its submodules are receiving consists of

following:

SIG_FA_MgmtFlowAllocated

SIG_RIBD_StartEnrollmentRequest

SIG_RIBD_StartEnrollmentResponse

SIG_RIBD_StopEnrollmentRequest

SIG_RIBD_StopEnrollmentResponse

SIG_RIBD_StartOperationRequest

SIG_RIBD_StartOperationResponse

SIG_RIBD_ConnectionResponsePositive

SIG_RIBD_ConnectionResponseNegative

SIG_RIBD_ConnectionRequest

5.4.2.6. Limitations

• This module does not implemented deallocation functionality.

5.4.2.7. Future work

1. Module deallocation implementation should be provided.

2. Enrollment module does not send user specified data. For some scenarios, it would be useful

to have ability sending custom data from Enrollment module.

5.4.3. Error and Flow Control Compound module

The efcp compound module handles data transfer and associated state vectors. It takes SDUs

from N+1 or CDAP message from RIB Daemon and creates complete PDUs.

The Error and Flow Control Protocol (EFCP) is modeled as one compound module. This module

dynamically generates EFCP Instances. Dynamic modules consist of one Delimiting module

Deliverable-2.6: RINA simulator

78

and (possibly) multiple EFCPI modules per one flow. The EFCPI module itself is a compound

module and contains static modules DTP and DTPState , and if the flow (QoS requirements)

requires control, then there are DTCP and DTCPState modules.

Figure 46. EFCP module with dynamically created Delimiting and EFCP instance modules

5.4.3.1. Submodules

The efcp modules consists of three static submodules:

• efcp – creates and deletes EFCP instances and Delimiting modules;

• efcpTable – bindings between Delimiting and EFCPI (DTP and DTCP);

• mockEFCPI – simplified EFCPI with DTP-like only capabilities;

Furthermore, it may consist of dynamically created pairs of Delimiting and EFCPI modules.

• delimiting_<portId> – handles fragmentation/concatenation

• efcpi_<cepId> – handles data transfer + control fuctions

5.4.3.2. Source codes

Relevant sources for this component are located in /src/DIF/EFCP.

Filename(s) Description

EFCPTable/ Implementation and .ned module definition

for EFCPTable

DTP/ All files related to DTP2

2 D26-RINASim-DTP

D26-RINASim-DTP
D26-RINASim-DTP

Deliverable-2.6: RINA simulator

79

Filename(s) Description

DTCP/ All files related to DTCP3

EFCP_defs.h Definitions and constants related only to

EFCP.

EFCP.cc/h Implementaion of static EFCP modules

governing creation and deletion of dynamic

modules.

EFCPInstance.cc/h Couples together DTP and DTCP.

EFCPListeners.cc/h Implementation of EFCP’s singnal listeners

EFCPPolicySet.cc/h Class defining set of EFCP policies for

QoSCube.

ManagementPDU.msg Message definition for Management PDUs.

MockEFCPI.cc/h Simplified EFCPI module for Management

PDUs.

MockEFCPI.ned Simplified EFCPI simple module.

5.4.3.3. NED design

• EFCP compound module utilizes these static gates:

ribd

mockToRMT

Besides static gates, there are two dynamically created gates per every active flow.

northIo_<portId>

soutIo_<cepId>

Full data-path of interconnected gates for messages going through EFCP Compound module

then looks as follows:

northIo - towards ipc northIo

delimiting_<portId>.northIo_<portId>

delimiting_<portId>.southIo_<portId>

efcpi_<cep>.northIo

3 D26-RINASIM-DTCP

D26-RINASIM-DTCP
D26-RINASIM-DTCP

Deliverable-2.6: RINA simulator

80

efcpi_<cep>.southIo

southIo - towards RMT

• EFCP Compound module is not configurable via config.xml file.

5.4.3.4. Available policies

Policies related to EFCP are specified in DTP and DTCP subsections.

5.4.3.5. C++ implementation

• EFCP Compound module does not receive/emit any signals. Usage of DIF Allocator

components is done via direct function calls.

5.4.3.6. Future work

1. To provide a better visualisation of dynamically created modules.

5.4.4. EFCP Instance

An EFCP Instance locally manages established flow. The efcpi_<cepId> module contains

DTP and DTPState submodules. If QoS requires more control on the flow, e.g., reliable data

delivery, this module also contains DTCP and DTCPState submodules. Also, any necessary

policy submodules associated with the flow are also part of this compound module.

Figure 47. EFCP Instance

5.4.4.1. Submodules

The EFCP Instance consists of the following submodules:

• dtp - This module provides implementation of Data Transfer Protocol.

Deliverable-2.6: RINA simulator

81

• dtpState - This module holds DTP related variables.

• dtcp - This module provides implementation of Data Transfer Control Protocol.

• dtcpState - This module maintains DTCP related variables.

• <policyName>Policy - Module that represents a specific policy. Currently there is

no such module.

• northG , southG - Pass-through modules that serves for better link visualisation.

5.4.4.2. Source codes

The EFCP Instance module is a compound module and hence it does not have any

implementation.

Filename(s) Description

EFCPI.ned EFCPI module definition.

5.4.4.3. NED design

• Data-path of interconnected gates for messages going through EFCPI module:

efcpi_<cepId>.northIo - towards delimiting

efcpi_<cepId>.northG.northIo

efcpi_<cepId>.northG.southIo

efcpi_<cepId>.dtp.northIo

efcpi_<cepId>.dtp.southIo

efcpi_<cepId>.southG.northIo

efcpi_<cepId>.southG.southIo

efcpi_<cepId>.southIo - towards EFCP Compound Module southIo

• The submodules of EFCPI contains abstract data structures that are configurable via

config.xml file.

5.4.4.4. Available policies

No policies are currently associated with this module.

5.4.4.5. C++ Implementation

• EFCPI does not receive/emit any signals.

Deliverable-2.6: RINA simulator

82

5.4.5. DTP

The dtp module accepts user data content from the Delimiting module, generates PDUs, and

pass them to RMT. If necessary, it asks DTCP to perform Retransmission and Flow Control.

A-Time value can parametrize the current DTP implementation.

Figure 48. Data Transfer Protocol module

5.4.5.1. Submodules

The DTP module does not have any submodules.

5.4.5.2. Source codes

Component sources are located in /src/DIF/EFCP/DTP/. They consist of following files:

Filename(s) Description

DTP.ned DTP module

DTP.cc/h DTP functionality

DTPTimers.msg Timers related to DTP module

DataTransferPDU.msg Message definition for Data Transfer PDU

DataTransferPDU.cc/h Extended implementation of generated

DataTransferPDU class

DumbGate.ned Dumb gate module

DumbGate.cc/h Implementation of a pass-through gate

module.

5.4.5.3. NED design

• Data-path of interconnected gates for messages going through EFCPI:

efcpi_<cepId>.northIo

northIo - towards EFCPI's northIo

southIo - towards EFCPI's southIo

Deliverable-2.6: RINA simulator

83

efcpi_<cepId>.southIo

• DTP policies are configurable via config.xml file by specifying EFCP Policy Set in QoS

Cube. None of IRM submodules has abstract data structures configurable via config.xml file.

5.4.5.4. Available policies

The DTP module can be extended with the following policies:

• InitialSeqNumPolicy - see subchapter 6.2.14

• RcvrInactivityPolicy - see subchapter 6.2.25

• SenderInactivityPolicy - see subchapter 6.2.36

• RTTEstimatorPolicy - see subchapter 6.2.47

5.4.5.5. C++ Implementation

• Registered signals that IRM module is emitting:

EFCP-StopSending

EFCP-StartSending](type=Flow?);

DTP_RTT

DTP_CLOSED_WIN_Q

• DTP handles direct API calls from DTPState and DTCP modules, mainly the ones that are

related to the actual sending of PDU.

5.4.5.6. Limitations

• The current implementation of DTP does not support partial delivery as this policy would

require full implementation of PDU serialization.

5.4.5.7. Future work

1. A proper place for RTTEstimator policy needs to be determined. DTP accepts this policy,

but the necessary information is in DTCP.

4 D26-RINASim-Policies-EFCP-InitialSequenceNumber
5 D26-RINASim-Policies-EFCP-RcvrTimerInactivity
6 D26-RINASim-Policies-EFCP-SenderTimerInactivity
7 D26-RINASim-Policies-EFCP-RTTEstimator

D26-RINASim-Policies-EFCP-InitialSequenceNumber
D26-RINASim-Policies-EFCP-RcvrTimerInactivity
D26-RINASim-Policies-EFCP-SenderTimerInactivity
D26-RINASim-Policies-EFCP-RTTEstimator
D26-RINASim-Policies-EFCP-InitialSequenceNumber
D26-RINASim-Policies-EFCP-RcvrTimerInactivity
D26-RINASim-Policies-EFCP-SenderTimerInactivity
D26-RINASim-Policies-EFCP-RTTEstimator

Deliverable-2.6: RINA simulator

84

5.4.6. DTP State

The dtpState (DTP-SV) holds properties related to the actual data transfer. In RINASim,

the dtpState module stores all necessary variables such as rcvLeftWindowEdge and

nextSeqNumToSend plus queues for generated and postable PDUs and reassembly queue.

Figure 49. DTP State module

5.4.6.1. Submodules

The DTP module does not have any submodules.

5.4.6.2. Source codes

Component sources are located in /src/DIF/EFCP/DTP/. It consists of following files:

Filename(s) Description

DTPstate.ned DTP State simple module

DTPState.cc/h DTP State implementation

5.4.6.3. NED design

• DTP State module does not have any gates.

• DTP State module is not configurable via config.xml file.

5.4.6.4. Available policies

The DTP State module does not have any policy.

5.4.6.5. C++ Implementation

• DTP State module does not emit any signals.

• DTP handles direct API calls from DTP, DTCP, and related policies.

Deliverable-2.6: RINA simulator

85

5.4.7. DTCP

The dtcp handles retransmission and flow control related tasks. From the perspective of

RINASim, DTCP is a module that runs policies to update the dtcpState . Policies implement

different reactions to a situation when error recovery and flow control is expected.

The current implementation supports retransmission, window-based flow control, allowed gap,

A-Time. Besides capabilities defined in specifications it supports following features:

• Rendezvous Mechanism - recovery mechanism for lost control information about opened

window

• ECN SlowDown - In cooperation with RA and RMT it may receive backward ECN

information from the relay node.

Figure 50. Data Transfer Control Protocol module

5.4.7.1. Submodules

The DTCP module does not have any submodules.

5.4.7.2. Source codes

Component sources are located in /src/DIF/EFCP/DTCP/. It consists of following files:

Filename(s) Description

DTCP.ned DTCP module

DTCP.cc/h DTCP functionality

DTCPTimers.msg Timers related to DTCP module

ControlPDU.msg Definition of Control PDUs used in Flow

Control, Retransmission, and Rendezvous

mechanism

5.4.7.3. NED design

• DTCP module does not have any gates.

Deliverable-2.6: RINA simulator

86

• DTCP module is not configurable via config.xml file.

5.4.7.4. Available policies

The DTCP module is associated with following policies:

• ECNPolicy - see subchapter 6.2.58

• ECNSlowDownPolicy - subchapter 6.2.69

• LostControlPDUPolicy - see subchapter 6.2.710

• NoOverridePeakPolicy - see subchapter 6.2.811

• NoRateSlowDownPolicy - see subchapter 6.2.912

• RateReductionPolicy - see subchapter 6.2.1013

• RcvFCOverrunPolicy - see subchapter 6.2.1114

• RcvrAckPolicy - see subchapter 6.2.1215

• RcvrControlAckPolicy - see subchapter 6.2.1316

• RcvrFCPolicy - see subchapter 6.2.1417

• ReceivingFCPolicy - see subchapter 6.2.1518

• ReconcileFCPolicy] - see subchapter 6.2.1619

• RxTimerExpiryPolicy] - see subchapter 6.2.1720

• SenderAckPolicy] - see subchapter 6.2.1821

• SenderAckListPolicy] - see subchapter 6.2.1922

• SendingAckPolicy] - see subchapter 6.2.2023

8 D26-RINASim-Policies-EFCP-ECN
9 D26-RINASim-Policies-EFCP-ECNSlowDown
10 D26-RINASim-Policies-EFCP-LostControlPDU
11 D26-RINASim-Policies-EFCP-NoOverrideDefaultPeak
12 D26-RINASim-Policies-EFCP-NoRate-SlowDown
13 D26-RINASim-Policies-EFCP-RateReduction
14 D26-RINASim-Policies-EFCP-RcvFlowControlOverrun
15 D26-RINASim-Policies-EFCP-RcvrAck
16 D26-RINASim-Policies-EFCP-RcvrControlAck
17 D26-RINASim-Policies-EFCP-RcvrFlowControl
18 D26-RINASim-Policies-EFCP-ReceivingFlowControl
19 D26-RINASim-Policies-EFCP-ReconcileFlowConflict
20 D26-RINASim-Policies-EFCP-RetransmissionTimerExpiry
21 D26-RINASim-Policies-EFCP-SenderAck
22 D26-RINASim-Policies-EFCP-SenderAckList
23 D26-RINASim-Policies-EFCP-SendingAck

D26-RINASim-Policies-EFCP-ECN
D26-RINASim-Policies-EFCP-ECNSlowDown
D26-RINASim-Policies-EFCP-LostControlPDU
D26-RINASim-Policies-EFCP-NoOverrideDefaultPeak
D26-RINASim-Policies-EFCP-NoRate-SlowDown
D26-RINASim-Policies-EFCP-RateReduction
D26-RINASim-Policies-EFCP-RcvFlowControlOverrun
D26-RINASim-Policies-EFCP-RcvrAck
D26-RINASim-Policies-EFCP-RcvrControlAck
D26-RINASim-Policies-EFCP-RcvrFlowControl
D26-RINASim-Policies-EFCP-ReceivingFlowControl
D26-RINASim-Policies-EFCP-ReconcileFlowConflict
D26-RINASim-Policies-EFCP-RetransmissionTimerExpiry
D26-RINASim-Policies-EFCP-SenderAck
D26-RINASim-Policies-EFCP-SenderAckList
D26-RINASim-Policies-EFCP-SendingAck
D26-RINASim-Policies-EFCP-ECN
D26-RINASim-Policies-EFCP-ECNSlowDown
D26-RINASim-Policies-EFCP-LostControlPDU
D26-RINASim-Policies-EFCP-NoOverrideDefaultPeak
D26-RINASim-Policies-EFCP-NoRate-SlowDown
D26-RINASim-Policies-EFCP-RateReduction
D26-RINASim-Policies-EFCP-RcvFlowControlOverrun
D26-RINASim-Policies-EFCP-RcvrAck
D26-RINASim-Policies-EFCP-RcvrControlAck
D26-RINASim-Policies-EFCP-RcvrFlowControl
D26-RINASim-Policies-EFCP-ReceivingFlowControl
D26-RINASim-Policies-EFCP-ReconcileFlowConflict
D26-RINASim-Policies-EFCP-RetransmissionTimerExpiry
D26-RINASim-Policies-EFCP-SenderAck
D26-RINASim-Policies-EFCP-SenderAckList
D26-RINASim-Policies-EFCP-SendingAck

Deliverable-2.6: RINA simulator

87

• SndFCOverrunPolicy] - see subchapter 6.2.2124

• TxControlPolicy] - see subchapter 6.2.2225

5.4.7.5. C++ Implementation

• Registered signals that DTCP module is emitting:

DTCP_RX_SENT

• DTCP handles direct API calls from DTCPState and DTP modules.

Future work

1. Finishing rate-based Flow Control

Back to table of contents26

5.4.8. DTCP State

The dtcpState (DTCP-SV) holds properties related to the control part of data transfer. In

RINASim, the dtcpState module stores the Retransmission queue and the Closed window

queue.

Figure 51. DTCP State module

5.4.8.1. Submodules

The DTCP module does not have any submodules.

5.4.8.2. Source codes

Component sources are located in /src/DIF/EFCP/DTCP/. It consists of following files:

24 D26-RINASim-Policies-EFCP-SndFlowControlOverrun
25 D26-RINASim-Policies-EFCP-TransmissionControl
26 D26-Table-of-Contents

D26-RINASim-Policies-EFCP-SndFlowControlOverrun
D26-RINASim-Policies-EFCP-TransmissionControl
D26-Table-of-Contents
D26-RINASim-Policies-EFCP-SndFlowControlOverrun
D26-RINASim-Policies-EFCP-TransmissionControl
D26-Table-of-Contents

Deliverable-2.6: RINA simulator

88

Filename(s) Description

DTCPstate.ned DTCP State simple module

DTCPState.cc/h DTCP State implementation

5.4.8.3. NED design

• DTCP State module does not have any gates.

• DTCP State module is not configurable via config.xml file.

5.4.8.4. Available policies

The DTCP State module does not have any policy.

5.4.8.5. C++ Implementation

• DTCP State module does not emit any signals.

• DTCP handles direct API calls from DTCP and related policies.

5.4.9. Flow Allocator

The flowAllocator module handles (de)allocation request and response calls from the

IRM, RIBDaemon, DAFEnrollment or AE.

Figure 52. Flow Allocator

5.4.9.1. Submodules

The flowAllocator module consists of three submodules (and currently three supported

policy interfaces):

• fa – core functionality involving instantiation of FAIs;

Deliverable-2.6: RINA simulator

89

• nFlowTable – mapping between (N)-flow and bound FAI;

• fai_<portId>_<CEPid> – managing a whole flow lifecycle.

5.4.9.2. Source codes

Component sources are located in /src/DIF/FA. It consists of following files:

Filename(s) Description

FA.h/.cc Implementation of FA core functionality

FABase.h/.cc Base class for general FA functionality

intended for inheritance and extensions

FAI.h/.cc Connection Table implementation as a table

storing state of AP communication

FAIBase.h/.cc Base class for general FAI functionality

intended for inheritance and extensions

FAIListeners.h/cc FAI Listeners

FAListeners.h/cc FA listeners

FANotifier.h/.cc Implementation of FANotifier core

functionality

FANotifierBase.h/.cc Base class for general FANotifier

functionality intended for inheritance and

extensions

NFlowTable.h/.cc Interface for NFlowTable entries adding,

removing and lookups

NFlowTableEntry.h/.cc Single Connection Table entry with all its

properties

FA.ned FA simple module

FAI.ned FA Instance simple module

FANotifier.ned FANotifier instance for RIBd interaction

FlowAllocator.ned Flow Allocator compound module holding

submodule

NFlowTable.ned NFlowTable simple module

5.4.9.3. NED design

• FAI and its submodules do not have any gates.

Deliverable-2.6: RINA simulator

90

• FAIs are dynamically created and deleted according to the flow lifecycle.

• None of FA submodules has abstract data structures configurable via config.xml file.

5.4.9.4. Available policies

Following three policies are associated with FA:

• allocateRetryPolicy - see subchapter 6.2.127

• qosComparePolicy - see subchapter 6.2.228

• newFlowRequestPolicy - see subchapter 6.2.329

5.4.9.5. C++ Implementation

• Registered signals that the Flow Allocator and its submodules are emitting:

SIG_FA_MgmtFlowAllocated

SIG_FA_CreateFlowRequestForward

SIG_FA_CreateFlowResponseNegative

SIG_FAI_AllocateRequest

SIG_FAI_DeallocateRequest

SIG_FAI_DeallocateResponse

SIG_FAI_AllocateResponsePositive

SIG_FAI_AllocateResponseNegative

SIG_FAI_CreateFlowRequest

SIG_FAI_DeleteFlowRequest

SIG_FAI_CreateFlowResponsePositive

SIG_FAI_CreateFlowResponseNegative

SIG_FAI_DeleteFlowResponse

• Registered signals that the Flow Allocator and its submodules are receiving:

SIG_FAI_AllocateResponsePositive

SIG_RIBD_CreateRequestFlow

SIG_ENROLLMENT_Finished

SIG_toFAI_AllocateRequest

SIG_toFAI_AllocateResponseNegative

SIG_AERIBD_AllocateResponsePositive

SIG_RIBD_CreateFlowResponsePositive

27 https://wiki.ict-pristine.eu/wp2/d26/D26-RINASim-Policies-FA-AllocateRetry
28 https://wiki.ict-pristine.eu/wp2/d26/D26-RINASim-Policies-FA-MultilevelQoS
29 https://wiki.ict-pristine.eu/wp2/d26/D26-RINASim-Policies-FA-NewFlowRequest

https://wiki.ict-pristine.eu/wp2/d26/D26-RINASim-Policies-FA-AllocateRetry
https://wiki.ict-pristine.eu/wp2/d26/D26-RINASim-Policies-FA-MultilevelQoS
https://wiki.ict-pristine.eu/wp2/d26/D26-RINASim-Policies-FA-NewFlowRequest
https://wiki.ict-pristine.eu/wp2/d26/D26-RINASim-Policies-FA-AllocateRetry
https://wiki.ict-pristine.eu/wp2/d26/D26-RINASim-Policies-FA-MultilevelQoS
https://wiki.ict-pristine.eu/wp2/d26/D26-RINASim-Policies-FA-NewFlowRequest

Deliverable-2.6: RINA simulator

91

SIG_RIBD_CreateFlowResponseNegative

SIG_RIBD_DeleteRequestFlow

SIG_RIBD_DeleteResponseFlow

SIG_RIBD_CreateRequestFlow

5.4.9.6. Future work

1. Define interfaces for both FA, FANotifier, FAI;

5.4.10. Relaying and Multiplexing Task

The Relaying and Multiplexing Task represents a stateless function that takes incoming PDUs

and relays them within current IPC or passes them to the outgoing port. In particular the RMT

takes PDUs from (N-1)-port ids, consults their address fields and performs one of the following

actions:

• If the address is not an address (or a synonym) for this IPC Process (which is determined

by RA’s AddressComparator policy), it consults the PDU Forwarding policy and posts it to

the appropriate (N-1)-port(s).

• If the address is one assigned to this IPC Process, the PDU is delivered either to the

appropriate EFCP flow or the RIB Daemon (via a mock EFCP instance).

• Outgoing PDUs from EFCP instances or the RIB Daemon are posted to the appropriate

(N-1)-port-id(s).

In RINASim, all functionality of the RMT including a policy architecture is encompassed in a

single compound module named relayAndMux which is present in every IPC process.

Figure 53. RMT

5.4.10.1. Submodules

relayAndMux consists of multiple simple modules of various types, some of which are

instantiated only dynamically at runtime.

Static modules:

Deliverable-2.6: RINA simulator

92

• rmt , the fundamental logic of Relaying And Multiplexing task that decides what should

be done with messages passing through the module.

• allocator , a manager unit for dynamic modules that provides an API for adding,

deleting and reconfiguring RMT ports and queues.

• schedulingPolicy , the scheduler policy that is invoked by events related to servicing

of I/O queues.

• queueMonitorPolicy , the monitor policy which is invoked by events related to queue

monitoring.

• maxQueuePolicy , the policy used for deciding what to do when queue lengths are

overflowing their threshold lengths.

• pduForwardingPolicy , the policy making the forwarding decisions

Dynamic modules:

• RMTPort (encompassed in RMTPortWrapper), a representation of one endpoint of an (N-1)-

flow.

• RMTQueue, a representation of either an input or an output queue (the number of

RMTQueues per (N-1)-port is a matter of Resource Allocator policies).

5.4.10.2. Source codes

Component sources are located in /src/DIF/RMT. The folder consists of following files:

Filename(s) Description

RelayAndMux.ned RMT wrapper (compound module)

RMT.cc/h implementation of RMT

RMT.ned RMT simple module

RMTBase.cc/h abstract class for RMT implementation

RMTModuleAllocator.cc/h implementation of RMTModuleAllocator

RMTModuleAllocator.ned RMTModuleAllocator simple module

RMTListeners.cc/h signal listeners for RMT

RMTPort.cc/h implementation of RMTPort

RMTPort.ned RMTPort simple module

RMTPort.ned a compound wrapper for RMTPort and its

RMTQueues

RMTQueue.cc/h implementation of RMTQueue

Deliverable-2.6: RINA simulator

93

Filename(s) Description

RMTQueue.ned RMTQueue simple module

5.4.10.3. NED design

RelayAndMux parameters:

Parameter Description

schedPolicyName module name of desired scheduling policy

qMonitorPolicyName module name of desired monitor policy

maxQPolicyName module name of desired maxqueue policy

ForwardingPolicyName module name of desired PDU forwarding

policy

defaultMaxQLength default maximum queue size

defaultThreshQLength default threshold queue size

pduTracing a switch for enabling PDU tracefile

generation

5.4.10.4. Available policies

The policies associated with this module are described in subchapter 6.430 .

5.4.10.5. C++ Implementation

• Registered signals that the RMT module is emitting:

• RMT-NoConnId by RMT on received PDU with CEP-id that doesn’t match any local

EFCP instance

• RMT-QueuePDURcvd by a queue on PDU arrival

• RMT-QueuePDUSent by a queue on PDU departure

• RMT-PortPDURcvd by a port on PDU arrival (coming from a queue)

• RMT-PortPDUSent by a port on PDU departure (leaving for an (N-1)-DIF)

• RMT-PortReadyToServe by a port when it’s ready to serve more PDUs

• RMT-PortReadyForRead by a port when it’s ready to provide more PDUs

• RMT-PassUp to indicate a PDU sent to the (N-1)-flow

• RMT-PassDown to indicate a PDU sent from the (N-1)-flow to the RMT

30 https://wiki.ict-pristine.eu/wp2/d26/D26-RINASim-Policies-RMT

https://wiki.ict-pristine.eu/wp2/d26/D26-RINASim-Policies-RMT
https://wiki.ict-pristine.eu/wp2/d26/D26-RINASim-Policies-RMT

Deliverable-2.6: RINA simulator

94

5.4.11. Resource Allocator

The Resource Allocator is one of the most important components of an IPC Process. It monitors

the operation of the IPC Process and makes adjustments to its operation to keep it within

the specified operational range. Its forwarding and queueing functionality are customizable by

policies. In RINASim, all the functionality of RA including the policies is encompassed in

a single compound module named resourceAllocator which is present in every IPC

process.

Figure 54. Resource Allocator

5.4.11.1. Submodules

resourceAllocator consists of multiple simple modules of various types, namely:

• ra , the fundamental logic of Resource Allocator that manages the Relaying and

Multiplexing Task and connections to other IPC processes via (N-1)-flows.

• nm1FlowTable , a table containing information about the active (N-1)-flows.

• pduFwdGenerator (abbreviated PDUFG), a policy which, reacting to various events,

manages the RMT’s PDU Forwarding policy.

• queueAllocPolicy , a policy handling RMT queue allocation strategy.

• queueIdGenerator , a policy generating queue IDs from Flow information and PDUs.

• addressComparator , a policy that determines whether a PDU address matches the

IPC process address.

5.4.11.2. Source codes

Component sources are located in /src/DIF/RA. The folder consists of following files:

Filename(s) Description

NM1FlowTable.cc/h implementation of (N-1)-flow table

Deliverable-2.6: RINA simulator

95

Filename(s) Description

NM1FlowTable.ned (N-1)-flow table simple module

NM1FlowTableItem.cc/h implementation (N-1)-flow table entry

RA.cc implementation of RA

RA.ned RA simple module

RABase.cc/h abstract class for RA implementation

RAListeners.cc/h signal listeners for RA

ResourceAllocator.ned RA wrapper (compound module)

5.4.11.3. NED design

ResourceAllocator parameters:

Parameter Description

pduftType module name of the desired PDU

Forwarding policy

pdufgPolicyName module name of the desired PDUFG policy

queueAllocPolicyName module name of desired QueueAlloc policy

queueIdGenName module name of desired QueueIDGen policy

addrComparatorName module name of desired AddrComparator

policy

5.4.11.4. Available policies

The policies associated with this module are described in subchapter 6.531 .

5.4.11.5. C++ Implementation

• Registered signals that the RA module is emitting:

RA-CreateFlowPositive

RA-CreateFlowNegative

RA-ExecuteSlowdown

RA-InvokeSlowdown

RA-MgmtFlowAllocated

RA-MgmtFlowDeallocated

31 https://wiki.ict-pristine.eu/wp2/d26/D26-RINASim-Policies-RA

https://wiki.ict-pristine.eu/wp2/d26/D26-RINASim-Policies-RA
https://wiki.ict-pristine.eu/wp2/d26/D26-RINASim-Policies-RA

Deliverable-2.6: RINA simulator

96

5.4.12. RIB Daemon

The ribDeamon is the IPCP’s management heart. It receives/sends CDAP management

messages and notifies other submodules about management changes.

Figure 55. RIB Daemon

5.4.12.1. Submodules

RIBDaemon consists of three submodules:

• ribd – core functionality mainly listening to calls from other DIF components and

notifying them upon CDAP message reception;

• commonDistributedApplicationProtocol – same submodule as in case of

DAF components description;

• ribdSplitter – splitter is delegating CDAP management messages to/from the

mockEFCPI or appropriate EFCPIs. Currently, it is just a placeholder forwarding

messages between gates.

Other three submodules (faNotifier , routingNotifier ,

enrollmentNotifier) are notifiers that contain listeners and delegates calls to other IPCP

components in case of sending/receiving event to/by RIBd.

Deliverable-2.6: RINA simulator

97

5.4.12.2. Source codes

Component sources are located in /src/DIF/RIBD. It consists of following files:

Filename(s) Description

RIBd.h/.cc Implementation of RIBd core functionality

RIBdBase.h/.cc Base class for general RIBd functionality

intended for inheritance and extensions

RIBdListeners.h/cc RIBd listeners

RIBdSplitter.h/cc RIBd listeners

RIBd.ned RIBd processing CDAP messages and

delegating them to RA and FA/FAIs

RIBdSplitter.ned RIBdSplitter simple module forwarding

messages

RIBDaemon.ned Compound module holding all RIBd

functionality submodules

5.4.12.3. NED design

• RIBd simulation module design is similar to AE.

• Gates utilized by this submodule:

commonDistributedApplicationProtocol.southIo

ribdSplitter.cdapIo

ribdSplitter.rmtIo

ribDaemon.rmtIo;

ribdSplitter.efcpIo

ribDaemon.efcpIo;

• None of RIBd submodules has abstract data structures configurable via config.xml file.

5.4.12.4. Available policies

No policies are currently associated with this module.

5.4.12.5. C++ Implementation

• Registered signals that RIBd module is emitting:

Deliverable-2.6: RINA simulator

98

SIG_RIBD_DataSend

SIG_RIBD_CongestionNotification

• Registered signals that RIBd module is receiving:

SIG_CDAP_DateReceive

SIG_RA_InvokeSlowdown

• Registered signals that Notifiers are emitting:

SIG_RIBD_CreateRequestFlow

SIG_RIBD_DeleteRequestFlow

SIG_RIBD_DeleteResponseFlow

SIG_AERIBD_AllocateResponsePositive

SIG_AERIBD_AllocateResponseNegative

SIG_RIBD_CreateFlow

SIG_RIBD_CreateFlowResponsePositive

SIG_RIBD_CreateFlowResponseNegative

SIG_RIBD_StartEnrollmentRequest

SIG_RIBD_StartEnrollmentResponse

SIG_RIBD_StopEnrollmentRequest

SIG_RIBD_StopEnrollmentResponse

SIG_RIBD_StartOperationRequest

SIG_RIBD_StartOperationResponse

SIG_RIBD_ConnectionResponsePositive

SIG_RIBD_ConnectionResponseNegative

SIG_RIBD_ConnectionRequest

SIG_RIBD_CACESend

SIG_RIBD_RoutingUpdateReceived

• Registered signals that Notifiers are receiving:

SIG_FA_CreateFlowRequestForward

SIG_FAI_CreateFlowRequest

SIG_FAI_DeleteFlowRequest

SIG_FAI_DeleteFlowResponse

SIG_FA_CreateFlowResponseNegative

SIG_FAI_CreateFlowResponseNegative

SIG_FAI_CreateFlowResponsePositive

SIG_FA_CreateFlowResponseForward

Deliverable-2.6: RINA simulator

99

SIG_RA_CreateFlowPositive

SIG_RA_CreateFlowNegative

SIG_FAI_AllocateRequest

SIG_CACE_DataReceive

SIG_ENROLLMENT_CACEDataSend

SIG_ENROLLMENT_StartEnrollmentRequest

SIG_ENROLLMENT_StartEnrollmentResponse

SIG_ENROLLMENT_StopEnrollmentRequest

SIG_ENROLLMENT_StopEnrollmentResponse

SIG_ENROLLMENT_StartOperationRequest

SIG_ENROLLMENT_StartOperationResponse

SIG_RIBD_RoutingUpdate

5.4.12.6. Future work

1. Probably remove RIBd splitter.

5.4.13. Routing

The Routing module is a policy that serves for exchanging information with other IPC Processes

in the DIF in order to generate a set of routing information. It indirectly provides input for

populating the RMT PDU Forwarding policy.

Figure 56. Routing

5.4.13.1. Submodules

None (this is a simple module interface).

5.4.13.2. Source codes

The source codes for each variation of the Routing policy are available in /policies/DIF/Routing.

5.4.13.3. NED design

Policy-specific.

Deliverable-2.6: RINA simulator

100

5.4.13.4. Available policies

Routing as a whole is a policy by itself, and there aren’t any additional policies to specify.

5.4.13.5. C++ Implementation

Policy-specific.

Deliverable-2.6: RINA simulator

101

6. Policies

RINA specifications present the proposed network architecture as a generic framework, where

mechanisms are intended to perform basic common functionality and policies are defined to

select the most appropriate implementation of variable functionality. Rather than providing

an exhaustive implementation of policies for each parameterized function, RINASim provides

interfaces that are used by the core implementation to call functions defined by the selected

policies.

The RINASim policy framework is based on OMNeT NED module interfaces, which helps to

minimize the need for modifying existing C/NED source codes. Instead of placing a simple

module with a policy implementation inside the simulation network graph, a placeholder

interface module is used. This design allows the potentially unlimited amount of user policy

implementations to be defined and easily switchable via the configuration files (by setting

a proper parameter of the encompassing module). Each policy consists of an NED module

interface and a base C++ class.

6.1. Used Template

Each atomic RINA component is described using the following set of information:

1. Narrative description when is the policy triggered

2. Existing variants of policy with their brief description

3. Relevant source files containing code of the policy implementation

6.2. Flow Allocator policies

This subchapter discusses the Flow Allocator policies currently supported by RINASim.

6.2.1. AllocateRetry

AllocateRetry occurs whenever initiating FAI receives negative create flow response. This

policy allows FAI to reformulate the request and/or to recover properly from failure.

6.2.1.1. Variants

• Base - Allows unlimited number of retries.

• LimitedRetries - Allows retry attempt until maxCreateFlowRetries limit is reached.

Deliverable-2.6: RINA simulator

102

6.2.1.2. Source codes

Policy source codes are located in /policies/DIF/FA/AllocateRetry and they contain following

files:

Filename(s) Description

IAllocateRetry.ned NED interface module

AllocateRetryBase.h/.cc Base class for general functionality

LimitedRetries/LimitedRetries.h/cc LimitedRetries version core functionality

LimitedRetries/LimitedRetries.ned AllocateRetry interface implementation

6.2.2. MultilevelQoS

isValid is invoked during N flow allocation. This policy task consist in check if existing N-1

flows can be used to support an N flow. setRequirements is invoked during N flow allocation if

no current flow can be used. This policy task consist set the requirements needed for new N-1

flow to support the new N flow.

6.2.2.1. Variants

• QoSIdComparer - Only flows with the same QoSId are valid for mapping N to N-1 flows.

N flows request same QoS Cube or better to N-1.

• QoSMinComparer - Maps N flow to N-1 flows that satisfies N QoS Cube in k equal QoS

Cube hops.

6.2.2.2. Source codes

Policy source codes are located in /policies/DIF/FA/MultilevelQoS and they contain following

files:

Filename(s) Description

IAMultilevelQoS.ned NED interface module

MultilevelQoS.h/.cc Base class for general functionality

QoSIdComparerversion /QoSIdComparer.h/

cc

QoSIdComparerversion core functionality

QoSIdComparerversion /

QoSIdComparer.ned

NewFlowRequest interface implementation

Deliverable-2.6: RINA simulator

103

Filename(s) Description

QoSMinComparer/QoSMinComparer.h/cc QoSMinComparerversion core functionality

QoSMinComparer/QoSMinComparer.ned QoSMinComparerinterface implementation

6.2.3. NewFlowRequest

NewFlowRequst is invoked after FAI’s instantiation. Policy subtasks involve both 1) evaluation

of access control rights; and 2) translation of QoS requirements specified in allocate request to

appropriate RA’s QoS-cubes.

6.2.3.1. Variants

• Base - Implicitly accepts any new flow.

• MinComparer - The first QoSCube meeting ALL QoS requirements is chosen.

• ScoreComparer - Mapped QoSCube is chosen based on computed score. The score is

incremented for each QoSCube parameter meeting QoS requirement. Otherwise, the score

is decremented.

6.2.3.2. Source codes

Policy source codes are located in /policies/DIF/FA/NewFlowRequest and they contain

following files:

Filename(s) Description

INewFlowRequest.ned NED interface module

NewFlowRequestBase.h/.cc Base class for general functionality

MinComparer/MinComparer.h/cc MinComparer version core functionality

MinComparer/MinComparer.ned NewFlowRequest interface implementation

ScoreComparer/ScoreComparer.h/cc ScoreComparer version core functionality

ScoreComparer/ScoreComparer.ned NewFlowRequest interface implementation

6.3. EFCP policies

This subchapter discusses EFCP policies. Policies are further structured into two subsections:

DTP and DTCP. All DTP and DTCP policies share the same base class EFCPPolicy that

provides a common interface-like approach to their invocation. Upon invocation, each policy is

Deliverable-2.6: RINA simulator

104

provided with DTPState and DTCPState objects. Each *Base policy class implements the

default action that is executed if the specified policy returns true or if no policy is specified.

As an example, all default actions are also created as a standalone policy with name

<policyName>PolicyDefault which directly executes parent defaultAction

method and then returns false to prevent calling the default action again. Among all known

policies from specification belong:

DTP:

• InitialSeqNumPolicy32 - This policy allows some discretion in selecting the initial

sequence number when DRF is going to be sent.

• RcvrInactivityPolicy33 - If no PDUs arrive in this period, the receiver should

expect a DRF in the next Transfer PDU. If not, something is very wrong. It should generally

be set to 2(MPL+R+A).

• SenderInactivityPolicy34 - This policy is used to detect long periods of no traffic,

indicating that a DRF should be sent. If not, something is very wrong. It should generally

be set to 3(MPL+R+A).

• DTPRTTEstimatorPolicy35 - This policy is executed by the sender to estimate the

duration of the retransmission timer. This policy will be based on an estimate of round-trip

time and the Ack or Ack List policy in use.

• UnknownFlow - When a PDU arrives for a Data Transfer Flow terminating in this IPC-

Process and there is no active DTSV, this policy consults the ResourceAllocator to determine

what to do.

DTCP:

• ECNPolicy36 - This policy is invoked upon receiving PDU with ECN set in the header.

• ECNSlowDownPolicy37 - This policy is invoked upon RA receives the SlowDown

request from relaying node.

• LostControlPDUPolicy38 - This policy determines what action to take when the PM

detects that a control PDU (Ack or Flow Control) may have been lost. If this procedure

32 D26-RINASim-Policies-EFCP-InitialSequenceNumber
33 D26-RINASim-Policies-EFCP-RcvrTimerInactivity
34 D26-RINASim-Policies-EFCP-SenderTimerInactivity
35 D26-RINASim-Policies-EFCP-RTTEstimator
36 D26-RINASim-Policies-EFCP-ECN
37 D26-RINASim-Policies-EFCP-ECNSlowDown
38 D26-RINASim-Policies-EFCP-LostControlPDU

D26-RINASim-Policies-EFCP-InitialSequenceNumber
D26-RINASim-Policies-EFCP-RcvrTimerInactivity
D26-RINASim-Policies-EFCP-SenderTimerInactivity
D26-RINASim-Policies-EFCP-RTTEstimator
D26-RINASim-Policies-EFCP-ECN
D26-RINASim-Policies-EFCP-ECNSlowDown
D26-RINASim-Policies-EFCP-LostControlPDU
D26-RINASim-Policies-EFCP-InitialSequenceNumber
D26-RINASim-Policies-EFCP-RcvrTimerInactivity
D26-RINASim-Policies-EFCP-SenderTimerInactivity
D26-RINASim-Policies-EFCP-RTTEstimator
D26-RINASim-Policies-EFCP-ECN
D26-RINASim-Policies-EFCP-ECNSlowDown
D26-RINASim-Policies-EFCP-LostControlPDU

Deliverable-2.6: RINA simulator

105

returns True, then the PM will send a Control-Ack and an empty Transfer PDU. If it returns

False, then any action is determined by the policy.

• NoOverridePeakPolicy39 - This policy allows rate-based flow control to exceed its

nominal rate. Presumably this would be for short periods, and policies should enforce this.

Like all policies, if this returns True it creates the default action that is no override.

• NoRateSlowDownPolicy40 - This policy is used to lower momentarily the send rate

below the rate allowed.

• RateReductionPolicy41 - This policy is executed in case of Rate-based Flow

Control and if a condition of local shortage of buffers occurs or when the condition is

opposite and buffers are less full than a given threshold so that rate can be increased to the

rate agreed during the connection establishment.

• RcvFCOverrunPolicy42 - This policy determines what action to take if the receiver

receives PDUs, but the credit or rate has been exceeded. If this procedure returns True, then

the PDU is discarded; otherwise PDU processing is allowed to continue normally.

• RcvrAckPolicy43 - This policy is executed by the receiver of the PDU and provides

some discretion in the action taken. The default action is to either Ack immediately or to

start the A-Timer and Ack the LeftWindowEdge when it expires.

• RcvrControlAckPolicy44 - This policy is executed by the receiver of Control-Ack

PDU. Its purpose is to recover faster from PM inconsistency.

• RcvrFCPolicy45 - This policy is invoked when a Transfer PDU is received to give the

receiving PM an opportunity to update the flow control allocations.

• ReceivingFCPolicy46 - This policy is invoked by the receiver of PDU in case there

is a Flow Control present, but no Retransmission Control. The default action is to send

FlowControl PDU.

• ReconcileFCPolicy47 - This policy is invoked when both Credit and Rate-based flow

control are in use, and they disagree on whether the PM can send or receive data. If it returns

True, then the PM can send or receive; if False, it cannot.

39 D26-RINASim-Policies-EFCP-NoOverrideDefaultPeak
40 D26-RINASim-Policies-EFCP-NoRate-SlowDown
41 D26-RINASim-Policies-EFCP-RateReduction
42 D26-RINASim-Policies-EFCP-RcvFlowControlOverrun
43 D26-RINASim-Policies-EFCP-RcvrAck
44 D26-RINASim-Policies-EFCP-RcvrControlAck
45 D26-RINASim-Policies-EFCP-RcvrFlowControl
46 D26-RINASim-Policies-EFCP-ReceivingFlowControl
47 D26-RINASim-Policies-EFCP-ReconcileFlowConflict

D26-RINASim-Policies-EFCP-NoOverrideDefaultPeak
D26-RINASim-Policies-EFCP-NoRate-SlowDown
D26-RINASim-Policies-EFCP-RateReduction
D26-RINASim-Policies-EFCP-RcvFlowControlOverrun
D26-RINASim-Policies-EFCP-RcvrAck
D26-RINASim-Policies-EFCP-RcvrControlAck
D26-RINASim-Policies-EFCP-RcvrFlowControl
D26-RINASim-Policies-EFCP-ReceivingFlowControl
D26-RINASim-Policies-EFCP-ReconcileFlowConflict
D26-RINASim-Policies-EFCP-NoOverrideDefaultPeak
D26-RINASim-Policies-EFCP-NoRate-SlowDown
D26-RINASim-Policies-EFCP-RateReduction
D26-RINASim-Policies-EFCP-RcvFlowControlOverrun
D26-RINASim-Policies-EFCP-RcvrAck
D26-RINASim-Policies-EFCP-RcvrControlAck
D26-RINASim-Policies-EFCP-RcvrFlowControl
D26-RINASim-Policies-EFCP-ReceivingFlowControl
D26-RINASim-Policies-EFCP-ReconcileFlowConflict

Deliverable-2.6: RINA simulator

106

• RxTimerExpiryPolicy48 - This policy is executed by the sender when a

Retransmission Timer Expires. If this policy returns True, then all PDUs with the sequence

number less than or equal to the sequence number of the PDU associated with this timeout

are retransmitted; otherwise the procedure must determine what action to take. This policy

must be executed in less than the maximum time to Ack.

• SenderAckPolicy49 - This policy is executed by the Sender and provides the Sender

with some discretion on when PDUs may be deleted from the ReTransmissionQ. This is

useful for multicast and similar situations where one might want to delay discarding PDUs

from the retransmission queue.

• SenderAckListPolicy50 - This policy is executed by the Sender and provides the

Sender with some discretion on when PDUs may be deleted from the ReTransmissionQ. This

policy is used in conjunction with the selective acknowledgement aspects of the mechanism.

This is useful for multicast and similar situations where one might want to delay discarding

PDUs from the retransmission queue.

• SendingAckPolicy51 - This policy is executed upon A-Timer expiration in case there

is DTCP present. The default action is to update Receiver Left Window Edge, invoke

delimiting and to send Ack/FlowControl PDU.

• SndFCOverrunPolicy52 - This policy determines what action to take if the receiver

receives PDUs, but the credit or rate has been exceeded. If this procedure returns True, then

the PDU is discarded; otherwise PDU processing is allowed to continue normally.

• TxControlPolicy53 - This policy is used when there are conditions that warrant

sending fewer PDUs than allowed by the sliding window flow control, e.g. the ECN bit is set.

From all of the mentioned policies, RINASim does not support only UnknownFlow policy,

but it performs its default action i.e. deletes incoming PDU that does not belong to any known

flow.

6.3.1. DTP: InitialSequenceNumber

InitialSeqNum policy allows some discretion in selecting the initial sequence number when DRF

is going to be sent.

48 D26-RINASim-Policies-EFCP-RetransmissionTimerExpiry
49 D26-RINASim-Policies-EFCP-SenderAck
50 D26-RINASim-Policies-EFCP-SenderAckList
51 D26-RINASim-Policies-EFCP-SendingAck
52 D26-RINASim-Policies-EFCP-SndFlowControlOverrun
53 D26-RINASim-Policies-EFCP-TransmissionControl

D26-RINASim-Policies-EFCP-RetransmissionTimerExpiry
D26-RINASim-Policies-EFCP-SenderAck
D26-RINASim-Policies-EFCP-SenderAckList
D26-RINASim-Policies-EFCP-SendingAck
D26-RINASim-Policies-EFCP-SndFlowControlOverrun
D26-RINASim-Policies-EFCP-TransmissionControl
D26-RINASim-Policies-EFCP-RetransmissionTimerExpiry
D26-RINASim-Policies-EFCP-SenderAck
D26-RINASim-Policies-EFCP-SenderAckList
D26-RINASim-Policies-EFCP-SendingAck
D26-RINASim-Policies-EFCP-SndFlowControlOverrun
D26-RINASim-Policies-EFCP-TransmissionControl

Deliverable-2.6: RINA simulator

107

6.3.1.1. Variants

• Default - Default actions set the new seq num to 1.

6.3.1.2. Source codes

Policy source codes are located in /policies/DIF/EFCP/DTP/InitialSeqNum and they contain

following files:

Filename(s) Description

IntInitialSeqNumPolicy.ned NED interface module

InitialSeqNumPolicyBase.h/.cc Base class for general functionality

InitialSeqNumPolicyDefault/

InitialSeqNumPolicyDefault.ned

Simple module

InitialSeqNumPolicyDefault/

InitialSeqNumPolicyDefault.h/.cc

Policy invoking only default action

6.3.2. DTP: RTTEstimator

RTTEstimator policy is executed by the sender to estimate the duration of the retransmission

timer. This policy will be based on an estimate of round-trip time and the Ack or Ack List policy

in use.

6.3.2.1. Variants

• Default - Computes Round trip time only as an average from current and the last computed

RTT.

6.3.2.2. Source codes

Policy source codes are located in /policies/DIF/EFCP/DTP/RTTEstimator and they contain

following files:

Filename(s) Description

IntRTTEstimatorPolicy.ned NED interface module

RTTEstimatorPolicyBase.h/.cc Base class for general functionality

RTTEstimatorPolicyDefault/

RTTEstimatorPolicyDefault.ned

Simple module

RTTEstimatorPolicyDefault/

RTTEstimatorPolicyDefault.h/.cc

Base class for general functionality

Deliverable-2.6: RINA simulator

108

6.3.3. DTP: RcvrTimerInactivity

RcvrTimerInactivity policy is used when DTCP is in use. If no PDUs arrive in this period, the

receiver should expect a DRF in the next Transfer PDU. If not, something is very wrong. It

should be set to 2(MPL+R+A).

6.3.3.1. Variants

• Default - Resets all receiver-side variables and queues.

6.3.3.2. Source codes

Policy source codes are located in /policies/DIF/EFCP/DTP/RcvrTimerInactivity and they

contain following files:

Filename(s) Description

IntRcvrTimerInactivityPolicy.ned NED interface module

IntRcvrTimerInactivityPolicyBase.h/.cc Base class for general functionality

RcvrTimerInactivityPolicyDefault/

RcvrTimerInactivityPolicyDefault.ned

Simple module

RcvrTimerInactivityPolicyDefault/

RcvrTimerInactivityPolicyDefault.h/.cc

Policy invoking only default action

6.3.4. DTP: SenderInactivityTimer

SenderInactivityTimer policy is used when DTCP is in use. This timer is used to detect long

periods of no traffic, indicating that a DRF should be sent. If not, something is very wrong. It

should be set to 3(MPL+R+A).

6.3.4.1. Variants

• Default - Resets all sender-side variables and queues.

6.3.4.2. Source codes

Policy source codes are located in /policies/DIF/EFCP/DTP/SenderInactivityTimer and they

contain following files:

Filename(s) Description

IntSenderInactivityTimerPolicy.ned NED interface module

SenderInactivityTimerPolicyBase.h/.cc Base class for general functionality

Deliverable-2.6: RINA simulator

109

Filename(s) Description

SenderInactivityTimerPolicyDefault/

SenderInactivityTimerPolicyDefault.ned

Simple module

SenderInactivityTimerPolicyDefault/

SenderInactivityTimerPolicyDefault.h/.cc

Policy invoking only default action

6.3.5. DTCP: ECN

ECN policy handles ECN bit in incoming DT-PDUs.

6.3.5.1. Variants

• Default - Sets inner variable based on bit in DT-PDU header.

6.3.5.2. Source codes

Policy source codes are located in /policies/DIF/EFCP/DTCP/ECN and they contain following

files:

Filename(s) Description

IntECNPolicy.ned NED interface module

ECNPolicyBase.h/.cc Base class for general functionality

ECNPolicyDefault/ECNPolicyDefault.ned Simple module

ECNPolicyDefault/ECNPolicyDefault.h/.cc Policy invoking only default action

6.3.6. DTCP: ECNSlowDown

ECNSlowDown policy is executed upon IPCP’s RA receives Congestion Notification.

6.3.6.1. Variants

• Default - Default action is empty.

6.3.6.2. Source codes

Policy source codes are located in /policies/DIF/EFCP/DTCP/ECNSlowDown and they contain

following files:

Filename(s) Description

IntECNlowDownPolicy.ned NED interface module

Deliverable-2.6: RINA simulator

110

Filename(s) Description

ECNlowDownPolicyBase.h/.cc Base class for general functionality

ECNlowDownPolicyDefault/

ECNlowDownPolicyDefault.ned

Simple module

ECNlowDownPolicyDefault/

ECNlowDownPolicyDefault.h/.cc

Policy invoking only default action

6.3.7. DTCP: LostControlPDU

LostControlPDU policy determines what action to take when the PM detects that a control PDU

(Ack or Flow Control) may have been lost. If this procedure returns True, then the PM will send

a Control-Ack and an empty Transfer PDU. If it returns False, then any action is determined

by the policy.

6.3.7.1. Variants

• Default - Sends ControlAck and empty DT-PDU.

6.3.7.2. Source codes

Policy source codes are located in /policies/DIF/EFCP/DTCP/LostControlPDU and they

contain following files:

Filename(s) Description

IntLostControlPDUPolicy.ned NED interface module

LostControlPDUPolicyBase.h/.cc Base class for general functionality

LostControlPDUPolicyDefault/

LostControlPDUPolicyDefault.ned

Simple module

LostControlPDUPolicyDefault/

LostControlPDUPolicyDefault.h/.cc

Policy invoking only default action

6.3.8. DTCP: NoOverridePeak

NoOverridePeak policy allows rate-based flow control to exceed its nominal rate. Presumably

this would be for short periods, and policies should enforce this. Like all policies, if this returns

True it creates the default action that is no override.

6.3.8.1. Variants

• Default - Puts DT-PDU on ClosedWindowQ.

Deliverable-2.6: RINA simulator

111

6.3.8.2. Source codes

Policy source codes are located in /policies/DIF/EFCP/DTCP/NoOverridePeak and they

contain following files:

Filename(s) Description

IntNoOverridePeakPolicy.ned NED interface module

NoOverridePeakPolicyBase.h/.cc Base class for general functionality

NoOverridePeakPolicyDefault/

NoOverridePeakPolicyDefault.ned

Simple module

NoOverridePeakPolicyDefault/

NoOverridePeakPolicyDefault.h/.cc

Policy invoking only default action

6.3.9. DTCP: NoRateSlowDown

NoRate-SlowDown policy is used to lower momentarily the send rate below the rate allowed.

6.3.9.1. Variants

• Default - Default action does not slow down.

6.3.9.2. Source codes

Policy source codes are located in /policies/DIF/EFCP/DTCP/NoRateSlowDown and they

contain following files:

Filename(s) Description

IntNoRateSlowDownPolicy.ned NED interface module

NoRateSlowDownPolicyBase.h/.cc Base class for general functionality

NoRateSlowDownPolicyDefault/

NoRateSlowDownPolicyDefault.ned

Simple module

NoRateSlowDownPolicyDefault/

NoRateSlowDownPolicyDefault.h/.cc

Policy invoking only default action

6.3.10. DTCP: RateReduction

RateReduction policy is executed in case of Rate-based Flow Control and if a condition of local

shortage of buffers occurs or when the condition is opposite and buffers are less full than a given

threshold so that rate can be increased to the rate agreed during the connection establishment.

Deliverable-2.6: RINA simulator

112

6.3.10.1. Variants

• Default - Slow down 10% if buffers are getting low.

6.3.10.2. Source codes

Policy source codes are located in /policies/DIF/EFCP/DTCP/RateReduction and they contain

following files:

Filename(s) Description

IntRateReductionPolicy.ned NED interface module

RateReductionPolicyBase.h/.cc Base class for general functionality

RateReductionPolicyDefault/

RateReductionPolicyDefault.ned

Simple module

RateReductionPolicyDefault/

RateReductionPolicyDefault.h/.cc

Policy invoking only default action

6.3.11. DTCP: RcvFlowControlOverrun

RcvFlowControlOverrun This policy determines what action to take if the receiver receives

PDUs, but the credit or rate has been exceeded. If this procedure returns True, then the PDU is

discarded; otherwise PDU processing is allowed to continue normally.

6.3.11.1. Variants

• Default - Default action is to drop the PDU and to send control PDU.

6.3.11.2. Source codes

Policy source codes are located in /policies/DIF/EFCP/DTCP/RcvFCOverrun and they contain

following files:

Filename(s) Description

IntRcvFCOverrunPolicy.ned NED interface module

RcvFCOverrunPolicyBase.h/.cc Base class for general functionality

RcvFCOverrunPolicyDefault/

RcvFCOverrunPolicyDefault.ned

Simple module

RcvFCOverrunPolicyDefault/

RcvFCOverrunPolicyDefault.h/.cc

Policy invoking only default action

Deliverable-2.6: RINA simulator

113

6.3.12. DTCP: RcvrAck

RcvrAck policy is executed by the receiver of the DT-PDU and provides some discretion in the

action taken. The default action is to either Ack immediately or to start the A-Timer and Ack

the RcvLeftWindowEdge when it expires.

6.3.12.1. Variants

• Default - Sends Ack.

6.3.12.2. Source codes

Policy source codes are located in /policies/DIF/EFCP/DTCP/RcvrAck and they contain

following files:

Filename(s) Description

IntRcvrAckPolicy.ned NED interface module

RcvrAckPolicyBase.h/.cc Base class for general functionality

RcvrAckPolicyDefault/

RcvrAckPolicyDefault.ned

Simple module

RcvrAckPolicyDefault/

RcvrAckPolicyDefault.h/.cc

Policy invoking only default action

6.3.13. DTCP: RcvrControlACK

RcvrControlAck policy is executed upon reception of ControlAck PDU.

6.3.13.1. Variants

• Default - Default action is to check the values and if necessary send back Control PDU with

updated information.

6.3.13.2. Source codes

Policy source codes are located in /policies/DIF/EFCP/DTCP/RcvrControlAck and they contain

following files:

Filename(s) Description

IntRcvrControlAckPolicy.ned NED interface module

Deliverable-2.6: RINA simulator

114

Filename(s) Description

RcvrControlAckPolicyBase.h/.cc Base class for general functionality

RcvrControlAckPolicyDefault/

RcvrControlAckPolicyDefault.ned

Simple module

RcvrControlAckPolicyDefault/

RcvrControlAckPolicyDefault.h/.cc

Policy invoking only default action

6.3.14. DTCP: RcvrFlowControl

RcvrFlowControl policy is invoked when a Transfer PDU is received to give the receiving PM

an opportunity to update the flow control allocations.

6.3.14.1. Variants

• Default - Increment RRWE.

6.3.14.2. Source codes

Policy source codes are located in /policies/DIF/EFCP/DTCP/RcvrFC and they contain

following files:

Filename(s) Description

RcvrFlowControl.ned NED interface module

IntRcvrFCPolicy.ned NED interface module

RcvrFClPolicyBase.h/.cc Base class for general functionality

RcvrFCPolicyDefault/

RcvrFCPolicyDefault.ned

Simple module

RcvrFCPolicyDefault/

RcvrFCPolicyDefault.h/.cc

Policy invoking only default action

6.3.15. DTCP: ReceivingFlowControl

ReceivingFlowControl policy is invoked by the receiver of a DataTransferPDU in case there

is a Flow Control present, but no Retransmission Control. The default action is to send

FlowControlPDU.

6.3.15.1. Variants

• Default - Send Control PDU with Flow Control Informations.

Deliverable-2.6: RINA simulator

115

6.3.15.2. Source codes

Policy source codes are located in /policies/DIF/EFCP/DTCP/ReceivingFC and they contain

following files:

Filename(s) Description

ReceivingFC.ned NED interface module

IntReceivingFCPolicy.ned NED interface module

ReceivingFCPolicyBase.h/.cc Base class for general functionality

ReceivingFCPolicyDefault/

ReceivingFCPolicyDefault.ned

Simple module

ReceivingFCPolicyDefault/

ReceivingFCPolicyDefault.h/.cc

Policy invoking only default action

6.3.16. DTCP: ReconcileFlowConflict

ReconcileFlowConflict policy is invoked when both Credit and Rate-based flow control are in

use, and they disagree on whether the PM can send or receive data. If it returns True, then the

PM can send or receive; if False, it cannot.

6.3.16.1. Variants

• Default - Does nothing.

6.3.16.2. Source codes

Policy source codes are located in /policies/DIF/EFCP/DTCP/ReconcileFC and they contain

following files:

Filename(s) Description

IntReconcileFCPolicy.ned NED interface module

ReconcileFCPolicyBase.h/.cc Base class for general functionality

ReconcileFCPolicyDefault/

ReconcileFCPolicyDefault.ned

Simple module

ReconcileFCPolicyDefault/

ReconcileFCPolicyDefault.h/.cc

Policy invoking only default action

Deliverable-2.6: RINA simulator

116

6.3.17. DTCP: RetransmissionTimerExpiry

RetransmissionTimerExpiry policy is executed by the sender when a Retransmission Timer

Expires. If this policy returns True, then all PDUs with the sequence number less than or equal

to the sequence number of the PDU associated with this timeout are retransmitted; otherwise

the procedure must determine what action to take. This policy must be executed in less than

the maximum time to Ack.

6.3.17.1. Variants

• Default - Retransmits PDU with seq num equal to the one in RXTimer.

6.3.17.2. Source codes

Policy source codes are located in /policies/DIF/EFCP/DTCP/RxTimerExpiry and they contain

following files:

Filename(s) Description

IntRxTimerExpiryPolicy.ned NED interface module

RxTimerExpiryPolicyBase.h/.cc Base class for general functionality

RxTimerExpiryPolicyDefault/

RxTimerExpiryPolicyDefault.ned

Simple module

RxTimerExpiryPolicyDefault/

RxTimerExpiryPolicyDefault.h/.cc

Policy invoking only default action

6.3.18. DTCP: SenderAck

SenderAck policy is executed by the Sender and provides the Sender with some discretion on

when PDUs may be deleted from the RetransmissionQ. This is useful for multicast and similar

situations where one might want to delay discarding PDUs from the retransmission queue.

6.3.18.1. Variants

• Default - Removes DT-PDU from Retransmission Queue up to Acked sequence number.

6.3.18.2. Source codes

Policy source codes are located in /policies/DIF/EFCP/DTCP/SenderAck and they contain

following files:

Deliverable-2.6: RINA simulator

117

Filename(s) Description

IntSenderAckPolicy.ned NED interface module

SenderAckPolicyBase.h/.cc Base class for general functionality

SenderAckPolicyDefault/

SenderAckPolicyDefault.ned

Simple module

SenderAckPolicyDefault/

SenderAckPolicyDefault.h/.cc

Policy invoking only default action

6.3.19. DTCP: SenderAckList

SenderAckList policy is executed by the Sender and provides the Sender with some discretion

on when PDUs may be deleted from the ReTransmissionQ. This policy is used in conjunction

with the selective acknowledgement aspects of the mechanism. This is useful for multicast and

similar situations where to want to delay discarding PDUs from the retransmission queue.

6.3.19.1. Variants

• Default - Removes specified seq num ranges from from Retransmission Queue.

6.3.19.2. Source codes

Policy source codes are located in /policies/DIF/EFCP/DTCP/SenderAckList and they contain

following files:

Filename(s) Description

IntSenderAckListPolicy.ned NED interface module

SenderAckListPolicyBase.h/.cc Base class for general functionality

SenderAckListPolicyDefault/

SenderAckListPolicyDefault.ned

Simple module

SenderAckListPolicyDefault/

SenderAckListPolicyDefault.h/.cc

Policy invoking only default action

6.3.20. DTCP: SendingAck

SendingAck policy is executed upon A-Timer expiration in case there is DTCP present.

The default action is to update RcvLeftWindowEdge, invoke delimiting and to send Ack/

FlowControlPDU.

Deliverable-2.6: RINA simulator

118

6.3.20.1. Variants

• Default - Updates RcvLeftWindowEdge, invokes delimiting and sends Ack/

FlowControlPDU.

6.3.20.2. Source codes

Policy source codes are located in /policies/DIF/EFCP/DTCP/SendingAck and they contain

following files:

Filename(s) Description

IntSendingAckPolicy.ned NED interface module

SendingAckPolicyBase.h/.cc Base class for general functionality

SendingAckPolicyDefault/

SendingAckPolicyDefault.ned

Simple module

SendingAckPolicyDefault/

SendingAckPolicyDefault.h/.cc

Policy invoking only default action

6.3.21. DTCP: SndFlowControlOverrun

SndFlowControlOverrun - policy determines what action to take if the Sender has PDU to send

but its SndRightWindowEdge or SndRate prevents him from sending it. The default action is

to put it in ClosedWindowQueue.

6.3.21.1. Variants

• Default - Puts DT-PDU in ClosedWindowQueue.

6.3.21.2. Source codes

Policy source codes are located in /policies/DIF/EFCP/DTCP/SndFCOverrun and they contain

following files:

Filename(s) Description

IntSndFCOverrunPolicy.ned NED interface module

SndFCOverrunPolicyBase.h/.cc Base class for general functionality

SndFCOverrunPolicyDefault/

SndFCOverrunPolicyDefault.ned

Simple module

SndFCOverrunPolicyDefault/

SndFCOverrunPolicyDefault.h/.cc

Policy invoking only default action

Deliverable-2.6: RINA simulator

119

6.3.22. DTCP: Transmission Control

TransmissionControl policy is used when there are conditions that warrant sending fewer PDUs

than allowed by the sliding window flow control.

6.3.22.1. Variants

• Default - Puts as many DT-PDUs from generatedPDUQ to postablePDUQ .

6.3.22.2. Source codes

Policy source codes are located in /policies/DIF/EFCP/DTCP/TXControl and they contain

following files:

Filename(s) Description

IntTXControlPolicy.ned NED interface module

TXControlPolicyBase.h/.cc Base class for general functionality

TXControlPolicyDefault/

TXControlPolicyDefault.ned

Simple module

TXControlPolicyDefault/

TXControlPolicyDefault.h/.cc

Policy invoking only default action

6.4. Resource Allocator Policies

This subchapter discusses RA policies. Since there currently aren’t any available specifications

for policies needed in Resource Allocator, all following policies are simulator-specific.

• AddressComparator

• PDUForwardingGenerator

• QueueAlloc

• QueueIDGen

6.4.1. AddressComparator

AddressComparator is invoked by RMT and its policies to determine whether a PDU address

matches the IPC process address. This is used mainly on message arrival to decide whether the

PDU is directed to the IPC process.

Deliverable-2.6: RINA simulator

120

6.4.1.1. Variants

• ExactMatch - Provides exact matching.

• PrefixMatch - Provides matching based on common prefix.

6.4.1.2. Source codes

Policy source codes are located in /policies/DIF/RA/AddressComparator and they contain

following files:

Filename(s) Description

IntAddressComparator.ned NED interface module

AddressComparatorBase.cc/h Base class for general functionality

ExactMatch/ExactMatch.cc/h ExactMatch version core functionality

ExactMatch/ExactMatch.ned ExactMatch interface implementation

PrefixMatch/PrefixMatch.cc/h PrefixMatch version core functionality

PrefixMatch/PrefixMatch.ned PrefixMatch interface implementation

6.4.2. PDU Forwarding Generator

PDUFG (PDU Forwarding Generator) manages the PDU Forwarding policy (traditionally a

forwarding table), usually by means of adding and removing forwarding information. For

this purpose, PDUFG uses pieces of information provided by other sources, most notably the

Routing policy.

6.4.2.1. Variants

• StaticGenerator - The default implementation using forwarding information statically

provided to DIF Allocator via XML configuration.

• SimpleGenerator - The simplest dynamic generator proxying information provided by the

routing policy.

• HierarchicalGenerator - An implementation working with hierarchical addresses (e.g.

A.B.C….)

• HopsSingle1Entry - An implementation for hop-based routing managing only one port per

destination address.

• HopsSingleMEntries - An implementation for hop-based routing managing multiple ports

per destination address.

Deliverable-2.6: RINA simulator

121

• LatencySingle1Entry - An implementation for latency-based routing managing only one port

per destination address.

• LatencySingleMEntries - An implementation for latency-based routing managing multiple

ports per destination address.

• SingleDomainGenerator - Domain routing: generator with a single domain

• BiDomainGenerator - Domain routing: generator with two domains per IPC process

• QoSDomainGenerator - Domain routing: QoS-based generator

6.4.3. QueueAlloc

QueueAlloc policy manages allocation and deallocation of RMT queues in response to events

happening inside the IPC process. This allows for flexibility when experimenting with queuing

disciplines.

6.4.3.1. Variants

• SingleQueue - A pair of queues per (N-1)-port.

• QueuePerNFlow - A pair of queues per active (N-1)-flow + a pair of management queues.

• QueuePerNQoS - A pair of queues per each available QoS cube.

• QueuePerNCU - A pair of queues per each available Cherish/Urgency class. QoS Cubes are

mapped each to a Cherish/Urgency class.

6.4.4. PDU Forwarding Generator

PDUFG (PDU Forwarding Generator) manages the PDU Forwarding policy (traditionally a

forwarding table), usually by means of adding and removing forwarding information. For

this purpose, PDUFG uses pieces of information provided by other sources, most notably the

Routing policy.

6.4.4.1. Variants

• StaticGenerator - The default implementation using forwarding information statically

provided to DIF Allocator via XML configuration.

• SimpleGenerator - The simplest dynamic generator proxying information provided by the

routing policy.

• HierarchicalGenerator - An implementation working with hierarchical addresses (e.g.

A.B.C….)

Deliverable-2.6: RINA simulator

122

• HopsSingle1Entry - An implementation for hop-based routing managing only one port per

destination address.

• HopsSingleMEntries - An implementation for hop-based routing managing multiple ports

per destination address.

• LatencySingle1Entry - An implementation for latency-based routing managing only one port

per destination address.

• LatencySingleMEntries - An implementation for latency-based routing managing multiple

ports per destination address.

• SingleDomainGenerator - Domain routing: generator with a single domain

• BiDomainGenerator - Domain routing: generator with two domains per IPC process

• QoSDomainGenerator - Domain routing: QoS-based generator

6.4.5. QueueIDGen

QueueIDGen is a companion policy to the QueueAlloc policy and provides generation of queue

IDs from given objects (PDUs/flow specifics).

6.4.5.1. Variants

• SingleQueue - Returns "0".

• QueuePerNFlow - Returns a concatenation of the other endpoint’s IPC address and CEP-id.

• QueuePerNQoS - Returns a QoS-cube ID.

• QueuePerNCU - Returns a Cherish/Urgency class of the QoS-cube ID. BE if not defined.

6.5. RMT Policies

This subchapter discusses RMT policies. According to the specifications, RMT providies three

policies:

• Scheduler

• Monitor

• MaxQueue

RINASim RMT implements those policies and additionally contains one RINASim-specific

policy:

• PDUForwarding

Deliverable-2.6: RINA simulator

123

6.5.1. MaxQueue

MaxQueue is a policy used for deciding what to do when queue lengths are overflowing their

threshold lengths. It’s invoked whenever the size of items in a queue reaches above a threshold.

6.5.1.1. Variants

• TailDrop - A policy that drops arriving PDUs when queue size >= allowed maximum.

• ECNMarker - A policy that marks arriving PDUs when queue size >= threshold and drops

them when queue size >= allowed maximum.

• ReadRateReducer - A policy that causes RMT to stop receiving data from relevant (N-1)-

ports when queue size >= allowed maximum.

• UpstreamNotifier - A policy that causes a notification to be sent to the PDU sender when

queue size >= allowed maximum.

• REDDropper - A policy used for for the Random Early Detection feature.

• DumbMaxQ - A policy used in conjunction with Monitor policies extending the

SmartMonitor interface. Drop a new PDU heuristically depending on a probability given

by the monitor.

6.5.2. Monitor

Monitor is a stateful policy that manages variables used by other RMT policies. It’s invoked by

various events happening inside RMT and its ports and queues.

6.5.2.1. Variants

• DummyMonitor - A noop implementation.

• REDMonitor - A monitor used for for the Random Early Detection feature.

• SmartMonitor - A monitor interface that joins all scheduling related tasks (monitor, maxQ

and scheduling)

• WeightedFairQMonitor - A monitor used to compute rates for WFW.

• BEMonitor - Extends SmartMonitor. Implementation of Best-effort.

• DLMonitor - Extends SmartMonitor. Implementation of Cherish/Urgency monitor.

• DQMonitor - Extends SmartMonitor. Implementation of DeltaQ monitor.

• eDLMonitor - Extends SmartMonitor. Implementation of an enhanced version of Cherish/

Urgency monitor.

Deliverable-2.6: RINA simulator

124

6.5.3. PDUForwarding

PDUForwarding is a policy deciding where to forward a PDU. It accepts the PDU as an

argument, does a lookup in its internal structures (usually a forwarding table populated by the

PDUFG policy) and returns a set of (N-1)-ports .

6.5.3.1. Variants

• SimpleTable - A table with {(dstAddr, QoS) → port} mappings.

• MiniTable - A table with {dstAddr → port} mappings.

• MultiMiniTable - A table with {dstAddr → vector<port>} mappings.

• FloodMiniTable - A table with {dstAddr → port} mappings.

• DomainTable - Two tables {(prefix, QoS) → domainID} {(domainID, address) → port}}

mappings.

• HierarchicalTable - A table with {prefix → {(infix, QoS) → port}} mappings.

• QoSTable - A table with {(dstAddr, QoS) → port} mappings.

6.5.4. Scheduler

Scheduler is invoked each time some (N-1)-port has data to send and uses an algorithm to make

a decision about which of port’s queues should be handled first.

6.5.4.1. Variants

• LongestQFirst - Always picks the queue which contains the most PDUs.

• DumbSch - A policy used in conjunction with Monitor policies extending the SmartMonitor

interface. Returns the PDU decided by the monitor.

• WeightedFairQ - Picks the queues depending on datarate of QoS

• DQSch - A policy used in conjunction with DQMonitor. Returns the PDU decided by the

monitor or waits some time to space bursts.

6.6. Routing policies

This subchapter discusses Routing policies implementations. Routing policies are used to

propagate information about routing in the DIF and are dependent on PDU Forwarding

Generator (PDUFG).

Deliverable-2.6: RINA simulator

125

6.6.1. Variants

• DummyRouting - Does nothing.

• DomainRouting - Exchanges routing information of distinct routing domains configured

either with link-state or distance-vector (see subchapter 7.3.354 for detailed description).

• SimpleRouting - Exchanges routing information of distinct routing domains based on QoS

Cube configured either with link-state (see subchapter 7.3.155) or distance-vector (see

subchapter 7.3.256).

• TDomainRouting - Exchanges routing information of distinct routing domains configured

either with link-state or distance-vector. Metric data-type is defined by template.

• TSimpleRouting - Exchanges routing information of distinct routing domains based on QoS

Cube configured either with link-state or distance-vector. Metric data-type is defined by

template.

54 D26-RINASim-PolicyFeatures-Routing-Domain
55 D26-RINASim-PolicyFeatures-Routing-TSimpleLS
56 D26-RINASim-PolicyFeatures-Routing-TSimpleDV

D26-RINASim-PolicyFeatures-Routing-Domain
D26-RINASim-PolicyFeatures-Routing-TSimpleLS
D26-RINASim-PolicyFeatures-Routing-TSimpleDV
D26-RINASim-PolicyFeatures-Routing-Domain
D26-RINASim-PolicyFeatures-Routing-TSimpleLS
D26-RINASim-PolicyFeatures-Routing-TSimpleDV

Deliverable-2.6: RINA simulator

126

7. Policy-driven Features

7.1. Congestion Avoidance

7.1.1. Legacy Random Early Detection

Port of the legacy Random Early Detection algorithm, included mainly for demonstrating

RINA’s programmability.

7.1.1.1. Policy set

• /policies/DIF/RMT/Monitor/REDMonitor

• /policies/DIF/RMT/MaxQueue/REDDropper

7.1.1.2. Configuration

Module Variable Description Default value

REDDropper double

dropProbability

probability of packet

drop

0.4

REDDropper bool marking applies ECN

markings on PDUs

instead of dropping

them

false

7.1.1.3. References

• [RED]

7.1.2. TCP-like congestion avoidance

A set of simple TCP-like congestion control policies is specified here to demonstrate RINA’s

congestion control capabilities. The TxControlPolicyTCPTahoe policy is an implementation of

TxControl policy of DTCP. It defines a set of internal variables such as congestion window size

(CWND) to control the number of sent packets additionally based on congestion signals such as

ECN and pushback. Therefore, the given credit to the sender is the minimum of the one allowed

by CWND and the flow control’s window. The congestion controller of this policy behaves

similarly to the one in TCP [RFC5681].

Since TCP’s congestion controller is coupled with other functions such as round-trip-time

(RTT) and retransmission timeout (RTO) estimations and acknowledgement packets treatment,

Deliverable-2.6: RINA simulator

127

two other policies, called RTTEstimatorPolicyTCP and SenderAckPolicyTCPTahoe have been

additionally defined to respectively handle those functions in RINA. RTTEstimatorPolicyTCP

calculates RTT and RTO based on the method presented in RFC 6298 [RFC6298].

7.1.2.1. Policy set

• /policies/DIF/EFCP/DTCP/TxControl/TxControlPolicyTCPTahoe

• /policies/DIF/EFCP/DTCP/SenderAck/SenderAckPolicyTCPTahoe

• /policies/DIF/EFCP/DTP/RTTEstimator/RTTEstimatorPolicyTCP

7.1.2.2. Configuration

Module Variable Description Default value

TxControlPolicyTCPTahoeint packetSize packet size 536

7.2. Scheduling

7.2.1. Delay-loss

Delay Loss scheduling based on strict cherish/urgency distinction.

7.2.1.1. Policy set

• /policies/DIF/RMT/Monitor/DLMonitor

• /policies/DIF/RMT/MaxQueue/DumbMaxQ

• /policies/DIF/RMT/Scheduler/DumbSch

7.2.1.2. Configuration

Module Variable Description Default value

DLMonitor xml cuData (array

CUItem)

Cherish/Urgency

classes definition

empty xml

CUItem - Cherish/Urgency Class definition

Parameter Type DataType Description

id attribute string Name of the C/U

class

queue element string Queue of the C/U

class

Deliverable-2.6: RINA simulator

128

Parameter Type DataType Description

urgency element int Priority of the C/U

class

cherishThreshold element int Port packet count

threshold for the C/U

class

7.2.2. Enhanced Delay-Loss

Enhanced Delay Loss scheduling based on probabilistic cherish/urgency distinction.

7.2.2.1. Policy set

• /policies/DIF/RMT/Monitor/eDLMonitor

• /policies/DIF/RMT/MaxQueue/DumbMaxQ

• /policies/DIF/RMT/Scheduler/DumbSch

7.2.2.2. Configuration

Module Variable Description Default value

eDLMonitor xml cuData (array

CUItem)

Cherish/Urgency

classes definition

empty xml

eDLMonitor xml urgData (array

urgency)

Cherish/Urgency

priority probability of

skip

empty xml

CUItem - Cherish/Urgency Class definition

Parameter Type DataType Description

id attribute string Name of the C/U

class

queue element string Queue of the C/U

class

urgency element int Priority of the C/U

class

cherishThreshold element int Port packet count

min-drop threshold

for the C/U class

Deliverable-2.6: RINA simulator

129

Parameter Type DataType Description

cherishAbsThreshold element int Port packet count

absolute threshold for

the C/U class

cherishDropProbabilityelement double Probability of

drop between min-

drop and absolute

threshold for the C/U

class

urgency - Cherish/Urgency priority probability of skip

Parameter Type DataType Description

val attribute int Priority

prob attribute double Probability of skip

7.3. Routing

7.3.1. Distance Vector (legacy)

7.3.2. Link-state (legacy)

7.3.3. TSimple Link-state

Routing policy for QoS based routing domains. It allows to configure QoS named routing

domains running a simple Link-State algorithm.

Extends "IntTSimpleRouting".

7.3.3.1. Policy set

• /policies/DIF/Routing/TSimpleLS

7.3.3.2. Configuration

Module Variable Description Default value

TSimpleLS string myAddr Node address in the

DIF, for sending

updates

""

Deliverable-2.6: RINA simulator

130

Module Variable Description Default value

TSimpleLS bool printAtEnd Print routing

information at finish?

false

7.3.3.3. Interaction

Parameter Type <T> correspond to metric Type, defined by template. Currently TSimpleLS

module sets T as unsigned short.

• void insertFlow(Address addr, string dst, string qos, T metric) Inserts or replaces a

connection with QoS "qos" to a neighbour node. Neighbour defined with address in DIF

"addr" and name "dst" within the routing domain. Metric of the connection "metric".

• void removeFlow(Address addr, string dst, string qos) Removes a connection for QoS "qos"

to a neighbour node. Neighbour defined with address in DIF "addr" and name "dst" within

the routing domain.

• map<string, map<string, nhLMetric<T> > > getChanges() Get changed next-hop entries

for all domains after last query. Returned value in the form domain → dst Name → struct(T

metric, set<string> next-hop)

• map<string, map<string, nhLMetric<T> > > getAll() Get all next-hop entries. Returned

value in the form domain → dst Name → struct(T metric, set<string> next-hop)

• void setInfinite(T inf) Set the infinite metric to "inf".

7.3.4. TSimple Distance-vector

Routing policy for QoS based routing domains. It allows to configure QoS named routing

domains running a simple Distance-Vector algorithm.

Extends "IntTSimpleRouting".

7.3.4.1. Policy set

• /policies/DIF/Routing/TSimpleDV

7.3.4.2. Configuration

Module Variable Description Default value

TSimpleDV string myAddr Node address in the

DIF, for sending

updates

""

Deliverable-2.6: RINA simulator

131

Module Variable Description Default value

TSimpleDV bool printAtEnd Print routing

information at finish?

false

7.3.4.3. Interaction

Parameter Type <T> correspond to metric Type, defined by template. Currently TSimpleLS

module sets T as unsigned short.

• void insertFlow(Address addr, string dst, string qos, T metric) Inserts or replaces a

connection with QoS "qos" to a neighbour node. Neighbour defined with address in DIF

"addr" and name "dst" within the routing domain. Metric of the connection "metric".

• void removeFlow(Address addr, string dst, string qos) Removes a connection for QoS "qos"

to a neighbour node. Neighbour defined with address in DIF "addr" and name "dst" within

the routing domain.

• map<string, map<string, nhLMetric<T> > > getChanges() Get changed next-hop entries

for all domains after last query. Returned value in the form domain → dst Name → struct(T

metric, set<string> next-hop)

• map<string, map<string, nhLMetric<T> > > getAll() Get all next-hop entries. Returned

value in the form domain → dst Name → struct(T metric, set<string> next-hop)

• void setInfinite(T inf) Set the infinite metric to "inf".

7.3.5. Routing domain

Routing policy for configurable domains. It allows to configure named routing domains, for

distinct QoS, sub-DIFs, etc., as well as decide which algorithm use within the domain (currently

simple Link-State or Distance-Vector), node name and synonyms within the domain and

neighbours in the domain.

7.3.5.1. Policy set

• /policies/DIF/Routing/TDomainRouting

7.3.5.2. Configuration

Module Variable Description Default value

TDomainRouting string myAddr Node address in the

DIF, for sending

updates

""

Deliverable-2.6: RINA simulator

132

Module Variable Description Default value

TDomainRouting bool printAtEnd Print routing

information at finish?

false

7.3.5.3. Interaction

Parameter Type <T> correspond to metric Type, defined by template. Currently

TDomainRouting module sets T as unsigned short.

• void addDomain(string domId, string addr, T infinite, ModuleAlgs alg) Define a new

routing domain with name "domId". Self address "addr", infinite metric set at "infinite", and

using routing algorithm "alg".

• void removeDomain(string domId) Removes the routing domain with name "domId".

• void insertFlow(Address addr, string dst, string domId, T metric) Inserts or replaces a

connection to a neighbour node within domain "domId". Neighbour defined with address in

DIF "addr" and name "dst" within the domain. Metric of the connection "metric".

• void removeFlow(Address addr, string dst, string domId) Removes a connection to a

neighbour node within domain "domId". Neighbour defined with address in DIF "addr" and

name "dst" within the domain.

• void addAddr(string domId, string syn) Add the synonim "syn" for the node in routing

domain "domId".

• void removeAddr(string domId, string syn) Remove the synonim "syn" from the node in

routing domain "domId".

• map<string, map<string, nhLMetric<T> > > getChanges() Get changed next-hop entries

for all domains after last query. Returned value in the form domain → dst Name → struct(T

metric, set<string> next-hop)

• map<string, map<string, nhLMetric<T> > > getAll() Get all next-hop entries. Returned

value in the form domain → dst Name → struct(T metric, set<string> next-hop)

7.4. Forwarding

7.4.1. MiniTable

Simple forwarding policy based on a forwarding table storing a mapping dst addr → RMTPort*.

Extends "IntMiniForwarding".

Deliverable-2.6: RINA simulator

133

7.4.1.1. Policy set

• /policies/DIF/RMT/PDUForwarding/MiniTable

7.4.1.2. Configuration

Module Variable Description Default value

MiniTable bool printAtEnd Print forwarding

table at finish?

false

7.4.1.3. Interaction

• void insert(string addr, RMTPort * port) Inserts the entry "addr" → "port"

• void insert(Address addr, RMTPort * port) Synonym for

insert(addr.getIpcAddress().getName(), port).

• void remove(string addr) Remove entry "addr".

• void remove(Address addr) Synonym for remove(addr.getIpcAddress().getName()).

• void clean() Clears forwarding table.

7.4.2. MultiMiniTable

Simple forwarding policy based on a forwarding table storing a mapping dst addr →
vector<RMTPort*>. On lookup, it returns a random RMTPort* if more than one is available,

resulting in a first/easy approach to load balancing.

Extends "IntMMForwarding".

7.4.2.1. Policy set

• /policies/DIF/RMT/PDUForwarding/MultiMiniTable

7.4.2.2. Configuration

Module Variable Description Default value

MiniTable bool printAtEnd Print forwarding

table at finish?

false

7.4.2.3. Interaction

• void addReplace(string addr, vector<RMTPort *> ports) Sets entry "addr" as "ports". If

"ports" is empty, removes entry "addr".

Deliverable-2.6: RINA simulator

134

7.5. PDU Forwarding Table Generator

7.5.1. HopsSingle1Entry

PDU Forwarding Generator policy for hop based routing without distinction on QoS and only

one dst Port per dst addr.

7.5.1.1. Policy set

• /policies/DIF/RA/PDUFG/HopsSingle1Entry

7.5.1.2. Requires

• Forwarding policy implements IntMiniForwarding

• Routing policy IntTSimpleRouting<unsigned short>

7.5.1.3. Configuration

Module Variable Description Default value

HopsSingle1Entry unsigned short

infinite

Infinite value for

routing

32

7.5.2. HopsSingleMEntries

PDU Forwarding Generator policy for hop based routing without distinction on QoS and

multiple ports per dst addr.

7.5.2.1. Policy set

• /policies/DIF/RA/PDUFG/HopsSingleMEntries

7.5.2.2. Requires

• Forwarding policy implements IntMMForwarding

• Routing policy IntTSimpleRouting<unsigned short>

7.5.2.3. Configuration

Module Variable Description Default value

HopsSingleMEntries unsigned short

infinite

Infinite value for

routing

32

Deliverable-2.6: RINA simulator

135

7.5.3. LatencySingle1Entry

PDU Forwarding Generator policy for latency based routing without distinction on QoS and

only one dst Port per dst addr.

7.5.3.1. Policy set

• /policies/DIF/RA/PDUFG/LatencySingle1Entry

7.5.3.2. Requires

• Forwarding policy implements IntMiniForwarding

• Routing policy IntTSimpleRouting<unsigned short>

7.5.3.3. Configuration

Module Variable Description Default value

LatencySingle1Entry unsigned short

infinite

Infinite value for

routing

1000

LatencySingle1Entry unsigned short

redLinkCost

Link Cost =

QoS Latency /

redLinkCost

1

LatencySingle1Entry unsigned short

maxLinkCost

Maximum Link Cost 100

LatencySingle1Entry unsigned short

minLinkCost

Minimum link cost 1

7.5.4. LatencySingleMEntries

PDU Forwarding Generator policy for latency based routing without distinction on QoS and

multiple ports per dst addr.

7.5.4.1. Policy set

• /policies/DIF/RA/PDUFG/LatencySingleMEntries

7.5.4.2. Requires

• Forwarding policy implements IntMiniForwarding

Deliverable-2.6: RINA simulator

136

• Routing policy IntTSimpleRouting<unsigned short>

7.5.4.3. Configuration

Module Variable Description Default value

LatencySingleMEntriesunsigned short

infinite

Infinite value for

routing

1000

LatencySingleMEntriesunsigned short

redLinkCost

Link Cost =

QoS Latency /

redLinkCost

1

LatencySingleMEntriesunsigned short

maxLinkCost

Maximum Link Cost 100

LatencySingleMEntriesunsigned short

minLinkCost

Minimum link cost 1

Deliverable-2.6: RINA simulator

137

8. Demonstration scenarios

This chapter outlines available examples of networks using RINA as native network stack.

General instructions, how to setup and run scenarios, are provided to reader. Furthermore, detail

description of notable scenarios try to reveal advantages of adopting RINA for certain Internet

use-cases.

Source codes of demonstrations are located in /examples/ folder and each one includes following

files, which may be used as templates when creating other RINASim scenarios:

• <name>.ned – OMNeT++ simulation network graph description which contains nodes and

interconnections definitions;

• omnetpp.ini – scheduled simulation setup with models configuration (e.g., nodes addresses,

ANI for AEs, pointers to XML configurations) applied during network initialization;

• config.xml – additional more structured and complex models configuration (e.g., DA’s

mappings, RA’s QoS-cubes sets, preallocation and preenrollment settings) in the form of

XML data is loaded to the simulation using this file;

• *.anf – statistic collection setup file(s);

• ./results/ – results of various simulation runs containing gathered scalar and vector data.

Folder /playground/ contains various scenarios for testing purposes of their authors.

8.1. Running a Scenario

This assumes that OMNeT++ along with RINASim were correctly installed according to

Chapter 3: Installation and Configuration.

8.1.1. From the IDE

1) Run the OMNeT++ IDE.

2) In the left pane, navigate to the folder with the desired example.

3) Right-click on omnetpp.ini, Run as#OMNeT++ simulation

4) Control the simulation via the Tkenv GUI, described in detail in the OMNeT++ User Guide

[omnetpp-userguide].

• Note: For running the simulation via the console interface, change the User interface option

in Run#Run configurations#<chosen example>.

Deliverable-2.6: RINA simulator

138

8.1.2. From the Command Line

0) Prepare the console environment:

• on Windows: Execute the mingwenv.cmd batch file inside the OMNeT++ folder.

• On UN*X platforms: Open a console, navigate to the OMNeT++ folder and run . ./

setenv .

1) Enter the root directory of RINASim.

2) Pick a folder with the desired example and run a simulation by one of the following ways:

• For CLI: ./simulate example_folder [-c configuration] [-x

additional opp_run options]

Note: if the -c argument is omitted, the simulation will default to configuration [General].

• For GUI: ./simulate example_folder -G [-c configuration] [-x

additional opp_run options]

8.2. Used Template

Each example except the first one has a fixed structure that contains the following items:

1. Brief motivation what could be observed in scenario

2. Picture of the scenario

3. Description of the events that may of interest for user

4. Initial simulation settings in omnetpp.ini file

5. Static XML configuration used to initialize RINA environment in config.xml file

8.3. Demo Network

Source files of this scenario are located in /examples/Demos/UseCase5.

8.3.1. Motivation

This subchapter presents one of the many demonstration RINA simulations available in

RINASim. The goals are: a) to give a reader overview of RINASim capabilities; and b)

to familiarize the reader with RINA concepts on simple computer network example. The

Deliverable-2.6: RINA simulator

139

motivation behind this particular simulation is to show ping-like application communication

within the simple network consisting of all different node types.

8.3.2. Network Graph

Topology contains two host nodes (called HostA and HostB), two border routers

(called BorderRouterA and BorderRouterB) and one interior router (called InteriorRouter)

interconnected together as depicted in Figure below. Links between nodes are configured with

one millisecond fixed transmission delay, which means that sending a packet from HostA to

HostB takes four milliseconds.

There are totally six DIFs of three different ranks. Please notice addressing scheme where the

same node may use the same address on different DIF as long as they are unambiguous within

the layer’s scope. RINA address length and syntax is policy-dependent. The demonstration uses

flat address space with simple string addresses.

• Top most TopLayer DIF common to HostA (with address hA), BorderRouterA (address rA

and self-enrolled), BorderRouterB (address rB) and HostB (hB);

• Three middle DIFs MediumLayerA, MediumLayerAB and MediumLayerB. MediumLayerA

is common to HostA (ha) and BorderRouterA (address ra and self-enrolled).

MediumLayerAB is common to BorderRouterA (rA), InteriorRouter (address rC and self-

enrolled) and BorderRouterB (rB). MediumLayerB is common to BorderRouterB (address

rb and self-enrolled) and HostB (hb).

• Two bottom most DIFs BottomLayerA and BottomLayerB. BottomLayerA is common to

BorderRouterA (ra) and InteriorRouter (address rc and self-enrolled). BottomLayerB is

common to InteriorRouter (address rc and self-enrolled) and BorderRouterB (rb).

Figure 57. Demo network graph

Deliverable-2.6: RINA simulator

140

8.3.3. Description

Multiple noticeable events happen during demonstration:

1. If another IPCP wants to communicate within a given DIF, then, it needs to be enrolled by

a DIF member. Self-enrolled IPCPs are members of certain DIFs from the beginning of the

simulation, and they help other IPCPs to join a DIF. In order to allow IPC between any node,

the simulation is scheduled to commence enrollment of: BorderRouterA into BottomLayerA

at t=1s ; BorderRouterA into MediumLayerAB` at t=1.5s ; BorderRouterB into

TopLayer at t=2s ; and HostB into TopLayer at t=5s . The enrollment usually involves

recursive calls of enrollment procedures in lower rank DIFs.

2. The IPC comprises of flow allocation, data transfer, and optional flow deallocation. HostA

and HostB are configured for IPC using ping-like application (measuring one-way and

round-trip delays). In this case, flow allocation is initiated at t=10s , first ping is sent at

t=15s and flow deallocation occurs at t=20s .

By default, every RA contains implicit QoSCube (with QoS-id “MGMT-QoSCube”) that

defines QoS parameters (e.g., reliability, minimum bandwidth) for management traffic and

guarantees successful mapping of management SDUs onto appropriate (N)-flow. Apart from

this default QoS-cube, each RA loads QoS-cube set according to the simulation configuration.

For demonstration, there are two more QoS-cubes available for each RA called “QoSCube-

RELIABLE” and “QoSCube-UNRELIABLE” (same QoS parameters differing only in data

transfer reliability). Please see figure below for visualization of loaded QoS-cube.

DA implementation currently allows only static change of its settings (namely different kinds of

mappings). Hence, necessary configuration step is to initialize DA properly in order to provide

services to FA, RA and other components depending on naming information. Namely two DA’s

tables are important for overall functionality – Directory (helps to search target IPCP for

a given APN) and NeighborTable (used by FA to find a neighbor IPCP for a given IPCP).

Figure below shows shared directory information by all DA instances within the demonstration.

Deliverable-2.6: RINA simulator

141

Figure 58. Visualization RA’s available QoS-cubes

Deliverable-2.6: RINA simulator

142

Figure 59. Visualization of Directory mappings

Simulation description is divided into two subsections. All events connected with enrollment

procedures are described in “Enrollment Phase” subsection and events related to data transfer

between HostA and HostB are in “Data Transfer Phase” subsection. The most important parts

are descriptions of the trivial enrollment use-case (steps marked with #), trivial flow allocation

use-case (steps marked with #), trivial recursion call (steps marked with #*). They outline

steps, which repeat upon similar use-cases employing recursive calls.

8.3.3.1. Enrollment Phase

Whole enrollment phase is divided into four events. The first event is enrollment of

BorderRouterA into BottomLayerA at t=1s with the help of InteriorRouter as enroller:

#1) ipcProcess2’s Enrollment module of BorderRouterA is scheduled to join the DIF

BottomLayerA just a second after the simulation started. Enrollment asks FA to provide

management (N-1)-flow (with destination address rc of InteriorRouter) to carry CACEP

messages. Because bottomIpc is 0-level DIF (i.e., it is directly connected to the medium), then

Deliverable-2.6: RINA simulator

143

RA returns automatically successful binding of the (N-1)-flow – recursion cannot continue

below 0-level DIFs;

#2) ipcProcess0’s Enrollment sends M_CONNECT (with ra as source and rc as the destination

address) via RIBd to InteriorRouter. ipcProcess0’s Enrollment module leverages IPCP with

address rc within BottomLayerA (which is bottomIpc of InteriorRouter) when joining this

DIF. Because management (N-1)-flow is inherently present, management messages can be sent

immediately. M_CONNECT opens application connection for management messages between

BorderRouterA’s bottomIpc and InteriorRouter’s ipcProcess0;

#3) bottomIpc’s Enrollment replies with positive M_CONNECT_R. With this message (sent

from rc to ra), bottomIpc of InteriorRouter accepts application connection;

#4) ipcProcess0’s Enrollment begins enrollment procedure by sending M_START.

#5) InteriorRouter responds with M_START_R. Both of these messages contains

EnrollmentObj as abstract data structure holding important parameters such as current address,

address expiration time and APN. EnrollmentObj allows to assign dynamically address to

newcoming DIF member. Nevertheless, this scenario works only with statically preconfigured

addresses;

#6) Optionally, either InteriorRouter may send some M_CREATE messages to populate

BorderRouterA RIB with information about neighboring IPCPs and their addresses.

Alternatively, BorderRouterA may ask for this information using M_READ messages.

Alternatively, alternatively, both can exchange some authentication objects proving the identity

of communicating parties.

#7) However, let us consider the simplest case, where bottomIpc’s Enrollment sends M_STOP

immediately after M_START_R. InteriorRouter ends enrollment procedure because it has all

the necessary information from a joining member;

#8) ipcProcess0’s Enrollment replies with M_STOP_R. BorderRouterA finalizes enrollment

by sending this message as Acknowledgement. The previous description outlines the most

straightforward enrollment procedure that happens between joining member and enroller.

The contents of EnrollmentStateTable (as abstract data structures holding information for

IPCP’s DIF membership) illustrating above-mentioned event is available in Addendum 8.5.3.

Subsequent descriptions mention only notable changes because enrollment steps #1-#8 (CACEP

message exchange) are present in all of them.

The second event is joining of BorderRouterA into MediumLayerAB at t=1.5s once again

with the help of InteriorRouter as enroller:

Deliverable-2.6: RINA simulator

144

#1) BorderRouterA’s ipcProcess2 is scheduled with enrollment procedure to join

MediumLayerAB leveraging InteriorRouter. Both IPCPs needs communication channel

through which they may exchange management messages. Hence, BorderRouterA’s FA of

ipcProcess2 receives request for management flow (from Enrollment module) and asks RA

to allocate appropriate (N-1)-flow (with source ra and destination rc) for communication with

InteriorRouter’s IPCP with address rC;

#2) ipcProcess2’s RA bothers bottomIpc’s FA with allocation request because destination

name resolution returned bottomIpc IPCP as being in the same DIF as IPCP with address rc.

bottomIpc’s FA creates EFCPI to handle this data transfer (from perspective of bottomIpc this

communication is just another data flow);

#3) bottomIpc’s FA sends M_CREATE containing Flow object inside via RIBd (because

bottomIpc is already enrolled to the DIF BottomLayerA). Flow object describes all properties

including source’s and destination’s addresses, port-ids, CEP-ids, QoS demands and chosen

QoSCube (in case of management messages it is always predefined QoSCube with id “MGMT-

QoSCube”);

#4) M_CREATE is delivered to ipcProcess0’s RIBd and FA, where it initiates the procedure

for processing of create request flow. On InteriorRouter, ipcProcess0 IPCP represents (N-1)-

DIF for flow and relayIpc IPCP represents (N)-DIF for connection. Hence, ipcProcess0’s FA

notifies relayIpc about possible flow allocation. relayIpc’s RIBd delegates this call to RA and

Resource Allocator decides whether it has enough resources to accept or not the new flow.

#5) ipcProcess0’s FA replies with positive M_CREATE_R. relayIpc’s RA responded positively

to allocation call. Therefore, ipcProcess0’s FA instantiates opposite EFCPI, which involves the

assignment of local port-id/CEP-id and bindings of gates. Following this, ipcProcess0’s FA asks

ipcProcess0’s RIBd to generate and dispatch M_CREATE_R with updated Flow object stating

successful flow allocation;

#6) bottomIpc’s FA receives M_CREATE_R and notifies ipcProcess2’s RA about it. FA

updates local Flow object. Flow is effectively in place as a channel for communication between

BorderRouterA’s ipcProcess2 and InteriorRouter’s relayIpc. Hence, RA is alerted about (N-1)-

flow being ready and handles control back to Enrollment module;

#7) Subsequently, steps #1-#8 repeats, where IPCP with address rA (BorderRouterA) is enrolled

into MediumLayerAB by IPCP with address rC (InteriorRouter).

Create request/response flow calls are always accompanied by aforementioned steps #3-#7

and exchange of M_CREATE and M_CREATE_R messages. State information for each

flow are stored in flowAllocator’s submodule called nFlowTable. Illustration of relevant

BottomLayerA’s state tables is depicted in Figure below.

Deliverable-2.6: RINA simulator

145

Figure 60. Content of BottomLayerA’s NFlowTables of BorderRouterA and InteriorRouter

The third event is an enrollment of BorderRouterB into TopLayer at t=2s . Enrollment

is scheduled on the top ranked IPCP (which is relayIpc) using BorderRouterA as enroller.

Nevertheless, neither BorderRouterB’s ipcProcess2, nor BorderRouterB’s bottomIpc is enrolled

to its DIF. Hence, MediumLayerAB enrollment must occur before TopLayer enrollment, and

BottomLayerB enrollment must precede MediumLayerAB enrollment:

#1) relayIpc’s Enrollment asks FA for management (N-1)-flow in order to send CACEP

messages from rB to rA within TopLayer. Because it does not exist, RA delegates flow allocation

to ipcProcess2;

Deliverable-2.6: RINA simulator

146

#2) ipcProcess2’s FA receives a call. FA checks whether there is management (N-1)-

flow for create request flow messages between rB (BorderRouterB’s ipcProcess2) and rA

(BorderRouterA’s ipcProcess2) within MediumLayerAB. There is none flow and more over

BorderRouterB’s ipcProcess2 is not even enrolled into MediumLayerAB. Hence, ipcProcess2’s

FA notifies RA that it need underlying management (N-1)-flow (from perspective of relayIpc

it is (N-2)-flow) for enrollment procedure;

#3) bottomIpc’s FA receives a call. Because bottomIpc is in 0-level DIF, then RA returns

automatically successful binding of the management (N-1)-flow. Enrollment procedure occurs

between BorderRouterB’s bottomIpc and InteriorRouter’s ipcProcess1, which both are in

BottomLayerB DIF. Basically, IPCP with address rb successfully enrolls into BottomLayerB

using IPCP with address rc going through steps #1-#8;

#4) bottomIpc’s FA is notified about successful enrollment into BottomLayerB and continues

with flow allocation initiated during step #3. Hence, BorderRouterB’s bottomIpc and

InteriorRouter’s ipcProcess1 RIBds and FAs exchange messages as in steps #3-#7. Eventually,

management flow between rb and rc for MediumLayerAB communication is ready, and

BorderRouterB’s ipcProcess2 is alerted about this;

#5) ipcProcess2’s RA is notified about successful management flow allocation. Hence,

enrollment procedure initiated in step #2 may continue. IPCP with address rB (ipcProcess2

of BorderRouterB) successfully enrolls into MediumLayerAB using IPCP with address rC

(relayIpc of InteriorRouter) going through steps #1-#8;

#6) ipcProcess2’s FA is notified about successful enrollment into MediumLayerAB and

continues with flow allocation initiated during step #2. Hence, BorderRouterB’s ipcProcess2

and BorderRouterA’s ipcProcess2 exchange create request/response flow as in steps #3-

#7. Notable difference comparing to flow allocation in step #4 is that messages pass

through InteriorRouter (namely its relayIpc) as an interim device. Management flow between

InteriorRouter’s relayIpc and BorderRouterA’s ipcProcess2 is already present as the result of

the second event of “Enrollment Phase”. Eventually, management flow between rC and rA for

TopLayer communication is in place, and BorderRouterB’s relayIpc is informed;

#7) relayIpc’s RA is notified about successful management flow allocation. Hence, enrollment

procedure initiated in step #1 may continue. All underlying connections are ready, and data

path for management messages exists between BorderRouterB and BorderRouterA on relevant

DIFs. IPCP with address rB (relayIpc of BorderRouterB) successfully enrolls into TopLayer

using IPCP with address rA (relayIpc of BorderRouterA) going through steps #1-#8.

The fourth and the last event is an enrollment of HostB into TopLayer at t=5s . Enrollment

is scheduled on the top ranked IPCP (which is ipcProcess1) using BorderRouterB as enroller.

Deliverable-2.6: RINA simulator

147

Nevertheless, BorderRouterB’s ipcProcess0 is also not enrolled into its DIF (MediumLayerB).

Hence, MediumLayerB enrollment must occur before TopLayer enrollment. Situation is similar

due to the recursions as in previous use-cases. Hence, we will omit unnecessary details when

describing this event:

#1) HostB’s ipcProcess1 checks existence of management (N-1) flow between HostB’s

ipcProcess0 and BorderRouterB’s ipcProcess1. There is none flow. Thus one must be allocated

before enrollment procedure on TopLayer;

#2) Flow allocation call descend to HostB’s ipcProcess0. Over there is also as the first thing

checked whether management (N-1) flow exists. Because ipcProcess0 is in 0-level DIF, binding

of (N-1)-flow is automatically successful;

#3) HostB’s ipcProcess0 (with address hb) enrolls into MediumLayerB DIF using

BorderRouterB’s ipcProcess1 (with address rb) as enroller going through steps #1-#8;

#4) After HostB is successfully enrolled into MediumLayerB, management flow allocation from

step #2 continues. The flow between HostB’s ipcProcess0 and BorderRouterB’s ipcProcess1

is created employing steps #3-#7. This flow is going to carry as data CACEP signalization

messages between HostB’s ipcProcess1 and BorderRouterB’s relayIpc;

#5) HostB’s ipcProcess1 is notified about management (N-1) flow presence and enrollment

procedure initiated in #1 continues. HostB’s ipcProcess0 (with address hB) is enrolled into

TopLayer DIF leveraging BorderRouterB’s relayIpc (with address rB).

The final state after “Enrollment Phase” is that all nodes IPCPs are enrolled (or self-enrolled)

into their DIFs except HostA’s IPCPs. All flows created during “Enrollment Phase” carries

only CACEP messages (for connection establishment) and they are intended for direct RIBd-

to-RIBd communication employing various management messages, thus, these flows are called

management flows.

8.3.3.2. Data Transfer Phase

The main outcome of this scenario is a simulation of data transfer events between HostA and

HostB employing ping-like application (AEMyPing). This application sends probe request

(M_READ) from HostA to HostB, where HostB replies with the response (M_READ_R). One-

way and round-trip time delays are measured employing this simple application.

“Data Transfer Phase” is divided into three notable events – flow allocation, data transfer,

and flow deallocation. We will describe them in similar fashion as the previous phase. Data

flow allocation starts at t=10s . HostA’s applicationProcess1 (with APN SourceA, API-

id 0, AEN MyPing, AE-id 0 as ANI parameters) requests flow for communication with

Deliverable-2.6: RINA simulator

148

HostB’s applicationProcess1 (with APN DestinationB, API-id 0, AEN MyPing, AE-id 0 as ANI

parameters). Event goes through following set of steps:

#1) Allocate request is delivered to IRM. Over there, DA is asked to resolve destination ANI

onto IPC address within certain DIF available to HostA. The following result is returned yielding

that DestinationB is reachable via IPCP hB in TopLayer DIF;

#2) HostA can access TopLayer leveraging ipcProcess1. Hence, IRM delegates allocate request

call to ipcProcess1’s FA. As usually, FA instantiates EFCPI and verifies whether IPCP is

enrolled into DIF before any attempt for sending create request flow (analogous to steps #1-

#2). The situation is now similar to enrollment procedure of HostB because neither ipcProcess1

nor ipcProcess0 are enrolled into their DIFs. Therefore, HostA repeats same steps #1-5, which

involve following actions performed due to the recursive calls in this order of finalization:

a) enrollment of HostA’s ipcProcess0 into MediumLayerA by BorderRouterA; b) creation of

management flow between IPCP ha and IPCP ra within MediumLayerA; c) enrollment of

HostA’s ipcProcess1 into TopLayer by BorderRouterA;

#3) After successful enrollment of ipcProcess1, FA may continue with flow allocation. FA

exchanges create request/respond flow with HostB (analogously to #3-#7). This includes the

creation of (N-1)-flow between ha and ra in MediumLayerA and creation of (N)-flow between

hA and hB in TopLayer. However, it gets more complex in TopLayer DIF because M_CREATE

and M_CREATE_R messages must be relayed by border routers to reach HostB, which

causes additional recursive flow allocations between interim devices (i.e., BorderRouterA,

InteriorRouter, BorderRouterB). All interim devices are already enrolled into their DIFs, thus

established flows serve as carriers for HostA and HostB data transfer. The next steps briefly

describe this multi-action step;

#4) M_CREATE from HostA to HostB is received by BorderRouterA’s relayIpc.

BorderRouterA inspects create request flow and determines BorderRouterB with the help of

DA as the next-hop. Because border routers are not directly connected, they can communicate

via InteriorRouter as a proxy. Therefore, BorderRouterA establishes flow between ra and rc of

BottomLayerA and sends create request flow in MediumLayerAB.

#5) M_CREATE from BorderRouterA to BorderRouterB is received by InteriorRouter’s

relayIpc. The message needs to be relayed to BorderRouterB. Hence, flow is created between

rc and rb in BottomLayerB. Then, create request flow is forwarded within this DIF;

#6) M_CREATE from BorderRouterA to BorderRouterB within MediumLayerAB is received

by BorderRouterB’s ipcProcess2. BorderRouterB accepts flow and sends create respond flow

that travels back to BorderRouterA. Because flow connecting both border routers (rA and rB

within MediumLayerAB) is established, flow allocation from #4 may continue;

Deliverable-2.6: RINA simulator

149

#7) M_CREATE from HostA to HostB is received by BorderRouterB’s relayIpc after passing

through flows created during #5 and #6. BorderRouterB inspects create request flow and

determines that HostB is reachable via its MediumLayerB. In order to successfully relay

M_CREATE to its final destination, BorderRouterB allocates flow between rb and hb in

MediumLayerB. Subsequently, M_CREATE is forwarded to HostB;

#8) M_CREATE is received by HostB’s ipcProcess1. FA notifies applicationProcess1 about

ongoing flow allocation. applicationProcess1 accepts flow for data transfer between APs. The

decision is returned to ipcProcess1’s FA. IRM is asked to create bindings between AP and IPCP.

FA instantiates EFCPI, updates Flow object and replies back to requestor with M_CREATE_R;

#9) M_CREATE_R is relayed via all flows formed during #4-#7 to HostA until ipcProcess1’s

FA receives this message. FA updates Flow object and notifies applicationProcess1 about

successful flow allocation. Then IRM adds missing bindings and whole data path between HostA

and HostB is ready. (N)-flow in TopLayer can carry data traffic between AEs with the help of

all underlying flows.

The next event is a transfer of data traffic between AEs. HostA sends five ping-like probes

employing own object inside M_READ message starting at t=15s . Upon reception of these

messages, HostB replies with probe response, which is dedicated M_READ_R message. Data

path and relevant flows are depicted in with different colors to get oriented in the following the

description. Event consists of five repetitions of two steps:

#1) HostA’s applicationProcess1 sends a M_READ message, which is passed through IRM

into ipcProcess1 to flow prepared during the previous event and descends to ipcProcess0.

The message travels through the medium and flow connecting HostA with BorderRouterA

within MediumLayerA, where it is received by ipcProcess1. It is relayed by BorderRouterA’s

relayIpc to ipcProcess2 and flow interconnecting BorderRouterA and BorderRouterB in

MediumLayerAB. Because border routers are not directly connected, the message is passed to a

lower bottomIpc into flow interconnecting BorderRouterA with the neighboring InteriorRouter

in BottomLayerA. Message traverses through the medium and it reaches InteriorRouter’s

ipcProcess0. Over there, message ascends to relayIpc, where is relayed within MediumLayerAB.

Then it descends to ipcProcess1 into flow interconnecting InteriorRouter and BorderRouterB

in BottomLayerB. The message travels through medium to BorderRouterB’s bottomIpc. It

ascends to ipcProcess2 and is relayed by relayIpc to ipcProcess1. Finally, the message reaches

HostB’s ipcProcess0 through medium inside flow within MediumLayerB. It ascends to flow

in ipcProcess1 (member of TopLayerB) and through IRM to HostB’s applicationProcess1 as

recipient;

#2) HostB’s applicationProcess1 responds with M_READ_R message that returns to HostA

traveling in opposite direction through the same data (marked with violet line) path as in #1.

Deliverable-2.6: RINA simulator

150

Depending on direction message is either encapsulated (from HostA to HostB green circles) or

decapsulated (from HostA to HostB orange circles) into/from PDU or relayed (brown circles).

Figure 61. Data transfer phase illustration

After APs exchanged pings, HostA’s AE closes the connection and sends deallocate submit

to HostB at t=20s . Deallocation affects only flow present in TopLayer. Current RINASim

implementation leaves underlying (N-1/2)-flows (i.e., those not directly connected with APs)

intact because they may be reused later by other applications. This event is accompanied by

following steps:

#1) HostA’s applicationProcess1 tells IRM to deliver deallocate submit. IRM disconnects from

its side port binding. Then, IRM delegates flow deallocation to ipcProcess1’s FA;

#2) This FA generates a M_DELETE message with updated Flow object state inside and sends

it towards HostB through flow in TopLayer. Message follows data path leveraging existing

management flows created during enrollment phase;

#3) HostB’s ipcProcess1 receives M_DELETE. FA updates its version of Flow object. FA

delivers deallocation submit to HostB’s applicationProcess1, which tells IRM to remove

bindings.

Deliverable-2.6: RINA simulator

151

#4) ipcProcess1’s FA on HostB then replies with M_DELETE_R acknowledging successful

flow deallocation. This message is carried back to HostA;

#5) HostA’s ipcProcess1 receives M_DELETE_R. FA marks flow as deallocated and

disconnects remaining bindings between IPCP and IRM. The result of flow (de)allocation and

flow’s state is maintained in ipcProcess1’s NFlowTable of HostA and HostB. We can inspect

flow parameters in these tables as illustrated in figure below. We can see that two EFCPIs

handled endpoints of data transfer – EFCPI with CEP-id 18 430 in HostA’s ipcProcess1 and

EFCPI with CEP-id 60 067 in HostB’s ipcProcess1. Bindings between AP and IPCP are ports

identified with port-id 7 877 for HostA and port-id 57 495 for HostB. The only QoS demand by

AEMyPing is the reliability of data transfer (expressed with QoS attribute “force order” set to

true). Therefore, RA assigned QoSCube named “QoSCube-RELIABLE” to flows requested by

this AE. Flow object between HostA and HostB in TopLayer was created at t=10s/10.026s

and was deleted at t=20.008s/20.004s.

Figure 62. Content of TopLayer ipcProcess1 NFlowTables for HostA and HostB

8.3.4. omnetpp.ini

[General]

network = UseCase5

check-signals = true

sim-time-limit = 5min

debug-on-errors = true

#Application setup

**.HostA.applicationProcess1.apName = "SourceA"

**.HostB.applicationProcess1.apName = "DestinationB"

**.iae.aeName = "MyPing"

**.applicationEntity.aeType = "AEMyPing"

Deliverable-2.6: RINA simulator

152

#DIF Naming

**.Host*.ipcProcess1.difName = "TopLayer"

**.BorderRouter*.relayIpc.difName = "TopLayer"

**.HostA.ipcProcess0.difName = "MediumLayerA"

**.BorderRouterA.ipcProcess1.difName = "MediumLayerA"

**.HostB.ipcProcess0.difName = "MediumLayerB"

**.BorderRouterB.ipcProcess1.difName = "MediumLayerB"

**.BorderRouterA.ipcProcess2.difName = "MediumLayerAB"

**.InteriorRouter.relayIpc.difName = "MediumLayerAB"

**.BorderRouterB.ipcProcess2.difName = "MediumLayerAB"

**.BorderRouterA.bottomIpc.difName = "BottomLayerA"

**.InteriorRouter.ipcProcess0.difName= "BottomLayerA"

**.BorderRouterB.bottomIpc.difName = "BottomLayerB"

**.InteriorRouter.ipcProcess1.difName= "BottomLayerB"

#Static IPC Addressing

**.HostA.ipcProcess1.ipcAddress = "hA"

**.HostB.ipcProcess1.ipcAddress = "hB"

**.BorderRouterA.relayIpc.ipcAddress = "rA"

**.BorderRouterB.relayIpc.ipcAddress = "rB"

**.HostA.ipcProcess0.ipcAddress = "ha"

**.BorderRouterA.ipcProcess1.ipcAddress = "ra"

**.HostB.ipcProcess0.ipcAddress = "hb"

**.BorderRouterB.ipcProcess1.ipcAddress = "rb"

**.BorderRouterA.ipcProcess2.ipcAddress = "rA"

**.InteriorRouter.relayIpc.ipcAddress = "rC"

**.BorderRouterB.ipcProcess2.ipcAddress = "rB"

**.BorderRouterA.bottomIpc.ipcAddress = "ra"

**.InteriorRouter.ipcProcess0.ipcAddress= "rc"

**.BorderRouterB.bottomIpc.ipcAddress = "rb"

**.InteriorRouter.ipcProcess1.ipcAddress= "rc"

#DIF Allocator settings

**.HostA.difAllocator.configData = xmldoc("config.xml", "Configuration/

Host[@id='HostA']/DA")

**.HostB.difAllocator.configData = xmldoc("config.xml", "Configuration/

Host[@id='HostB']/DA")

**.BorderRouterA.difAllocator.configData = xmldoc("config.xml",

 "Configuration/Router[@id='BorderRouterA']/DA")

**.BorderRouterB.difAllocator.configData = xmldoc("config.xml",

 "Configuration/Router[@id='BorderRouterB']/DA")

**.InteriorRouter.difAllocator.configData = xmldoc("config.xml",

 "Configuration/Router[@id='InteriorRouter']/DA")

**.HostB.difAllocator.directory.configData = xmldoc("config.xml",

 "Configuration/Host[@id='HostA']/DA")

Deliverable-2.6: RINA simulator

153

**.BorderRouterA.difAllocator.directory.configData = xmldoc("config.xml",

 "Configuration/Host[@id='HostA']/DA")

**.BorderRouterB.difAllocator.directory.configData = xmldoc("config.xml",

 "Configuration/Host[@id='HostA']/DA")

**.InteriorRouter.difAllocator.directory.configData = xmldoc("config.xml",

 "Configuration/Host[@id='HostA']/DA")

#Enrollment settings

.InteriorRouter..enrollment.isSelfEnrolled = true

.BorderRouterA.relayIpc..enrollment.isSelfEnrolled = true

.BorderRouterA.ipcProcess1..enrollment.isSelfEnrolled = true

.BorderRouterB.ipcProcess1..enrollment.isSelfEnrolled = true

**.BorderRouterA.bottomIpc.enrollment.configData = xmldoc("config.xml",

 "Configuration/Router[@id='BorderRouterA']/Enrollment[@id='bottomIpc']")

**.BorderRouterA.ipcProcess2.enrollment.configData =

 xmldoc("config.xml", "Configuration/Router[@id='BorderRouterA']/

Enrollment[@id='ipcProcess2']")

**.BorderRouterB.relayIpc.enrollment.configData = xmldoc("config.xml",

 "Configuration/Router[@id='BorderRouterB']/Enrollment[@id='relayIpc']")

**.HostB.ipcProcess1.enrollment.configData = xmldoc("config.xml",

 "Configuration/Host[@id='HostB']/Enrollment")

#QoS Cube sets

**.ra.qoscubesData = xmldoc("config.xml", "Configuration/QoSCubesSet")

[Config Ping]

#PingApp setup

**.forceOrder = true

**.HostA.applicationProcess1.applicationEntity.iae.dstApName =

 "DestinationB"

**.HostA.applicationProcess1.applicationEntity.iae.dstAeName = "MyPing"

**.HostA.applicationProcess1.applicationEntity.iae.startAt = 10s

**.HostA.applicationProcess1.applicationEntity.iae.pingAt = 15s

**.HostA.applicationProcess1.applicationEntity.iae.rate = 5

**.HostA.applicationProcess1.applicationEntity.iae.stopAt = 20s

**.HostA.applicationProcess1.applicationEntity.iae.size = 1024B

8.3.5. config.xml

<?xml version="1.0"?>

<Configuration>

 <Host id="HostA">

 <DA>

 <Directory>

Deliverable-2.6: RINA simulator

154

 <APN apn="SourceA">

 <DIF difName="TopLayer" ipcAddress="hA" />

 </APN>

 <APN apn="DestinationB">

 <DIF difName="TopLayer" ipcAddress="hB" />

 </APN>

 <APN apn="hA_TopLayer">

 <DIF difName="MediumLayerA" ipcAddress="ha" />

 </APN>

 <APN apn="hB_TopLayer">

 <DIF difName="MediumLayerB" ipcAddress="hb" />

 </APN>

 <APN apn="rA_TopLayer">

 <DIF difName="MediumLayerA" ipcAddress="ra" />

 <DIF difName="MediumLayerAB" ipcAddress="rA" />

 </APN>

 <APN apn="rB_TopLayer">

 <DIF difName="MediumLayerB" ipcAddress="rb" />

 <DIF difName="MediumLayerAB" ipcAddress="rB" />

 </APN>

 <APN apn="rA_MediumLayerAB">

 <DIF difName="BottomLayerA" ipcAddress="ra" />

 </APN>

 <APN apn="rB_MediumLayerAB">

 <DIF difName="BottomLayerB" ipcAddress="rb" />

 </APN>

 <APN apn="rC_MediumLayerAB">

 <DIF difName="BottomLayerA" ipcAddress="rc" />

 <DIF difName="BottomLayerB" ipcAddress="rc" />

 </APN>

 </Directory>

 <NeighborTable>

 <APN apn="hA_TopLayer">

 <Neighbor apn="rA_TopLayer" />

 </APN>

 <APN apn="hB_TopLayer">

 <Neighbor apn="rA_TopLayer" />

 </APN>

 </NeighborTable>

 </DA>

 </Host>

 <Host id="HostB">

Deliverable-2.6: RINA simulator

155

 <DA>

 <NeighborTable>

 <APN apn="hA_TopLayer">

 <Neighbor apn="rB_TopLayer" />

 </APN>

 <APN apn="hB_TopLayer">

 <Neighbor apn="rB_TopLayer" />

 </APN>

 </NeighborTable>

 </DA>

 <Enrollment>

 <Preenrollment>

 <SimTime t="5">

 <Connect src="hB_TopLayer" dst="rB_TopLayer" />

 </SimTime>

 </Preenrollment>

 </Enrollment>

 </Host>

 <Router id="BorderRouterA">

 <DA>

 <NeighborTable>

 <APN apn="hB_TopLayer">

 <Neighbor apn="rB_TopLayer" />

 </APN>

 <APN apn="rB_MediumLayerAB">

 <Neighbor apn="rC_MediumLayerAB" />

 </APN>

 </NeighborTable>

 </DA>

 <Enrollment id='bottomIpc'>

 <Preenrollment>

 <SimTime t="1">

 <Connect src="ra_BottomLayerA" dst="rc_BottomLayerA" />

 </SimTime>

 </Preenrollment>

 </Enrollment>

 <Enrollment id='ipcProcess2'>

 <Preenrollment>

 <SimTime t="1.5">

 <Connect src="rA_MediumLayerAB" dst="rC_MediumLayerAB" />

 </SimTime>

 </Preenrollment>

 </Enrollment>

 </Router>

Deliverable-2.6: RINA simulator

156

 <Router id="BorderRouterB">

 <DA>

 <NeighborTable>

 <APN apn="hA_TopLayer">

 <Neighbor apn="rA_TopLayer" />

 </APN>

 <APN apn="rA_MediumLayerAB">

 <Neighbor apn="rC_MediumLayerAB" />

 </APN>

 </NeighborTable>

 </DA>

 <Enrollment id='relayIpc'>

 <Preenrollment>

 <SimTime t="2">

 <Connect src="rB_TopLayer" dst="rA_TopLayer" />

 </SimTime>

 </Preenrollment>

 </Enrollment>

 </Router>

 <Router id="InteriorRouter">

 <DA>

 <NeighborTable>

 <APN apn="hA_TopLayer">

 <Neighbor apn="rB_TopLayer" />

 </APN>

 </NeighborTable>

 </DA>

 </Router>

 <QoSCubesSet>

 <QoSCube id="QoSCube-UNRELIABLE">

 <AverageBandwidth>12000000</AverageBandwidth>

 <AverageSDUBandwidth>1000</AverageSDUBandwidth>

 <PeakBandwidthDuration>24000000</PeakBandwidthDuration>

 <PeakSDUBandwidthDuration>2000</PeakSDUBandwidthDuration>

 <BurstPeriod>10000000</BurstPeriod>

 <BurstDuration>1000000</BurstDuration>

 <UndetectedBitError>0.01</UndetectedBitError>

 <PDUDroppingProbability>0</PDUDroppingProbability>

 <MaxSDUSize>1500</MaxSDUSize>

 <PartialDelivery>0</PartialDelivery>

 <IncompleteDelivery>0</IncompleteDelivery>

 <ForceOrder>0</ForceOrder>

 <MaxAllowableGap>0</MaxAllowableGap>

Deliverable-2.6: RINA simulator

157

 <Delay>1000000</Delay>

 <Jitter>500000</Jitter>

 <CostTime>0</CostTime>

 <CostBits>0</CostBits>

 <ATime>0</ATime>

 </QoSCube>

 <QoSCube id="QoSCube-RELIABLE">

 <AverageBandwidth>12000000</AverageBandwidth>

 <AverageSDUBandwidth>1000</AverageSDUBandwidth>

 <PeakBandwidthDuration>24000000</PeakBandwidthDuration>

 <PeakSDUBandwidthDuration>2000</PeakSDUBandwidthDuration>

 <BurstPeriod>10000000</BurstPeriod>

 <BurstDuration>1000000</BurstDuration>

 <UndetectedBitError>0.01</UndetectedBitError>

 <PDUDroppingProbability>0</PDUDroppingProbability>

 <MaxSDUSize>1500</MaxSDUSize>

 <PartialDelivery>0</PartialDelivery>

 <IncompleteDelivery>0</IncompleteDelivery>

 <ForceOrder>1</ForceOrder>

 <MaxAllowableGap>0</MaxAllowableGap>

 <Delay>1000000</Delay>

 <Jitter>500000</Jitter>

 <CostTime>0</CostTime>

 <CostBits>0</CostBits>

 <ATime>0</ATime>

 </QoSCube>

 </QoSCubesSet>

</Configuration>

8.4. Demonstration: Congestion

8.4.1. Motivation

The way RINA controls congestion is a generalization of how it is done in the Internet: if

there is only one DIF doing congestion control in the network, it operates in an end-to-end

fashion. If two or more congestion controlled DIFs are concatenated, the end-to-end control

loop is broken into shorter loops. As another interesting capability, RINA allows DIFs to be

stacked, and upper DIFs can have their own congestion control policies. If there are several

flows from one sender to one receiver through several EFCP connections, packets of all of them

are mapped to only one EFCP connection in the DIFs below; this means that at the lower DIFs,

there is only one aggregated flow, and congestion control in these DIFs operates on aggregates.

In a real RINA network where DIFs are stacked above each other, an N-DIF would carry an

aggregate of flows from the (N+1)-DIF sitting above it. Edge router pairs would then only keep

Deliverable-2.6: RINA simulator

158

the congestion state of active flow aggregates between them. Here, RINA-ACC automatically

avoids the competition between multiple end-to-end flows that occurs in the Internet today.

The goal of this demonstration is to show how RINA’s Aggregate Congestion Control (ACC)

policies are used in a simple network topology. In particular, we show how flows can be

aggregated and controlled using one congestion controller to reduce the negative effect of

competing flows for a shared bandwidth on each other.

8.4.2. Description

To achieve the above goal, we simulated a scenario in which multiple flows were sharing the

same bottleneck link in the network. The example is named SmallNetwork3 in the example

folder of RINASim. The network topology and its RINA stack are shown in Figure 63 and

Figure 64, respectively. host1x sends a large file to host2x, respectively. The link between

Router1 and Router2 was the bottleneck link. There was one lower-layer DIF per each link,

and one upper-layer DIF on top of them. The RMTs used UpstreamNotifier, and the set of

TxControlPolicyTCPTahoe, RTTEstimatorPolicyTCP, and SenderAckPolicyTCPTahoe ACC

policies was used as the congestion controller in IPCPs.

Figure 63. Network topology

Deliverable-2.6: RINA simulator

159

Figure 64. The corresponding RINA stack

8.4.3. Major events

After running the sample in OMNeT++, the following events happen which are worth

mentioning. The time unit is second.

• At t = 2, all sender nodes, host1x, start transmission.

• At t = 3.88, the bottleneck link is fully utilized and the output buffer in Router1, the RMT

output queue of the lower DIF, builds up.

• At t = 3.97, the RMT output queue reaches its threshold, which in turn, sends a notification

in the EFCP module in the same IPCP to slow down. Upon getting the slow down signal,

the EFCP instance calls the slow down method in DTCP, which reduces the transmission

window.

• At t = 3.98, the closed window queue of DTP builds up.

• At t = 4.05, the RMT output queue of the upper DIF in Router1 is built up and exceeds

its threshold. This initiates another pushback signal to the sender EFCP instance of the last

packet on the queue. In this case, the EFCPI is in the top DIF of one of the sender nodes.

The signal is converted to a pushback packet and sent towards the sender node.

• At t = 4.08, the corresponding sender node gets the pushback signal through ECNSlowDown

policy and consequently, TxControlPolicyTCPTahoe reduces its send window. The above

series events happen for all the other senders during the simulation until it finishes.

• At t = 62, the simulation ends; all sender nodes stop transmission, and statistics is collected.

The results are in the Aggregation-0.vec, Aggregation-0.vci, and Aggregation-0.sca files.

By creating the Aggregation.anf file, results are observable.

The following diagrams are generated automatically by the Aggregation.anf file. The congestion

window size (in Bytes) of the senders and the EFCP instance in Router1 is shown in Figure 65.

The upper line in the diagram belongs to the window size of the EFCP instance in Router1.

Deliverable-2.6: RINA simulator

160

Figure 65. The congestion window size

The queue length of the RMT output queue in Router1 in the lower and upper DIF is illustrated

in Figure 66. The red curve belongs to the RMT queue in the upper DIF.

Figure 66. The RMT queue length

Deliverable-2.6: RINA simulator

161

Taking a look at the Scalars tab in the Aggregation.anf file, the AE-PING-BYTES-RCVD:last

values, in particular, reveals that the receivers got 1.2966376E7, 1.0637992E7, 1.3288512E7,

1.3411792E7, and 1.1893304E7 Bytes, respectively.

8.4.4. omnetpp.ini

[General]

sim-time-limit = 62s

seed-set = ${runnumber}

**.vector-recording = true

**.applicationEntity.aeType = "AEStream"

**.host11.applicationProcess1.apName = "App11"

**.host12.applicationProcess1.apName = "App12"

**.host13.applicationProcess1.apName = "App13"

**.host14.applicationProcess1.apName = "App14"

**.host15.applicationProcess1.apName = "App15"

**.host21.applicationProcess1.apName = "App21"

**.host22.applicationProcess1.apName = "App22"

**.host23.applicationProcess1.apName = "App23"

**.host24.applicationProcess1.apName = "App24"

**.host25.applicationProcess1.apName = "App25"

**.host11.applicationProcess1.applicationEntity.iae.aeName = "Stream11"

**.host12.applicationProcess1.applicationEntity.iae.aeName = "Stream12"

**.host13.applicationProcess1.applicationEntity.iae.aeName = "Stream13"

**.host14.applicationProcess1.applicationEntity.iae.aeName = "Stream14"

**.host15.applicationProcess1.applicationEntity.iae.aeName = "Stream15"

**.host21.applicationProcess1.applicationEntity.iae.aeName = "Stream21"

**.host22.applicationProcess1.applicationEntity.iae.aeName = "Stream22"

**.host23.applicationProcess1.applicationEntity.iae.aeName = "Stream23"

**.host24.applicationProcess1.applicationEntity.iae.aeName = "Stream24"

**.host25.applicationProcess1.applicationEntity.iae.aeName = "Stream25"

#Static addressing: lower IPC layer

**.host11.ipcProcess0.ipcAddress = "011"

**.host12.ipcProcess0.ipcAddress = "012"

**.host13.ipcProcess0.ipcAddress = "013"

**.host14.ipcProcess0.ipcAddress = "014"

**.host15.ipcProcess0.ipcAddress = "015"

Deliverable-2.6: RINA simulator

162

**.host21.ipcProcess0.ipcAddress = "021"

**.host22.ipcProcess0.ipcAddress = "022"

**.host23.ipcProcess0.ipcAddress = "023"

**.host24.ipcProcess0.ipcAddress = "024"

**.host25.ipcProcess0.ipcAddress = "025"

**.router1.ipcProcess[0].ipcAddress = "031"

**.router1.ipcProcess[1].ipcAddress = "032"

**.router1.ipcProcess[2].ipcAddress = "033"

**.router1.ipcProcess[3].ipcAddress = "034"

**.router1.ipcProcess[4].ipcAddress = "035"

**.router1.ipcProcess[5].ipcAddress = "036"

**.router2.ipcProcess[0].ipcAddress = "046"

**.router2.ipcProcess[1].ipcAddress = "041"

**.router2.ipcProcess[2].ipcAddress = "042"

**.router2.ipcProcess[3].ipcAddress = "043"

**.router2.ipcProcess[4].ipcAddress = "044"

**.router2.ipcProcess[5].ipcAddress = "045"

**.host11.ipcProcess0.difName = "Layer011"

**.router1.ipcProcess[0].difName = "Layer011"

**.host12.ipcProcess0.difName = "Layer012"

**.router1.ipcProcess[1].difName = "Layer012"

**.host13.ipcProcess0.difName = "Layer013"

**.router1.ipcProcess[2].difName = "Layer013"

**.host14.ipcProcess0.difName = "Layer014"

**.router1.ipcProcess[3].difName = "Layer014"

**.host15.ipcProcess0.difName = "Layer015"

**.router1.ipcProcess[4].difName = "Layer015"

**.router1.ipcProcess[5].difName = "Layer034"

**.router2.ipcProcess[0].difName = "Layer034"

**.host21.ipcProcess0.difName = "Layer021"

**.router2.ipcProcess[1].difName = "Layer021"

**.host22.ipcProcess0.difName = "Layer022"

**.router2.ipcProcess[2].difName = "Layer022"

**.host23.ipcProcess0.difName = "Layer023"

Deliverable-2.6: RINA simulator

163

**.router2.ipcProcess[3].difName = "Layer023"

**.host24.ipcProcess0.difName = "Layer024"

**.router2.ipcProcess[4].difName = "Layer024"

**.host25.ipcProcess0.difName = "Layer025"

**.router2.ipcProcess[5].difName = "Layer025"

#Static addressing: higher IPC layer

**.host11.ipcProcess1.ipcAddress = "111"

**.host12.ipcProcess1.ipcAddress = "112"

**.host13.ipcProcess1.ipcAddress = "113"

**.host14.ipcProcess1.ipcAddress = "114"

**.host15.ipcProcess1.ipcAddress = "115"

**.host21.ipcProcess1.ipcAddress = "121"

**.host22.ipcProcess1.ipcAddress = "122"

**.host23.ipcProcess1.ipcAddress = "123"

**.host24.ipcProcess1.ipcAddress = "124"

**.host25.ipcProcess1.ipcAddress = "125"

**.router1.relayIpc.ipcAddress = "131"

**.router2.relayIpc.ipcAddress = "141"

**.host*.ipcProcess1.difName = "Layer1"

**.router*.relayIpc.difName = "Layer1"

#DIF Allocator settings

**.host11.difAllocator.configData = xmldoc("config.xml", "Configuration/

Host[@id='host11']/DA")

**.host12.difAllocator.configData = xmldoc("config.xml", "Configuration/

Host[@id='host12']/DA")

**.host13.difAllocator.configData = xmldoc("config.xml", "Configuration/

Host[@id='host13']/DA")

**.host14.difAllocator.configData = xmldoc("config.xml", "Configuration/

Host[@id='host14']/DA")

**.host15.difAllocator.configData = xmldoc("config.xml", "Configuration/

Host[@id='host15']/DA")

**.host21.difAllocator.configData = xmldoc("config.xml", "Configuration/

Host[@id='host21']/DA")

**.host22.difAllocator.configData = xmldoc("config.xml", "Configuration/

Host[@id='host22']/DA")

**.host23.difAllocator.configData = xmldoc("config.xml", "Configuration/

Host[@id='host23']/DA")

Deliverable-2.6: RINA simulator

164

**.host24.difAllocator.configData = xmldoc("config.xml", "Configuration/

Host[@id='host24']/DA")

**.host25.difAllocator.configData = xmldoc("config.xml", "Configuration/

Host[@id='host25']/DA")

#

**.router1.difAllocator.configData = xmldoc("config.xml", "Configuration/

Router[@id='router1']/DA")

**.router2.difAllocator.configData = xmldoc("config.xml", "Configuration/

Router[@id='router2']/DA")

#

##Directory settings

**.host12.difAllocator.directory.configData = xmldoc("config.xml",

 "Configuration/Host[@id='host11']/DA")

**.host13.difAllocator.directory.configData = xmldoc("config.xml",

 "Configuration/Host[@id='host11']/DA")

**.host14.difAllocator.directory.configData = xmldoc("config.xml",

 "Configuration/Host[@id='host11']/DA")

**.host15.difAllocator.directory.configData = xmldoc("config.xml",

 "Configuration/Host[@id='host11']/DA")

**.host21.difAllocator.directory.configData = xmldoc("config.xml",

 "Configuration/Host[@id='host11']/DA")

**.host22.difAllocator.directory.configData = xmldoc("config.xml",

 "Configuration/Host[@id='host11']/DA")

**.host23.difAllocator.directory.configData = xmldoc("config.xml",

 "Configuration/Host[@id='host11']/DA")

**.host24.difAllocator.directory.configData = xmldoc("config.xml",

 "Configuration/Host[@id='host11']/DA")

**.host25.difAllocator.directory.configData = xmldoc("config.xml",

 "Configuration/Host[@id='host11']/DA")

#

**.router2.difAllocator.directory.configData = xmldoc("config.xml",

 "Configuration/Router[@id='router1']/DA")

#

**.ra.qoscubesData = xmldoc("config.xml", "Configuration/QoSCubesSet")

flows to allocate at the beginning

**.ra.preallocation = \

 xmldoc("config.xml", "Configuration/ConnectionSets/

ConnectionSet[@id='all']/")

[Config Aggregation]

network = SmallNetworkAgg

SmallNetworkAgg.ldelay = 37.5ms

Deliverable-2.6: RINA simulator

165

**.host11.applicationProcess1.applicationEntity.iae.dstApName = "App21"

**.host11.applicationProcess1.applicationEntity.iae.dstAeName = "Stream21"

**.host12.applicationProcess1.applicationEntity.iae.dstApName = "App22"

**.host12.applicationProcess1.applicationEntity.iae.dstAeName = "Stream22"

**.host13.applicationProcess1.applicationEntity.iae.dstApName = "App23"

**.host13.applicationProcess1.applicationEntity.iae.dstAeName = "Stream23"

**.host14.applicationProcess1.applicationEntity.iae.dstApName = "App24"

**.host14.applicationProcess1.applicationEntity.iae.dstAeName = "Stream24"

**.host15.applicationProcess1.applicationEntity.iae.dstApName = "App25"

**.host15.applicationProcess1.applicationEntity.iae.dstAeName = "Stream25"

**.host1*.applicationProcess1.applicationEntity.iae.startAt = 1s

**.host1*.applicationProcess1.applicationEntity.iae.beginStreamAt = 2s

**.host1*.applicationProcess1.applicationEntity.iae.endStreamAt = 162s

**.host1*.applicationProcess1.applicationEntity.iae.interval = 0.002s

**.host1*.applicationProcess1.applicationEntity.iae.stopAt = 162s

**.host1*.applicationProcess1.applicationEntity.iae.size = 536B

**.host1*.applicationProcess1.applicationEntity.iae.forceOrder = true

**.host1*.ipcProcess1.efcp.efcp.txControlPolicy =

 "DTCPTxControlPolicyTCPTahoe"

**.host1*.ipcProcess1.efcp.efcp.rttEstimatorPolicy =

 "DTPRTTEstimatorPolicyTCP"

**.host1*.ipcProcess1.efcp.efcp.senderAckPolicy = "DTCPSenderAckPolicyTCP"

**.host1*.ipcProcess1.efcp.efcp.maxClosedWinQueLen = 200

Upstream Notification

**.router1.relayIpc.relayAndMux.defaultMaxQLength = 175

**.router1.relayIpc.relayAndMux.defaultThreshQLength = 175

**.router1.relayIpc.relayAndMux.maxQPolicyName = "UpstreamNotifier"

**.router1.ipcProcess[5].relayAndMux.defaultMaxQLength = 175

**.router1.ipcProcess[5].relayAndMux.defaultThreshQLength = 175

**.router1.ipcProcess[5].relayAndMux.maxQPolicyName = "UpstreamNotifier"

**.router1.ipcProcess[5].efcp.efcp.txControlPolicy =

 "DTCPTxControlPolicyTCPTahoe"

**.router1.ipcProcess[5].efcp.efcp.rttEstimatorPolicy =

 "DTPRTTEstimatorPolicyTCP"

**.router1.ipcProcess[5].efcp.efcp.senderAckPolicy =

 "DTCPSenderAckPolicyTCP"

**.router1.ipcProcess[5].efcp.efcp.maxClosedWinQueLen = 25

End; Upstream Notification

**.host*.ipcProcess*.efcp.efcp.initialSenderCredit = 600

**.host*.ipcProcess*.efcp.efcp.maxClosedWinQueLen = 100000#50000

**.host*.ipcProcess*.efcp.efcp.rcvCredit = 600#122

Deliverable-2.6: RINA simulator

166

**.router*.ipcProcess*.efcp.efcp.initialSenderCredit = 600

**.router*.ipcProcess*.efcp.efcp.maxClosedWinQueLen = 50000

**.router*.ipcProcess*.efcp.efcp.rcvCredit = 600

**.defaultThreshQLength = 50000

**.defaultMaxQLength = 50000

8.4.5. config.xml

<?xml version="1.0"?>

<Configuration>

 <ConnectionSets>

 <ConnectionSet id="all">

 <SimTime t="0">

 <Connection src="111_Layer1" dst="131_Layer1" qosCube="1"/

>

 <Connection src="112_Layer1" dst="131_Layer1" qosCube="1"/

>

 <Connection src="113_Layer1" dst="131_Layer1" qosCube="1"/

>

 <Connection src="114_Layer1" dst="131_Layer1" qosCube="1"/

>

 <Connection src="115_Layer1" dst="131_Layer1" qosCube="1"/

>

 <Connection src="131_Layer1" dst="141_Layer1" qosCube="1"/

>

 <Connection src="141_Layer1" dst="121_Layer1" qosCube="1"/

>

 <Connection src="141_Layer1" dst="122_Layer1" qosCube="1"/

>

 <Connection src="141_Layer1" dst="123_Layer1" qosCube="1"/

>

 <Connection src="141_Layer1" dst="124_Layer1" qosCube="1"/

>

 <Connection src="141_Layer1" dst="125_Layer1" qosCube="1"/

>

 </SimTime>

 </ConnectionSet>

 </ConnectionSets>

 <Host id="host11">

 <DA>

Deliverable-2.6: RINA simulator

167

 <Directory>

 <APN apn="App11">

 <DIF difName="Layer1" ipcAddress="111" />

 </APN>

 <APN apn="App12">

 <DIF difName="Layer1" ipcAddress="112" />

 </APN>

 <APN apn="App13">

 <DIF difName="Layer1" ipcAddress="113" />

 </APN>

 <APN apn="App14">

 <DIF difName="Layer1" ipcAddress="114" />

 </APN>

 <APN apn="App15">

 <DIF difName="Layer1" ipcAddress="115" />

 </APN>

 <APN apn="App21">

 <DIF difName="Layer1" ipcAddress="121" />

 </APN>

 <APN apn="App22">

 <DIF difName="Layer1" ipcAddress="122" />

 </APN>

 <APN apn="App23">

 <DIF difName="Layer1" ipcAddress="123" />

 </APN>

 <APN apn="App24">

 <DIF difName="Layer1" ipcAddress="124" />

 </APN>

 <APN apn="App25">

 <DIF difName="Layer1" ipcAddress="125" />

 </APN>

 <APN apn="111_Layer1">

 <DIF difName="Layer011" ipcAddress="011" />

 </APN>

 <APN apn="112_Layer1">

 <DIF difName="Layer012" ipcAddress="012" />

 </APN>

 <APN apn="113_Layer1">

 <DIF difName="Layer013" ipcAddress="013" />

 </APN>

 <APN apn="114_Layer1">

 <DIF difName="Layer014" ipcAddress="014" />

 </APN>

 <APN apn="115_Layer1">

 <DIF difName="Layer015" ipcAddress="015" />

Deliverable-2.6: RINA simulator

168

 </APN>

 <APN apn="121_Layer1">

 <DIF difName="Layer021" ipcAddress="021" />

 </APN>

 <APN apn="122_Layer1">

 <DIF difName="Layer022" ipcAddress="022" />

 </APN>

 <APN apn="123_Layer1">

 <DIF difName="Layer023" ipcAddress="023" />

 </APN>

 <APN apn="124_Layer1">

 <DIF difName="Layer024" ipcAddress="024" />

 </APN>

 <APN apn="125_Layer1">

 <DIF difName="Layer025" ipcAddress="025" />

 </APN>

 <APN apn="131_Layer1">

 <DIF difName="Layer011" ipcAddress="031" />

 <DIF difName="Layer012" ipcAddress="032" />

 <DIF difName="Layer013" ipcAddress="033" />

 <DIF difName="Layer014" ipcAddress="034" />

 <DIF difName="Layer015" ipcAddress="035" />

 <DIF difName="Layer034" ipcAddress="036" />

 </APN>

 <APN apn="141_Layer1">

 <DIF difName="Layer021" ipcAddress="041" />

 <DIF difName="Layer022" ipcAddress="042" />

 <DIF difName="Layer023" ipcAddress="043" />

 <DIF difName="Layer024" ipcAddress="044" />

 <DIF difName="Layer025" ipcAddress="045" />

 <DIF difName="Layer034" ipcAddress="046" />

 </APN>

 </Directory>

 <NeighborTable>

 <APN apn="121_Layer1">

 <Neighbor apn="131_Layer1" />

 </APN>

 </NeighborTable>

 </DA>

 </Host>

 <Host id="host12">

 <DA>

 <NeighborTable>

 <APN apn="122_Layer1">

Deliverable-2.6: RINA simulator

169

 <Neighbor apn="131_Layer1" />

 </APN>

 </NeighborTable>

 </DA>

 </Host>

 <Host id="host13">

 <DA>

 <NeighborTable>

 <APN apn="123_Layer1">

 <Neighbor apn="131_Layer1" />

 </APN>

 </NeighborTable>

 </DA>

 </Host>

 <Host id="host14">

 <DA>

 <NeighborTable>

 <APN apn="124_Layer1">

 <Neighbor apn="131_Layer1" />

 </APN>

 </NeighborTable>

 </DA>

 </Host>

 <Host id="host15">

 <DA>

 <NeighborTable>

 <APN apn="125_Layer1">

 <Neighbor apn="131_Layer1" />

 </APN>

 </NeighborTable>

 </DA>

 </Host>

 <Host id="host21">

 <DA>

 <NeighborTable>

 <APN apn="111_Layer1">

 <Neighbor apn="141_Layer1" />

 </APN>

 </NeighborTable>

 </DA>

 </Host>

Deliverable-2.6: RINA simulator

170

 <Host id="host22">

 <DA>

 <NeighborTable>

 <APN apn="112_Layer1">

 <Neighbor apn="141_Layer1" />

 </APN>

 </NeighborTable>

 </DA>

 </Host>

 <Host id="host23">

 <DA>

 <NeighborTable>

 <APN apn="113_Layer1">

 <Neighbor apn="141_Layer1" />

 </APN>

 </NeighborTable>

 </DA>

 </Host>

 <Host id="host24">

 <DA>

 <NeighborTable>

 <APN apn="114_Layer1">

 <Neighbor apn="141_Layer1" />

 </APN>

 </NeighborTable>

 </DA>

 </Host>

 <Host id="host25">

 <DA>

 <NeighborTable>

 <APN apn="115_Layer1">

 <Neighbor apn="141_Layer1" />

 </APN>

 </NeighborTable>

 </DA>

 </Host>

 <Router id="router1">

 <DA>

 <Directory>

 <APN apn="App11">

 <DIF difName="Layer1" ipcAddress="111" />

 </APN>

Deliverable-2.6: RINA simulator

171

 <APN apn="App12">

 <DIF difName="Layer1" ipcAddress="112" />

 </APN>

 <APN apn="App13">

 <DIF difName="Layer1" ipcAddress="113" />

 </APN>

 <APN apn="App14">

 <DIF difName="Layer1" ipcAddress="114" />

 </APN>

 <APN apn="App15">

 <DIF difName="Layer1" ipcAddress="115" />

 </APN>

 <APN apn="App21">

 <DIF difName="Layer1" ipcAddress="121" />

 </APN>

 <APN apn="App22">

 <DIF difName="Layer1" ipcAddress="122" />

 </APN>

 <APN apn="App23">

 <DIF difName="Layer1" ipcAddress="123" />

 </APN>

 <APN apn="App24">

 <DIF difName="Layer1" ipcAddress="124" />

 </APN>

 <APN apn="App25">

 <DIF difName="Layer1" ipcAddress="125" />

 </APN>

 <APN apn="111_Layer1">

 <DIF difName="Layer011" ipcAddress="011" />

 </APN>

 <APN apn="112_Layer1">

 <DIF difName="Layer012" ipcAddress="012" />

 </APN>

 <APN apn="113_Layer1">

 <DIF difName="Layer013" ipcAddress="013" />

 </APN>

 <APN apn="114_Layer1">

 <DIF difName="Layer014" ipcAddress="014" />

 </APN>

 <APN apn="115_Layer1">

 <DIF difName="Layer015" ipcAddress="015" />

 </APN>

 <APN apn="121_Layer1">

 <DIF difName="Layer021" ipcAddress="021" />

 </APN>

Deliverable-2.6: RINA simulator

172

 <APN apn="122_Layer1">

 <DIF difName="Layer022" ipcAddress="022" />

 </APN>

 <APN apn="123_Layer1">

 <DIF difName="Layer023" ipcAddress="023" />

 </APN>

 <APN apn="124_Layer1">

 <DIF difName="Layer024" ipcAddress="024" />

 </APN>

 <APN apn="125_Layer1">

 <DIF difName="Layer025" ipcAddress="025" />

 </APN>

 <APN apn="131_Layer1">

 <DIF difName="Layer011" ipcAddress="031" />

 <DIF difName="Layer012" ipcAddress="032" />

 <DIF difName="Layer013" ipcAddress="033" />

 <DIF difName="Layer014" ipcAddress="034" />

 <DIF difName="Layer015" ipcAddress="035" />

 <DIF difName="Layer034" ipcAddress="036" />

 </APN>

 <APN apn="141_Layer1">

 <DIF difName="Layer021" ipcAddress="041" />

 <DIF difName="Layer022" ipcAddress="042" />

 <DIF difName="Layer023" ipcAddress="043" />

 <DIF difName="Layer024" ipcAddress="044" />

 <DIF difName="Layer025" ipcAddress="045" />

 <DIF difName="Layer034" ipcAddress="046" />

 </APN>

 </Directory>

 <NeighborTable>

 <APN apn="121_Layer1">

 <Neighbor apn="141_Layer1" />

 </APN>

 <APN apn="122_Layer1">

 <Neighbor apn="141_Layer1" />

 </APN>

 <APN apn="123_Layer1">

 <Neighbor apn="141_Layer1" />

 </APN>

 <APN apn="124_Layer1">

 <Neighbor apn="141_Layer1" />

 </APN>

 <APN apn="125_Layer1">

 <Neighbor apn="141_Layer1" />

 </APN>

Deliverable-2.6: RINA simulator

173

 </NeighborTable>

 </DA>

 </Router>

 <Router id="router2">

 <DA>

 <NeighborTable>

 <APN apn="111_Layer1">

 <Neighbor apn="131_Layer1" />

 </APN>

 <APN apn="112_Layer1">

 <Neighbor apn="131_Layer1" />

 </APN>

 <APN apn="113_Layer1">

 <Neighbor apn="131_Layer1" />

 </APN>

 <APN apn="114_Layer1">

 <Neighbor apn="131_Layer1" />

 </APN>

 <APN apn="115_Layer1">

 <Neighbor apn="131_Layer1" />

 </APN>

 </NeighborTable>

 </DA>

 </Router>

 <QoSCubesSet>

 <QosCube id="1">

 <AverageBandwidth>12000000</AverageBandwidth>

 <AverageSDUBandwidth>1000</AverageSDUBandwidth>

 <PeakBandwidthDuration>24000000</PeakBandwidthDuration>

 <PeakSDUBandwidthDuration>2000</PeakSDUBandwidthDuration>

 <BurstPeriod>10000000</BurstPeriod>

 <BurstDuration>1000000</BurstDuration>

 <UndetectedBitError>0.01</UndetectedBitError>

 <MaxSDUSize>1500</MaxSDUSize>

 <PartialDelivery>0</PartialDelivery>

 <IncompleteDelivery>0</IncompleteDelivery>

 <ForceOrder>1</ForceOrder>

 <MaxAllowableGap>0</MaxAllowableGap>

 <Delay>1000000</Delay>

 <Jitter>500000</Jitter>

 <CostTime>0</CostTime>

 <CostBits>0</CostBits>

 <ATime>0</ATime>

 </QosCube>

 </QoSCubesSet>

Deliverable-2.6: RINA simulator

174

</Configuration>

8.5. Demonstration: Routing

8.5.1. Motivation

The goal of this demonstration is to show how RINA’s Forwarding, PDUGE and Routing

policies are used in a simple network topology with distinct requirements.

8.5.2. Description

To achieve this goal, we simulated a scenario in which there were multiple paths between hosts

with distinct properties. The example is named LatEx in the example/Routing/LatEx folder of

RINASim. The network topology is shown in Figure 67. host1 communicates with host2. The

links between Routers2 and Router4 and Routers3 and Router4 have various length, forming the

path with different latencies, given by the shim DIFs QoS Cubes.

Deliverable-2.6: RINA simulator

175

Figure 67. Network topology

8.5.3. Configurations

The example is used to test multiple routing policies and has multiple configurations with

individual results.

• Hop*, HR Forwarding using the minimum length paths to a destination. Some use

memoryless ECMP if more than one path is found.

• Lat* Forwarding using the minimum latency paths to a destination. Some use memoryless

ECMP if more than one path is found.

Deliverable-2.6: RINA simulator

176

8.5.4. omnetpp.ini

[General]

network = LatEx

sim-time-limit = 5min

.host1..ipcAddress = "h1"

.host2..ipcAddress = "h2"

.router1..ipcAddress = "r1"

.router2..ipcAddress = "r2"

.router3..ipcAddress = "r3"

.router4..ipcAddress = "r4"

**.host*.ipcProcess1.difName = "NET"

**.router*.relayIpc.difName = "NET"

**.host1.ipcProcess0.difName = "shimHR1"

**.router1.ipcProcess[0].difName = "shimHR1"

**.host2.ipcProcess0.difName = "shimHR2"

**.router4.ipcProcess[0].difName = "shimHR2"

**.router1.ipcProcess[1].difName = "shim12"

**.router2.ipcProcess[0].difName = "shim12"

**.router1.ipcProcess[2].difName = "shim13"

**.router3.ipcProcess[0].difName = "shim13"

**.router4.ipcProcess[1].difName = "shim24"

**.router2.ipcProcess[1].difName = "shim24"

**.router4.ipcProcess[2].difName = "shim34"

**.router3.ipcProcess[1].difName = "shim34"

**.flowAllocator.newFlowReqPolicyType = "MinComparer"

**.ra.qoscubesData = xmldoc("QoS.xml", "Configuration/QoSCubesSet")

**.ra.qosReqData = xmldoc("QoS.xml", "Configuration/QoSReqSet")

**.ra.preallocation = xmldoc("connections.xml", "Configuration/

ConnectionSet")

Deliverable-2.6: RINA simulator

177

**.difAllocator.configData = xmldoc("config.xml", "Configuration/DA")

**.difAllocator.directory.configData = xmldoc("config.xml",

 "Configuration/DA")

.relayIpc..pduForwardingPolicy.printAtEnd = true

.ipcProcess1..pduForwardingPolicy.printAtEnd = true

**.relayIpc.routingPolicy.printAtEnd = true

**.ipcProcess1.routingPolicy.printAtEnd = true

.ipcProcess1..printAtEnd = true

**.printAtEnd = false

**.ipcProcess1.relayAndMux.ForwardingPolicyName = "MiniTable"

**.relayIpc.relayAndMux.ForwardingPolicyName = "MiniTable"

#

Appliction entities naming:

#

**.host1.applicationProcess1.apName = "Snd"

**.host2.applicationProcess1.apName = "Rcv"

**.applicationEntity.aeType = "AEPing"

**.iae.aeName = "Ping"

**.host1.applicationProcess1.applicationEntity.iae.dstApName = "Rcv"

**.host1.applicationProcess1.applicationEntity.iae.dstAeName = "Ping"

**.host1.applicationProcess1.applicationEntity.iae.startAt = 130s

**.host1.applicationProcess1.applicationEntity.iae.pingAt = 140s

**.host1.applicationProcess1.applicationEntity.iae.rate = 5

**.host1.applicationProcess1.applicationEntity.iae.stopAt = 0

[Config HopDV]

**.ipcProcess1.resourceAllocator.pdufgPolicyName = "SimpleGenerator"

**.relayIpc.resourceAllocator.pdufgPolicyName = "SimpleGenerator"

**.ipcProcess1.routingPolicyName = "SimpleDV"

**.relayIpc.routingPolicyName = "SimpleDV"

[Config HopLS]

**.ipcProcess1.resourceAllocator.pdufgPolicyName = "SimpleGenerator"

**.relayIpc.resourceAllocator.pdufgPolicyName = "SimpleGenerator"

Deliverable-2.6: RINA simulator

178

**.ipcProcess1.routingPolicyName = "SimpleLS"

**.relayIpc.routingPolicyName = "SimpleLS"

[Config LatDV]

**.ipcProcess1.routingPolicy.infMetric = 1000

**.relayIpc.routingPolicy.infMetric = 1000

**.ipcProcess1.resourceAllocator.pdufgPolicyName = "LatGenerator"

**.relayIpc.resourceAllocator.pdufgPolicyName = "LatGenerator"

**.ipcProcess1.routingPolicyName = "SimpleDV"

**.relayIpc.routingPolicyName = "SimpleDV"

[Config LatLS]

**.ipcProcess1.resourceAllocator.pdufgPolicyName = "LatGenerator"

**.relayIpc.resourceAllocator.pdufgPolicyName = "LatGenerator"

**.ipcProcess1.routingPolicyName = "SimpleLS"

**.relayIpc.routingPolicyName = "SimpleLS"

[Config HopsSingle1EntryLS]

**.ipcProcess1.resourceAllocator.pdufgPolicyName = "HopsSingle1Entry"

**.relayIpc.resourceAllocator.pdufgPolicyName = "HopsSingle1Entry"

**.ipcProcess1.routingPolicyName = "TSimpleLS"

**.relayIpc.routingPolicyName = "TSimpleLS"

[Config HopsSingleMEntriesLS]

**.ipcProcess1.resourceAllocator.pdufgPolicyName = "HopsSingleMEntries"

**.relayIpc.resourceAllocator.pdufgPolicyName = "HopsSingleMEntries"

**.ipcProcess1.routingPolicyName = "TSimpleLS"

**.relayIpc.routingPolicyName = "TSimpleLS"

**.ipcProcess1.relayAndMux.ForwardingPolicyName = "MultiMiniTable"

**.relayIpc.relayAndMux.ForwardingPolicyName = "MultiMiniTable"

Deliverable-2.6: RINA simulator

179

[Config LatencySingle1EntryLS]

**.ipcProcess1.resourceAllocator.pdufgPolicyName = "LatencySingle1Entry"

**.relayIpc.resourceAllocator.pdufgPolicyName = "LatencySingle1Entry"

**.ipcProcess1.routingPolicyName = "TSimpleLS"

**.relayIpc.routingPolicyName = "TSimpleLS"

[Config LatencySingleMEntriesLS]

**.ipcProcess1.resourceAllocator.pdufgPolicyName = "LatencySingleMEntries"

**.relayIpc.resourceAllocator.pdufgPolicyName = "LatencySingleMEntries"

**.ipcProcess1.routingPolicyName = "TSimpleLS"

**.relayIpc.routingPolicyName = "TSimpleLS"

**.ipcProcess1.relayAndMux.ForwardingPolicyName = "MultiMiniTable"

**.relayIpc.relayAndMux.ForwardingPolicyName = "MultiMiniTable"

[Config HopsSingle1EntryDV]

**.ipcProcess1.resourceAllocator.pdufgPolicyName = "HopsSingle1Entry"

**.relayIpc.resourceAllocator.pdufgPolicyName = "HopsSingle1Entry"

**.ipcProcess1.routingPolicyName = "TSimpleDV"

**.relayIpc.routingPolicyName = "TSimpleDV"

[Config HopsSingleMEntriesDV]

**.ipcProcess1.resourceAllocator.pdufgPolicyName = "HopsSingleMEntries"

**.relayIpc.resourceAllocator.pdufgPolicyName = "HopsSingleMEntries"

**.ipcProcess1.routingPolicyName = "TSimpleDV"

**.relayIpc.routingPolicyName = "TSimpleDV"

**.ipcProcess1.relayAndMux.ForwardingPolicyName = "MultiMiniTable"

**.relayIpc.relayAndMux.ForwardingPolicyName = "MultiMiniTable"

[Config LatencySingle1EntryDV]

Deliverable-2.6: RINA simulator

180

**.ipcProcess1.resourceAllocator.pdufgPolicyName = "LatencySingle1Entry"

**.relayIpc.resourceAllocator.pdufgPolicyName = "LatencySingle1Entry"

**.ipcProcess1.routingPolicyName = "TSimpleDV"

**.relayIpc.routingPolicyName = "TSimpleDV"

[Config LatencySingleMEntriesDV]

**.ipcProcess1.resourceAllocator.pdufgPolicyName = "LatencySingleMEntries"

**.relayIpc.resourceAllocator.pdufgPolicyName = "LatencySingleMEntries"

**.ipcProcess1.routingPolicyName = "TSimpleDV"

**.relayIpc.routingPolicyName = "TSimpleDV"

**.ipcProcess1.relayAndMux.ForwardingPolicyName = "MultiMiniTable"

**.relayIpc.relayAndMux.ForwardingPolicyName = "MultiMiniTable"

[Config HR]

**.relayIpc.resourceAllocator.pdufgPolicyName = "HierarchicalGenerator"

**.relayIpc.routingPolicyName = "TDomainRouting"

**.relayIpc.relayAndMux.ForwardingPolicyName = "0"

**.ipcProcess1.resourceAllocator.pdufgPolicyName = "HierarchicalGenerator"

**.ipcProcess1.routingPolicyName = "TDomainRouting"

**.ipcProcess1.relayAndMux.ForwardingPolicyName = "HierarchicalTable"

8.5.5. config.xml

<?xml version="1.0"?>

<Configuration>

 <DA>

 <Directory>

 <APN apn="h1_NET">

 <DIF difName="shimHR1" ipcAddress="h1" />

 </APN>

 <APN apn="h2_NET">

 <DIF difName="shimHR2" ipcAddress="h2" />

 </APN>

 <APN apn="r1_NET">

 <DIF difName="shimHR1" ipcAddress="r1" />

 <DIF difName="shim12" ipcAddress="r1" />

 <DIF difName="shim13" ipcAddress="r1" />

Deliverable-2.6: RINA simulator

181

 </APN>

 <APN apn="r2_NET">

 <DIF difName="shim12" ipcAddress="r2" />

 <DIF difName="shim24" ipcAddress="r2" />

 </APN>

 <APN apn="r3_NET">

 <DIF difName="shim13" ipcAddress="r3" />

 <DIF difName="shim34" ipcAddress="r3" />

 </APN>

 <APN apn="r4_NET">

 <DIF difName="shimHR2" ipcAddress="r4" />

 <DIF difName="shim24" ipcAddress="r4" />

 <DIF difName="shim34" ipcAddress="r4" />

 </APN>

 <APN apn="Snd">

 <DIF difName="NET" ipcAddress="h1" />

 </APN>

 <APN apn="Rcv">

 <DIF difName="NET" ipcAddress="h2" />

 </APN>

 </Directory>

 </DA>

</Configuration>

8.5.6. QoS.xml

<?xml version="1.0"?>

<Configuration>

 <QoSReqSet>

 <QosReq id="1">

 <Delay>1</Delay>

 </QosReq>

 <QosReq id="2">

 <Delay>2</Delay>

 </QosReq>

 <QosReq id="3">

 <Delay>3</Delay>

 </QosReq>

 <QosReq id="4">

 <Delay>4</Delay>

 </QosReq>

 <QosReq id="5">

 <Delay>5</Delay>

Deliverable-2.6: RINA simulator

182

 </QosReq>

 <QosReq id="6">

 <Delay>6</Delay>

 </QosReq>

 <QosReq id="7">

 <Delay>7</Delay>

 </QosReq>

 <QosReq id="8">

 <Delay>8</Delay>

 </QosReq>

 <QosReq id="9">

 <Delay>9</Delay>

 </QosReq>

 <QosReq id="10">

 <Delay>10</Delay>

 </QosReq>

 <QosReq id="15">

 <Delay>15</Delay>

 </QosReq>

 <QosReq id="20">

 <Delay>20</Delay>

 </QosReq>

 <QosReq id="30">

 <Delay>30</Delay>

 </QosReq>

 <QosReq id="50">

 <Delay>50</Delay>

 </QosReq>

 <QosReq id="100">

 <Delay>100</Delay>

 </QosReq>

 </QoSReqSet>

 <QoSCubesSet>

 <QosCube id="1">

 <Delay>1</Delay>

 <CostBits>1</CostBits>

 <PDUDroppingProbability>0.001</PDUDroppingProbability>

 <CostTime>10000</CostTime>

 <AverageBandwidth>12000000</AverageBandwidth>

 <AverageSDUBandwidth>1000</AverageSDUBandwidth>

 <PeakBandwidthDuration>24000000</PeakBandwidthDuration>

 <PeakSDUBandwidthDuration>2000</PeakSDUBandwidthDuration>

 <BurstPeriod>10000000</BurstPeriod>

Deliverable-2.6: RINA simulator

183

 <BurstDuration>1000000</BurstDuration>

 <UndetectedBitError>0.01</UndetectedBitError>

 <MaxSDUSize>1500</MaxSDUSize>

 <PartialDelivery>0</PartialDelivery>

 <IncompleteDelivery>0</IncompleteDelivery>

 <ForceOrder>0</ForceOrder>

 <MaxAllowableGap>0</MaxAllowableGap>

 <Jitter>500000</Jitter>

 <ATime>0</ATime>

 <RxOn>0</RxOn>

 <WinOn>0</WinOn>

 <RateOn>0</RateOn>

 </QosCube>

 <QosCube id="2">

 <Delay>2</Delay>

 <CostBits>2</CostBits>

 <PDUDroppingProbability>0.001</PDUDroppingProbability>

 <CostTime>10000</CostTime>

 <AverageBandwidth>12000000</AverageBandwidth>

 <AverageSDUBandwidth>1000</AverageSDUBandwidth>

 <PeakBandwidthDuration>24000000</PeakBandwidthDuration>

 <PeakSDUBandwidthDuration>2000</PeakSDUBandwidthDuration>

 <BurstPeriod>10000000</BurstPeriod>

 <BurstDuration>1000000</BurstDuration>

 <UndetectedBitError>0.01</UndetectedBitError>

 <MaxSDUSize>1500</MaxSDUSize>

 <PartialDelivery>0</PartialDelivery>

 <IncompleteDelivery>0</IncompleteDelivery>

 <ForceOrder>0</ForceOrder>

 <MaxAllowableGap>0</MaxAllowableGap>

 <Jitter>500000</Jitter>

 <ATime>0</ATime>

 <RxOn>0</RxOn>

 <WinOn>0</WinOn>

 <RateOn>0</RateOn>

 </QosCube>

 <QosCube id="3">

 <Delay>3</Delay>

 <CostBits>3</CostBits>

 <PDUDroppingProbability>0.001</PDUDroppingProbability>

Deliverable-2.6: RINA simulator

184

 <CostTime>10000</CostTime>

 <AverageBandwidth>12000000</AverageBandwidth>

 <AverageSDUBandwidth>1000</AverageSDUBandwidth>

 <PeakBandwidthDuration>24000000</PeakBandwidthDuration>

 <PeakSDUBandwidthDuration>2000</PeakSDUBandwidthDuration>

 <BurstPeriod>10000000</BurstPeriod>

 <BurstDuration>1000000</BurstDuration>

 <UndetectedBitError>0.01</UndetectedBitError>

 <MaxSDUSize>1500</MaxSDUSize>

 <PartialDelivery>0</PartialDelivery>

 <IncompleteDelivery>0</IncompleteDelivery>

 <ForceOrder>0</ForceOrder>

 <MaxAllowableGap>0</MaxAllowableGap>

 <Jitter>500000</Jitter>

 <ATime>0</ATime>

 <RxOn>0</RxOn>

 <WinOn>0</WinOn>

 <RateOn>0</RateOn>

 </QosCube>

 <QosCube id="4">

 <Delay>4</Delay>

 <CostBits>4</CostBits>

 <PDUDroppingProbability>0.001</PDUDroppingProbability>

 <CostTime>10000</CostTime>

 <AverageBandwidth>12000000</AverageBandwidth>

 <AverageSDUBandwidth>1000</AverageSDUBandwidth>

 <PeakBandwidthDuration>24000000</PeakBandwidthDuration>

 <PeakSDUBandwidthDuration>2000</PeakSDUBandwidthDuration>

 <BurstPeriod>10000000</BurstPeriod>

 <BurstDuration>1000000</BurstDuration>

 <UndetectedBitError>0.01</UndetectedBitError>

 <MaxSDUSize>1500</MaxSDUSize>

 <PartialDelivery>0</PartialDelivery>

 <IncompleteDelivery>0</IncompleteDelivery>

 <ForceOrder>0</ForceOrder>

 <MaxAllowableGap>0</MaxAllowableGap>

 <Jitter>500000</Jitter>

 <ATime>0</ATime>

 <RxOn>0</RxOn>

 <WinOn>0</WinOn>

 <RateOn>0</RateOn>

 </QosCube>

Deliverable-2.6: RINA simulator

185

 <QosCube id="5">

 <Delay>5</Delay>

 <CostBits>5</CostBits>

 <PDUDroppingProbability>0.001</PDUDroppingProbability>

 <CostTime>10000</CostTime>

 <AverageBandwidth>12000000</AverageBandwidth>

 <AverageSDUBandwidth>1000</AverageSDUBandwidth>

 <PeakBandwidthDuration>24000000</PeakBandwidthDuration>

 <PeakSDUBandwidthDuration>2000</PeakSDUBandwidthDuration>

 <BurstPeriod>10000000</BurstPeriod>

 <BurstDuration>1000000</BurstDuration>

 <UndetectedBitError>0.01</UndetectedBitError>

 <MaxSDUSize>1500</MaxSDUSize>

 <PartialDelivery>0</PartialDelivery>

 <IncompleteDelivery>0</IncompleteDelivery>

 <ForceOrder>0</ForceOrder>

 <MaxAllowableGap>0</MaxAllowableGap>

 <Jitter>500000</Jitter>

 <ATime>0</ATime>

 <RxOn>0</RxOn>

 <WinOn>0</WinOn>

 <RateOn>0</RateOn>

 </QosCube>

 <QosCube id="6">

 <Delay>6</Delay>

 <CostBits>6</CostBits>

 <PDUDroppingProbability>0.001</PDUDroppingProbability>

 <CostTime>10000</CostTime>

 <AverageBandwidth>12000000</AverageBandwidth>

 <AverageSDUBandwidth>1000</AverageSDUBandwidth>

 <PeakBandwidthDuration>24000000</PeakBandwidthDuration>

 <PeakSDUBandwidthDuration>2000</PeakSDUBandwidthDuration>

 <BurstPeriod>10000000</BurstPeriod>

 <BurstDuration>1000000</BurstDuration>

 <UndetectedBitError>0.01</UndetectedBitError>

 <MaxSDUSize>1500</MaxSDUSize>

 <PartialDelivery>0</PartialDelivery>

 <IncompleteDelivery>0</IncompleteDelivery>

 <ForceOrder>0</ForceOrder>

 <MaxAllowableGap>0</MaxAllowableGap>

 <Jitter>500000</Jitter>

Deliverable-2.6: RINA simulator

186

 <ATime>0</ATime>

 <RxOn>0</RxOn>

 <WinOn>0</WinOn>

 <RateOn>0</RateOn>

 </QosCube>

 <QosCube id="7">

 <Delay>7</Delay>

 <CostBits>7</CostBits>

 <PDUDroppingProbability>0.001</PDUDroppingProbability>

 <CostTime>10000</CostTime>

 <AverageBandwidth>12000000</AverageBandwidth>

 <AverageSDUBandwidth>1000</AverageSDUBandwidth>

 <PeakBandwidthDuration>24000000</PeakBandwidthDuration>

 <PeakSDUBandwidthDuration>2000</PeakSDUBandwidthDuration>

 <BurstPeriod>10000000</BurstPeriod>

 <BurstDuration>1000000</BurstDuration>

 <UndetectedBitError>0.01</UndetectedBitError>

 <MaxSDUSize>1500</MaxSDUSize>

 <PartialDelivery>0</PartialDelivery>

 <IncompleteDelivery>0</IncompleteDelivery>

 <ForceOrder>0</ForceOrder>

 <MaxAllowableGap>0</MaxAllowableGap>

 <Jitter>500000</Jitter>

 <ATime>0</ATime>

 <RxOn>0</RxOn>

 <WinOn>0</WinOn>

 <RateOn>0</RateOn>

 </QosCube>

 <QosCube id="8">

 <Delay>8</Delay>

 <CostBits>8</CostBits>

 <PDUDroppingProbability>0.001</PDUDroppingProbability>

 <CostTime>10000</CostTime>

 <AverageBandwidth>12000000</AverageBandwidth>

 <AverageSDUBandwidth>1000</AverageSDUBandwidth>

 <PeakBandwidthDuration>24000000</PeakBandwidthDuration>

 <PeakSDUBandwidthDuration>2000</PeakSDUBandwidthDuration>

 <BurstPeriod>10000000</BurstPeriod>

 <BurstDuration>1000000</BurstDuration>

 <UndetectedBitError>0.01</UndetectedBitError>

Deliverable-2.6: RINA simulator

187

 <MaxSDUSize>1500</MaxSDUSize>

 <PartialDelivery>0</PartialDelivery>

 <IncompleteDelivery>0</IncompleteDelivery>

 <ForceOrder>0</ForceOrder>

 <MaxAllowableGap>0</MaxAllowableGap>

 <Jitter>500000</Jitter>

 <ATime>0</ATime>

 <RxOn>0</RxOn>

 <WinOn>0</WinOn>

 <RateOn>0</RateOn>

 </QosCube>

 <QosCube id="9">

 <Delay>9</Delay>

 <CostBits>9</CostBits>

 <PDUDroppingProbability>0.001</PDUDroppingProbability>

 <CostTime>10000</CostTime>

 <AverageBandwidth>12000000</AverageBandwidth>

 <AverageSDUBandwidth>1000</AverageSDUBandwidth>

 <PeakBandwidthDuration>24000000</PeakBandwidthDuration>

 <PeakSDUBandwidthDuration>2000</PeakSDUBandwidthDuration>

 <BurstPeriod>10000000</BurstPeriod>

 <BurstDuration>1000000</BurstDuration>

 <UndetectedBitError>0.01</UndetectedBitError>

 <MaxSDUSize>1500</MaxSDUSize>

 <PartialDelivery>0</PartialDelivery>

 <IncompleteDelivery>0</IncompleteDelivery>

 <ForceOrder>0</ForceOrder>

 <MaxAllowableGap>0</MaxAllowableGap>

 <Jitter>500000</Jitter>

 <ATime>0</ATime>

 <RxOn>0</RxOn>

 <WinOn>0</WinOn>

 <RateOn>0</RateOn>

 </QosCube>

 <QosCube id="10">

 <Delay>10</Delay>

 <CostBits>10</CostBits>

 <PDUDroppingProbability>0.001</PDUDroppingProbability>

 <CostTime>10000</CostTime>

 <AverageBandwidth>12000000</AverageBandwidth>

Deliverable-2.6: RINA simulator

188

 <AverageSDUBandwidth>1000</AverageSDUBandwidth>

 <PeakBandwidthDuration>24000000</PeakBandwidthDuration>

 <PeakSDUBandwidthDuration>2000</PeakSDUBandwidthDuration>

 <BurstPeriod>10000000</BurstPeriod>

 <BurstDuration>1000000</BurstDuration>

 <UndetectedBitError>0.01</UndetectedBitError>

 <MaxSDUSize>1500</MaxSDUSize>

 <PartialDelivery>0</PartialDelivery>

 <IncompleteDelivery>0</IncompleteDelivery>

 <ForceOrder>0</ForceOrder>

 <MaxAllowableGap>0</MaxAllowableGap>

 <Jitter>500000</Jitter>

 <ATime>0</ATime>

 <RxOn>0</RxOn>

 <WinOn>0</WinOn>

 <RateOn>0</RateOn>

 </QosCube>

 <QosCube id="15">

 <Delay>15</Delay>

 <CostBits>15</CostBits>

 <PDUDroppingProbability>0.001</PDUDroppingProbability>

 <CostTime>10000</CostTime>

 <AverageBandwidth>12000000</AverageBandwidth>

 <AverageSDUBandwidth>1000</AverageSDUBandwidth>

 <PeakBandwidthDuration>24000000</PeakBandwidthDuration>

 <PeakSDUBandwidthDuration>2000</PeakSDUBandwidthDuration>

 <BurstPeriod>10000000</BurstPeriod>

 <BurstDuration>1000000</BurstDuration>

 <UndetectedBitError>0.01</UndetectedBitError>

 <MaxSDUSize>1500</MaxSDUSize>

 <PartialDelivery>0</PartialDelivery>

 <IncompleteDelivery>0</IncompleteDelivery>

 <ForceOrder>0</ForceOrder>

 <MaxAllowableGap>0</MaxAllowableGap>

 <Jitter>500000</Jitter>

 <ATime>0</ATime>

 <RxOn>0</RxOn>

 <WinOn>0</WinOn>

 <RateOn>0</RateOn>

 </QosCube>

 <QosCube id="20">

 <Delay>20</Delay>

Deliverable-2.6: RINA simulator

189

 <CostBits>20</CostBits>

 <PDUDroppingProbability>0.001</PDUDroppingProbability>

 <CostTime>10000</CostTime>

 <AverageBandwidth>12000000</AverageBandwidth>

 <AverageSDUBandwidth>1000</AverageSDUBandwidth>

 <PeakBandwidthDuration>24000000</PeakBandwidthDuration>

 <PeakSDUBandwidthDuration>2000</PeakSDUBandwidthDuration>

 <BurstPeriod>10000000</BurstPeriod>

 <BurstDuration>1000000</BurstDuration>

 <UndetectedBitError>0.01</UndetectedBitError>

 <MaxSDUSize>1500</MaxSDUSize>

 <PartialDelivery>0</PartialDelivery>

 <IncompleteDelivery>0</IncompleteDelivery>

 <ForceOrder>0</ForceOrder>

 <MaxAllowableGap>0</MaxAllowableGap>

 <Jitter>500000</Jitter>

 <ATime>0</ATime>

 <RxOn>0</RxOn>

 <WinOn>0</WinOn>

 <RateOn>0</RateOn>

 </QosCube>

 <QosCube id="30">

 <Delay>30</Delay>

 <CostBits>30</CostBits>

 <PDUDroppingProbability>0.001</PDUDroppingProbability>

 <CostTime>10000</CostTime>

 <AverageBandwidth>12000000</AverageBandwidth>

 <AverageSDUBandwidth>1000</AverageSDUBandwidth>

 <PeakBandwidthDuration>24000000</PeakBandwidthDuration>

 <PeakSDUBandwidthDuration>2000</PeakSDUBandwidthDuration>

 <BurstPeriod>10000000</BurstPeriod>

 <BurstDuration>1000000</BurstDuration>

 <UndetectedBitError>0.01</UndetectedBitError>

 <MaxSDUSize>1500</MaxSDUSize>

 <PartialDelivery>0</PartialDelivery>

 <IncompleteDelivery>0</IncompleteDelivery>

 <ForceOrder>0</ForceOrder>

 <MaxAllowableGap>0</MaxAllowableGap>

 <Jitter>500000</Jitter>

 <ATime>0</ATime>

 <RxOn>0</RxOn>

Deliverable-2.6: RINA simulator

190

 <WinOn>0</WinOn>

 <RateOn>0</RateOn>

 </QosCube>

 <QosCube id="50">

 <Delay>50</Delay>

 <CostBits>50</CostBits>

 <PDUDroppingProbability>0.001</PDUDroppingProbability>

 <CostTime>10000</CostTime>

 <AverageBandwidth>12000000</AverageBandwidth>

 <AverageSDUBandwidth>1000</AverageSDUBandwidth>

 <PeakBandwidthDuration>24000000</PeakBandwidthDuration>

 <PeakSDUBandwidthDuration>2000</PeakSDUBandwidthDuration>

 <BurstPeriod>10000000</BurstPeriod>

 <BurstDuration>1000000</BurstDuration>

 <UndetectedBitError>0.01</UndetectedBitError>

 <MaxSDUSize>1500</MaxSDUSize>

 <PartialDelivery>0</PartialDelivery>

 <IncompleteDelivery>0</IncompleteDelivery>

 <ForceOrder>0</ForceOrder>

 <MaxAllowableGap>0</MaxAllowableGap>

 <Jitter>500000</Jitter>

 <ATime>0</ATime>

 <RxOn>0</RxOn>

 <WinOn>0</WinOn>

 <RateOn>0</RateOn>

 </QosCube>

 <QosCube id="100">

 <Delay>100</Delay>

 <CostBits>100</CostBits>

 <PDUDroppingProbability>0.001</PDUDroppingProbability>

 <CostTime>10000</CostTime>

 <AverageBandwidth>12000000</AverageBandwidth>

 <AverageSDUBandwidth>1000</AverageSDUBandwidth>

 <PeakBandwidthDuration>24000000</PeakBandwidthDuration>

 <PeakSDUBandwidthDuration>2000</PeakSDUBandwidthDuration>

 <BurstPeriod>10000000</BurstPeriod>

 <BurstDuration>1000000</BurstDuration>

 <UndetectedBitError>0.01</UndetectedBitError>

 <MaxSDUSize>1500</MaxSDUSize>

 <PartialDelivery>0</PartialDelivery>

Deliverable-2.6: RINA simulator

191

 <IncompleteDelivery>0</IncompleteDelivery>

 <ForceOrder>0</ForceOrder>

 <MaxAllowableGap>0</MaxAllowableGap>

 <Jitter>500000</Jitter>

 <ATime>0</ATime>

 <RxOn>0</RxOn>

 <WinOn>0</WinOn>

 <RateOn>0</RateOn>

 </QosCube>

 </QoSCubesSet>

</Configuration>

8.5.7. connections.xml

<?xml version="1.0"?>

<Configuration>

 <ConnectionSet>

 <!-- Allocate management flows. -->

 <SimTime t="1">

 <Connection src="h1_NET" dst="r1_NET" qosReq="mgmt"/>

 <Connection src="r2_NET" dst="r1_NET" qosReq="mgmt"/>

 <Connection src="r3_NET" dst="r1_NET" qosReq="mgmt"/>

 <Connection src="h2_NET" dst="r4_NET" qosReq="mgmt"/>

 <Connection src="r2_NET" dst="r4_NET" qosReq="mgmt"/>

 <Connection src="r3_NET" dst="r4_NET" qosReq="mgmt"/>

 </SimTime>

 <!-- Allocate data flows. -->

 <SimTime t="2">

 <Connection src="h1_NET" dst="r1_NET" qosReq="1"/>

 <Connection src="r2_NET" dst="r1_NET" qosReq="1"/>

 <Connection src="r3_NET" dst="r1_NET" qosReq="1"/>

 <Connection src="h2_NET" dst="r4_NET" qosReq="1"/>

 <Connection src="r2_NET" dst="r4_NET" qosReq="10"/>

 <Connection src="r3_NET" dst="r4_NET" qosReq="15"/>

 </SimTime>

 </ConnectionSet>

</Configuration>

Deliverable-2.6: RINA simulator

192

9. Conclusions

The presented deliverable documents the advances in implementation fo RINASim as stated in

D2.4 and summarized three experiments of networking scenarios developed in this simulator.

Since the last deliverable, the RINASim matured in the tool that can be used for

• getting a deep understanding of RINA mechanisms,

• researching RINA policies and evaluating them in the simulator, and

• analysing various application scenarios in RINA environment by simulating them using

RINASim.

RINASim is the open environment that can be extended with experimental features. The

simulator helps to evaluate new features and to compare them with existing methods. In this

report, several such extensions are described, namely:

• congestion avoidance and control - legacy RED policy is compared to ACC policy,

• scheduling - delay loss and enhanced delay loss scheduling policies are implemented as

simulation models and their performance is evaluated,

• routing and forwarding - simulation models for existing distance vector and link-state routing

were developed together with TSimple versions and Domain routing policy.

RINASim at its current state represents an entirely working implementation of the simulation

environment for RINA. The simulator contains all mechanisms of RINA according to the current

specification. The next activities related to RINASim represent mainly bug fixing, and extending

it with policies that represent additional features. RINASim contributes to PRISTINE project

by offering a suitable environment for evaluating fresh research ideas quickly.

PRISTINE’s Description of Work (DoW) document contains indicator to measure the utilization

of RINASim among partners in PRISTINE project. This metrics is stated in following table.

Table 1. PRISTINE evaluation metric regarding RINASim, as presented in the "Description of Work"

No Metric Description

4 Number of simulations done

with the RINA simulator

developed by PRISTINE

This indicator will measure the relevance

and usefulness of the RINA simulator, by

keeping track of the usage of the simulator by

the consortium partners. It is expected that all

the tasks within WP3-4 will use the simulator

and document the results achieved with it.

Deliverable-2.6: RINA simulator

193

The indicative values for evaluation metric of RINASim are presented in the following table.

This table enumerates all completed simulation scenarios.

Table 2. RINASim scenarios

Name, description Research area Notes

Set of basic demonstration scenarios RINA basic

principles

The set of

demonstration

scenarios was

made for showing

basic principles

in RINA, such as,

flow handling,

resource allocation,

traffic relaying, RIB

management. These

examples are bundled

with RINASim.

An advanced demo RINA principles The demo presents

application

communication

within a network

consisting of all

different node types.

There are two border

routers and a interior

router and totally

six DIFs of three

different ranks. The

simulation present

variety of RINA

mechanims involved

in the end-to-end

communication.

Aggregated Congestion Control Congestion control This demonstration

simulates a scenario

in which multiple

flows were sharing

the same bottleneck

Deliverable-2.6: RINA simulator

194

Name, description Research area Notes

link in the network.

The aim is to analyze

how flows can be

aggregated and

controlled using

one congestion

controller to reduce

the negative effect of

competing flows for

a shared bandwidth

on each other.

Routing Routing and

forwarding

This demonstration

aims at analysis of

RINA’s Forwarding,

PDUGE and Routing

policies.

Scalable Forwarding with RINA Routing and

forwarding

This demonstration

deals with advanced

RINA’s Forwarding

policies. The goal

is to evaluate the

proposed algorithms

for scaling up PDU

forwarding.

In addition to listed demonstration scenarios, RINASim is being used as a tool for evaluating

newly proposed policies that outcome from research activities. These activities are part of WP3,

WP4 and WP6. The list of simulation scenarios is not definitive and the growing is expected.

This list will be update at the end of the project.

Deliverable-2.6: RINA simulator

195

References

• [rina-intro] J. Day, "An introduction to the Recursive InterNetwork Architecture," January

2015. Available: online57

• [networking-is-ipc] J. Day, I. Matta and K. Mattar, "Networking is IPC: a guiding principle

to a better internet," in CoNEXT '08 Proceedings of the 2008 ACM CoNEXT Conference ,

New York, NY, USA, 2008.

• [delta-t-spec] R. Watson, "Delta-t Protocol Specification," Lawrence Livermore Laboratory,

December 1981. Available: online58

• [delta-t-features] R. Watson, "The Delta-t transport protocol: features and experience," in

Proceedings 14th Conference on Local Computer Networks, Minneapolis, USA, 1989.

• [RINA-layer-discovery] E. Trouva, E. Grasa, J. Day and S. Bunch, "Layer discovery in

RINA networks," in IEEE 17th International Workshop on Computer Aided Modeling and

Design of Communication Links and Networks (CAMAD), Barcelona, Spain, 2012.

• [IRM-spec] J. Day, "D-Base-2011-017: IPC Resource Manager (IRM) Specification,"

Pouzin Society, 2012.

• [Enroll-spec] J. Day, "D-Base-2012-014: Basic Enrollment Specification," Pouzin Society,

2012.

• [Delim1] J. Day, "D-Base-2010-007: Delimiting Module," Pouzin Society, 2009.

• [Delim2] J. Day, "DelimitingGeneral130904: Delimiting Module," Pouzin Society, 2013.

• [EFCP-spec] J. Day, M. Marek, L. Bergesio and M. Tarzan,

"EFCPSpec140824_MT_LBJD_MM_v6.6: Error and Flow Control Protocol Specification,

Data Transfer + Data Transfer Control," Pouzin Society, 2015.

• [RMT-spec] J. Day, "D-Base-2012-010: Relaying and Multiplexing Task Specification,"

Pouzin Society, 2012.

• [FA-spec] J. Day, "D-Base-2011-015: Flow Allocator Specification," Pouzin Society, 2011.

• [RA-notes] J. Day, "RINA-RFC-2010-002: Notes on the Resource Allocator," Pouzin

Society, 2010.

• [mobj-spec] E. Grasa, S. Bunch and P. deWolf, "Specification of Managed Objects for the

Demo DIF," Pouzin Society, 2012.

• [RIB-notes] J. Day, "Notes on the OIB/RIB Daemon," Pouzin Society, 2010.

57 http://ict-pristine.eu/wp-content/uploads/2014/12/GhentIntroRINAPt1-150119.pdf
58 http://www.osti.gov/scitech/servlets/purl/5542785

http://ict-pristine.eu/wp-content/uploads/2014/12/GhentIntroRINAPt1-150119.pdf
http://www.osti.gov/scitech/servlets/purl/5542785
http://ict-pristine.eu/wp-content/uploads/2014/12/GhentIntroRINAPt1-150119.pdf
http://www.osti.gov/scitech/servlets/purl/5542785

Deliverable-2.6: RINA simulator

196

• [isoiec-15953] ISO, "Information technology – Open Systems Interconnection – Service

definition for the Application Service Object Association Control Service Element". Patent

ISO/IEC 15953:1999, 1999.

• [isoiec-10035-1] ISO, "Information technology – Open Systems Interconnection –

Connectionless protocol for the Association Control Service Element: Protocol

specification". Patent ISO/IEC 10035-1:1995, 1995.

• [isoiec-9596-1] ISO, "Information technology – Open Systems Interconnection – Common

Management Information Protocol: Specification". Patent ISO/IEC 9596-1:1998, 1997.

• [CDAP] S. Bunch, "D-Base-2010-009: CDAP – Common Distributed Application

Protocol," Pouzin Society, 2010.

• [CACEP] S. Bunch, J. Day and E. Trouva, "D-Base-2012-016: Common Application

Connection Establishment Phase (CACEP)," Pouzin Society, 2012.

• [omnetpp-dwnld] OpenSim Ltd., OMNeT++ Releases, available online59

• [github-kvetak] GitHub, RINA Simulator repository, available online60

• [ops-rinasimtickets] OpenSource Projects, RINASim Tickets, available online61

• [ops-rinasim] OpenSource Projects, RINASim, available online62

• [omnetpp-main] OpenSim Ltd., OMNeT++ Discrete Event Simulator, available online63

• [omnetpp-inet] OpenSim Ltd., INET Framework, available online64

• [omnetpp-ansa] OpenSim Ltd., ANSA Project, available online65

• [omnetpp-mixim] OpenSim Ltd., MIXIM Framework, available online66

• [omnetpp-oversim] OpenSim Ltd., Oversim Framework, available online67

• [omnetpp-veins] OpenSim Ltd., Veins Framework, available online68

• [omnetpp-castalia] OpenSim Ltd., Castalia Framework, available online69

• [omnetpp-manual] OpenSim Ltd., Manual, available online70

59 http://www.omnetpp.org/omnetpp/category/30-omnet-releases
60 https://github.com/kvetak/RINA
61 https://opensourceprojects.eu/p/pristine/rinasimulator/tickets/
62 https://opensourceprojects.eu/p/pristine/rinasimulator/rinasim/
63 http://www.omnetpp.org
64 http://inet.omnetpp.org/
65 http://nes.fit.vutbr.cz/ansa
66 http://mixim.sourceforge.net/
67 http://www.oversim.org/
68 http://veins.car2x.org/
69 http://castalia.research.nicta.com.au/index.php/en/
70 http://www.omnetpp.org/doc/omnetpp/manual/usman.html

http://www.omnetpp.org/omnetpp/category/30-omnet-releases
https://github.com/kvetak/RINA
https://opensourceprojects.eu/p/pristine/rinasimulator/tickets/
https://opensourceprojects.eu/p/pristine/rinasimulator/rinasim/
http://www.omnetpp.org
http://inet.omnetpp.org/
http://nes.fit.vutbr.cz/ansa
http://mixim.sourceforge.net/
http://www.oversim.org/
http://veins.car2x.org/
http://castalia.research.nicta.com.au/index.php/en/
http://www.omnetpp.org/doc/omnetpp/manual/usman.html
http://www.omnetpp.org/omnetpp/category/30-omnet-releases
https://github.com/kvetak/RINA
https://opensourceprojects.eu/p/pristine/rinasimulator/tickets/
https://opensourceprojects.eu/p/pristine/rinasimulator/rinasim/
http://www.omnetpp.org
http://inet.omnetpp.org/
http://nes.fit.vutbr.cz/ansa
http://mixim.sourceforge.net/
http://www.oversim.org/
http://veins.car2x.org/
http://castalia.research.nicta.com.au/index.php/en/
http://www.omnetpp.org/doc/omnetpp/manual/usman.html

Deliverable-2.6: RINA simulator

197

• [omnetpp-ide] OpenSim Ltd., IDE in Nutshell, available online71

• [omnetpp-demo] OpenSim Ltd., Eclipse, available online72

• [omnetpp-userguide] OpenSim Ltd., User Guide, available online73

• [omnetpp-highlight] V.Veselý, RINASim C/C++ code highlighter, available online74

• [omnetpp-editbox] P.Metel, EditBox | Eclipse Plugins, Bundles and Products - Eclipse

Marketplace, available online75

• [omnetpp-stats] OpenSim Ltd., Manual, available online76

• [RFC6298] Paxson, Vern, et al. "Computing TCP’s retransmission timer." RFC 6298. 2011.

• [RFC5681] M. Allman, V. Paxson, and E. Blanton. "TCP congestion Control." RFC 5681,

2009.

• [RED] S. Floyd, V. Jacobson. Random early detection gateways for congestion avoidance.

Networking, IEEE/ACM Transactions on, 1993, 1.4: 397-413.

71 http://www.omnetpp.org/pmwiki/index.php?n=Main.OmnetppInNutshell
72 http://www.omnest.com/webdemo/ide/demo.html
73 https://omnetpp.org/doc/omnetpp/UserGuide.pdf
74 http://nes.fit.vutbr.cz/ivesely/rinasim-highlight.zip
75 https://marketplace.eclipse.org/content/editbox
76 https://omnetpp.org/doc/omnetpp/manual/usman.html#sec195

http://www.omnetpp.org/pmwiki/index.php?n=Main.OmnetppInNutshell
http://www.omnest.com/webdemo/ide/demo.html
https://omnetpp.org/doc/omnetpp/UserGuide.pdf
http://nes.fit.vutbr.cz/ivesely/rinasim-highlight.zip
https://marketplace.eclipse.org/content/editbox
https://omnetpp.org/doc/omnetpp/manual/usman.html#sec195
http://www.omnetpp.org/pmwiki/index.php?n=Main.OmnetppInNutshell
http://www.omnest.com/webdemo/ide/demo.html
https://omnetpp.org/doc/omnetpp/UserGuide.pdf
http://nes.fit.vutbr.cz/ivesely/rinasim-highlight.zip
https://marketplace.eclipse.org/content/editbox
https://omnetpp.org/doc/omnetpp/manual/usman.html#sec195

	Deliverable-2.6: RINA simulator
	Table of Contents
	1. Introduction
	2. Brief Theory
	2.1. Nature of applications and application protocols
	2.2. Core Terms
	2.3. Connection-oriented vs. connection-less
	2.4. Delta-t synchronization
	2.5. Separation of mechanism and policy
	2.6. Naming and addressing

	3. Installation and configuration
	3.1. Support
	3.2. OMNeT Installation
	3.2.1. Windows Installation
	3.2.2. Linux installation

	3.3. RINASim Installation
	3.3.1. The IDE way
	3.3.2. The command line way
	3.3.3. Makefile

	3.4. OMNeT Handbook
	3.4.1. Basics
	3.4.1.1. Simple modules
	3.4.1.2. Compound modules
	3.4.1.3. Network modules

	3.4.2. Simulator and IDE
	3.4.3. Tips and Tricks
	3.4.3.1. Parallel build
	3.4.3.2. Visual aid

	4. High-level design
	4.1. Nodes
	4.2. DAF Design
	4.2.1. DIF Allocator
	4.2.2. IPC Resource Manager

	4.3. DIF Design
	4.3.1. Enrollment
	4.3.2. Delimiting
	4.3.3. Data Transfer with Error and Flow Control
	4.3.4. Relaying and Multiplexing
	4.3.5. SDU Protection
	4.3.6. Flow Allocator
	4.3.7. Resource Allocator
	4.3.8. RIB Daemon
	4.3.9. Common Distributed Application Protocol

	4.4. Policy Framework
	4.4.1. Description
	4.4.2. Using the policy framework
	4.4.3. Example usage
	4.4.3.1. Use case
	4.4.3.2. Solution

	4.5. Results Analysis
	4.5.1. Collecting Statistics
	4.5.2. Tracefiles
	4.5.2.1. Usage
	4.5.2.2. Description
	4.5.2.3. Example output

	5. Components
	5.1. Used Template
	5.2. Nodes
	5.3. DAF Modules
	5.3.1. Application Process
	5.3.1.1. Submodules
	5.3.1.2. Source codes
	5.3.1.3. NED design
	5.3.1.4. Available policies
	5.3.1.5. C++ implementation
	Limitations
	Future work

	5.3.2. Application Entity
	5.3.2.1. Submodules
	5.3.2.2. Source codes
	5.3.2.3. NED design
	5.3.2.4. C++ Implementation
	5.3.2.5. Future work

	5.3.3. DAFEnrollment
	5.3.3.1. Submodules
	5.3.3.2. Source codes
	5.3.3.3. NED design
	5.3.3.4. Available policies
	5.3.3.5. C++ implementation
	5.3.3.6. Limitations
	5.3.3.7. Future work

	5.3.4. DIF Allocator
	5.3.4.1. Submodules
	5.3.4.2. Source codes
	5.3.4.3. NED design
	5.3.4.4. Available policies
	5.3.4.5. C++ implementation
	5.3.4.6. Limitations
	5.3.4.7. Future work

	5.3.5. IPC Resource Manager
	5.3.5.1. Submodules
	5.3.5.2. Source codes
	5.3.5.3. NED design
	5.3.5.4. Available policies
	5.3.5.5. C++ Implementation
	5.3.5.6. Future work

	5.3.6. Common Distributed Application Protocol
	5.3.6.1. Submodules
	5.3.6.2. Source code
	5.3.6.3. NED design
	5.3.6.4. Available policies
	5.3.6.5. C++ implementation
	5.3.6.6. Limitations
	5.3.6.7. Future work

	5.4. DIF Modules
	5.4.1. Delimiting
	5.4.1.1. Submodules
	5.4.1.2. Source codes
	5.4.1.3. NED design
	5.4.1.4. Available policies
	5.4.1.5. C++ implementation
	5.4.1.6. Limitations
	5.4.1.7. Future work

	5.4.2. Enrollment
	5.4.2.1. Submodules
	5.4.2.2. Source codes
	5.4.2.3. NED design
	5.4.2.4. Available policies
	5.4.2.5. C++ implementation
	5.4.2.6. Limitations
	5.4.2.7. Future work

	5.4.3. Error and Flow Control Compound module
	5.4.3.1. Submodules
	5.4.3.2. Source codes
	5.4.3.3. NED design
	5.4.3.4. Available policies
	5.4.3.5. C++ implementation
	5.4.3.6. Future work

	5.4.4. EFCP Instance
	5.4.4.1. Submodules
	5.4.4.2. Source codes
	5.4.4.3. NED design
	5.4.4.4. Available policies
	5.4.4.5. C++ Implementation

	5.4.5. DTP
	5.4.5.1. Submodules
	5.4.5.2. Source codes
	5.4.5.3. NED design
	5.4.5.4. Available policies
	5.4.5.5. C++ Implementation
	5.4.5.6. Limitations
	5.4.5.7. Future work

	5.4.6. DTP State
	5.4.6.1. Submodules
	5.4.6.2. Source codes
	5.4.6.3. NED design
	5.4.6.4. Available policies
	5.4.6.5. C++ Implementation

	5.4.7. DTCP
	5.4.7.1. Submodules
	5.4.7.2. Source codes
	5.4.7.3. NED design
	5.4.7.4. Available policies
	5.4.7.5. C++ Implementation
	Future work

	5.4.8. DTCP State
	5.4.8.1. Submodules
	5.4.8.2. Source codes
	5.4.8.3. NED design
	5.4.8.4. Available policies
	5.4.8.5. C++ Implementation

	5.4.9. Flow Allocator
	5.4.9.1. Submodules
	5.4.9.2. Source codes
	5.4.9.3. NED design
	5.4.9.4. Available policies
	5.4.9.5. C++ Implementation
	5.4.9.6. Future work

	5.4.10. Relaying and Multiplexing Task
	5.4.10.1. Submodules
	5.4.10.2. Source codes
	5.4.10.3. NED design
	5.4.10.4. Available policies
	5.4.10.5. C++ Implementation

	5.4.11. Resource Allocator
	5.4.11.1. Submodules
	5.4.11.2. Source codes
	5.4.11.3. NED design
	5.4.11.4. Available policies
	5.4.11.5. C++ Implementation

	5.4.12. RIB Daemon
	5.4.12.1. Submodules
	5.4.12.2. Source codes
	5.4.12.3. NED design
	5.4.12.4. Available policies
	5.4.12.5. C++ Implementation
	5.4.12.6. Future work

	5.4.13. Routing
	5.4.13.1. Submodules
	5.4.13.2. Source codes
	5.4.13.3. NED design
	5.4.13.4. Available policies
	5.4.13.5. C++ Implementation

	6. Policies
	6.1. Used Template
	6.2. Flow Allocator policies
	6.2.1. AllocateRetry
	6.2.1.1. Variants
	6.2.1.2. Source codes

	6.2.2. MultilevelQoS
	6.2.2.1. Variants
	6.2.2.2. Source codes

	6.2.3. NewFlowRequest
	6.2.3.1. Variants
	6.2.3.2. Source codes

	6.3. EFCP policies
	6.3.1. DTP: InitialSequenceNumber
	6.3.1.1. Variants
	6.3.1.2. Source codes

	6.3.2. DTP: RTTEstimator
	6.3.2.1. Variants
	6.3.2.2. Source codes

	6.3.3. DTP: RcvrTimerInactivity
	6.3.3.1. Variants
	6.3.3.2. Source codes

	6.3.4. DTP: SenderInactivityTimer
	6.3.4.1. Variants
	6.3.4.2. Source codes

	6.3.5. DTCP: ECN
	6.3.5.1. Variants
	6.3.5.2. Source codes

	6.3.6. DTCP: ECNSlowDown
	6.3.6.1. Variants
	6.3.6.2. Source codes

	6.3.7. DTCP: LostControlPDU
	6.3.7.1. Variants
	6.3.7.2. Source codes

	6.3.8. DTCP: NoOverridePeak
	6.3.8.1. Variants
	6.3.8.2. Source codes

	6.3.9. DTCP: NoRateSlowDown
	6.3.9.1. Variants
	6.3.9.2. Source codes

	6.3.10. DTCP: RateReduction
	6.3.10.1. Variants
	6.3.10.2. Source codes

	6.3.11. DTCP: RcvFlowControlOverrun
	6.3.11.1. Variants
	6.3.11.2. Source codes

	6.3.12. DTCP: RcvrAck
	6.3.12.1. Variants
	6.3.12.2. Source codes

	6.3.13. DTCP: RcvrControlACK
	6.3.13.1. Variants
	6.3.13.2. Source codes

	6.3.14. DTCP: RcvrFlowControl
	6.3.14.1. Variants
	6.3.14.2. Source codes

	6.3.15. DTCP: ReceivingFlowControl
	6.3.15.1. Variants
	6.3.15.2. Source codes

	6.3.16. DTCP: ReconcileFlowConflict
	6.3.16.1. Variants
	6.3.16.2. Source codes

	6.3.17. DTCP: RetransmissionTimerExpiry
	6.3.17.1. Variants
	6.3.17.2. Source codes

	6.3.18. DTCP: SenderAck
	6.3.18.1. Variants
	6.3.18.2. Source codes

	6.3.19. DTCP: SenderAckList
	6.3.19.1. Variants
	6.3.19.2. Source codes

	6.3.20. DTCP: SendingAck
	6.3.20.1. Variants
	6.3.20.2. Source codes

	6.3.21. DTCP: SndFlowControlOverrun
	6.3.21.1. Variants
	6.3.21.2. Source codes

	6.3.22. DTCP: Transmission Control
	6.3.22.1. Variants
	6.3.22.2. Source codes

	6.4. Resource Allocator Policies
	6.4.1. AddressComparator
	6.4.1.1. Variants
	6.4.1.2. Source codes

	6.4.2. PDU Forwarding Generator
	6.4.2.1. Variants

	6.4.3. QueueAlloc
	6.4.3.1. Variants

	6.4.4. PDU Forwarding Generator
	6.4.4.1. Variants

	6.4.5. QueueIDGen
	6.4.5.1. Variants

	6.5. RMT Policies
	6.5.1. MaxQueue
	6.5.1.1. Variants

	6.5.2. Monitor
	6.5.2.1. Variants

	6.5.3. PDUForwarding
	6.5.3.1. Variants

	6.5.4. Scheduler
	6.5.4.1. Variants

	6.6. Routing policies
	6.6.1. Variants

	7. Policy-driven Features
	7.1. Congestion Avoidance
	7.1.1. Legacy Random Early Detection
	7.1.1.1. Policy set
	7.1.1.2. Configuration
	7.1.1.3. References

	7.1.2. TCP-like congestion avoidance
	7.1.2.1. Policy set
	7.1.2.2. Configuration

	7.2. Scheduling
	7.2.1. Delay-loss
	7.2.1.1. Policy set
	7.2.1.2. Configuration

	7.2.2. Enhanced Delay-Loss
	7.2.2.1. Policy set
	7.2.2.2. Configuration

	7.3. Routing
	7.3.1. Distance Vector (legacy)
	7.3.2. Link-state (legacy)
	7.3.3. TSimple Link-state
	7.3.3.1. Policy set
	7.3.3.2. Configuration
	7.3.3.3. Interaction

	7.3.4. TSimple Distance-vector
	7.3.4.1. Policy set
	7.3.4.2. Configuration
	7.3.4.3. Interaction

	7.3.5. Routing domain
	7.3.5.1. Policy set
	7.3.5.2. Configuration
	7.3.5.3. Interaction

	7.4. Forwarding
	7.4.1. MiniTable
	7.4.1.1. Policy set
	7.4.1.2. Configuration
	7.4.1.3. Interaction

	7.4.2. MultiMiniTable
	7.4.2.1. Policy set
	7.4.2.2. Configuration
	7.4.2.3. Interaction

	7.5. PDU Forwarding Table Generator
	7.5.1. HopsSingle1Entry
	7.5.1.1. Policy set
	7.5.1.2. Requires
	7.5.1.3. Configuration

	7.5.2. HopsSingleMEntries
	7.5.2.1. Policy set
	7.5.2.2. Requires
	7.5.2.3. Configuration

	7.5.3. LatencySingle1Entry
	7.5.3.1. Policy set
	7.5.3.2. Requires
	7.5.3.3. Configuration

	7.5.4. LatencySingleMEntries
	7.5.4.1. Policy set
	7.5.4.2. Requires
	7.5.4.3. Configuration

	8. Demonstration scenarios
	8.1. Running a Scenario
	8.1.1. From the IDE
	8.1.2. From the Command Line

	8.2. Used Template
	8.3. Demo Network
	8.3.1. Motivation
	8.3.2. Network Graph
	8.3.3. Description
	8.3.3.1. Enrollment Phase
	8.3.3.2. Data Transfer Phase

	8.3.4. omnetpp.ini
	8.3.5. config.xml

	8.4. Demonstration: Congestion
	8.4.1. Motivation
	8.4.2. Description
	8.4.3. Major events
	8.4.4. omnetpp.ini
	8.4.5. config.xml

	8.5. Demonstration: Routing
	8.5.1. Motivation
	8.5.2. Description
	8.5.3. Configurations
	8.5.4. omnetpp.ini
	8.5.5. config.xml
	8.5.6. QoS.xml
	8.5.7. connections.xml

	9. Conclusions
	References

