
Poster Session 1

219978-1-4799-4558-0/14/$31.00 ©2014 IEEE

Fast Lookup for Dynamic Packet Filtering in FPGA

Lukáš Kekely, Martin Žádnı́k, Jiřı́ Matoušek, Jan Kořenek
IT4Innovations Centre of Excellence

Brno University of Technology, Czech Republic

Email: ikekely,izadnik,imatousek,korenek@fit.vutbr.cz

Abstract—Rapidly growing speed and complexity of computer
networks impose new requirements on fast lookup structures
which are utilized in many networking applications (SDN, fire-
walls, NATs, etc.). We propose a novel lookup concept based on
the well-known cuckoo hashing, which can achieve good memory
utilization, supplemented by a binary search tree for offloading
the colliding keys and supporting LPM lookup. We also propose
a hardware architecture implementing this lookup concept in the
FPGA. Our solution is suitable for lookup of the variable-length
keys in 100+Gbps networks. Memory utilization of the proposed
concept is thoroughly evaluated and it is shown that the concept
is scalable to external memory components.

Keywords—Cuckoo hash; binary search; packet filtering; FPGA

I. INTRODUCTION

Field Programmable Gate Arrays (FPGA) are popular plat-
forms utilized in networking applications targeting high-speed
packet processing (e.g. [1]). We propose a fast lookup concept
designed specifically for FPGA-oriented platforms. The con-
cept combines two well-known memory-oriented lookup al-
gorithms – cuckoo hashing [2] and binary search tree (adapted
for best/longest prefix matching [3]). Each algorithm efficiently
complements the other in area where the other fails. The con-
cept achieves almost 100% memory utilization with efficient
utilization of the memory and logic resources in comparison to
the TCAM or Hash-CAM concepts [4]. At the same time, our
concept allows fast lookups (200 mil. lookups/s designed for
100+ Gbps solutions). Our contributions also include: (a) the
possibility to utilize external memory when the number of rules
cannot fit in the internal FPGA memory, (b) increasing the
lookup functionality with the longest prefix match, (c) efficient
implementation of the whole scheme in FPGA including the
update logic enabling on-the-fly updates and (d) evaluation of
the concept in terms of achievable resources utilization.

II. RELATED WORK

The goal of cuckoo hashing [2] is to reduce the number
of memory accesses during a lookup and thus speeding-up
a lookup operation. Standard cuckoo hashing utilizes two
hash tables with two different hash functions but it can be
generalized for a higher number of hash tables/functions. There
has been an implementation of cuckoo hashing in FPGA for
the purpose of pattern matching [4]. This architecture contains
dedicated matching blocks for all patterns of the same length
(up to the length of 16 characters). Each matching block
consists of two cuckoo hash tables for storing addresses to
the database of patterns. The architecture also contains mul-
tiplexers and a control logic which together allow performing

either a pattern matching operation or a pattern database
update (pattern insertion or deletion). The approach offers only
medium memory utilization since it does not utilize any type
of overflow memory and also cannot scale well to external
memory since it is tailored to the internal FPGA memory.

The advanced lookup procedures also include prefix match-
ing (PM, i.e. there is a single prefix for a given key in the set
but it is not known apriori) and longest prefix match (LPM,
i.e. selecting the longest matching prefix from the set for a
given key). Although the LPM itself is out of the primary
scope in this paper, the unique combination of cuckoo hash and
binary search tree renders it possible for our implementation
to support LPM lookup.

III. DESIGN AND ARCHITECTURE

The core functionality of our lookup schema is based on
cuckoo hashing principle due to a very fast lookup with only
a few memory accesses needed for each search. This feature
favors the usage of cuckoo hashing even on architectures with
limited memory interface throughput (e.g. external memory).
On the other hand, cuckoo hashing can suffer from a low
achievable utilization of the memory caused by hash conflicts.
To address this problem, our design augments basic cuckoo
hashing principle by the usage of a stash for offloading the
conflicting keys. The proposed design of cuckoo hashing with
the stash is not entirely new. It has been already described
in [5], where the authors proposed and evaluated the usage of
only a very small stash (capacity under 5 keys implemented
in TCAM) to improve the worst case memory utilization of
cuckoo hashing.

In our design we propose and evaluate the usage of a
significantly larger stash – a stash with the capacity comparable
to the capacity of the used cuckoo hash tables to improve
not only the worst case but also to improve average memory
utilization. Furthermore, our stash also supports LPM lookups,
thus augmenting the lookup functionality of the basic cuckoo
hashing. The lookup support of not only the whole keys
but also key prefixes can be very useful in many different
areas (e.g. packet filtering). Instead of TCAM, we propose
an FPGA implementation of a well-known binary search
algorithm adapted for the LPM lookup (described in [3]) as
an effective approach to implement the larger stash.

The binary search offers basically the opposite features in
comparison with the cuckoo hashing – the key lookup requires
relatively large number of subsequent memory accesses, but
the achievable memory utilization is always 100%. Because
of the large number of memory accesses, binary search based
lookup should be implemented only in the internal FPGA
memory. In order to achieve high lookup throughput, the978-1-4799-4558-0/14/$31.00 c©2014 IEEE

Poster Session 1

220

implementation of the binary search must not be sequential but
rather divided into pipelined stages. This can be achieved by
establishing a tree structure in the searched array (binary search
tree –BST) and slicing it by the tree levels (each tree level
forms a pipeline stage). Finally, the functionality of update
operations in the described BST can be easily implemented in
the hardware with support of on-the-fly updates.

A. Lookup engine interface and functionality

We start the description by the general design of an
interface and functionality of a virtual lookup engine (either
cuckoo or BST). Both engines implement the same interface
independently on the details of their lookup procedure. The
signals can be divided into 3 basic groups: input, output and
configuration. The only input of a lookup engine is the value
of a key to search. The lookup implementation should be able
to process new input key every clock cycle. For each input
key, the engine produces one result on the output based on
performed lookup. The lookup result consists of arbitrary data
(e.g. routing decision, matched key identification) associated
with the searched key and one bit information about the key
lookup success (Found). When the input key is not found, the
value of data on the output is unspecified (invalid).

The lookup engine (and its interface) is configurable by
these three basic generic parameters: key width (maximum
width of key representation in bits), data width (width of
data representation in bits), maximum capacity (theoretical
size limit for the set of keys, representation may differ).

B. Cuckoo hash lookup engine

Fig. 1 depicts a basic schema of cuckoo hash engine im-
plementation. The lookup process starts by parallel computing
of key hash values (outputs of hash blocks). As the basis
for the hash blocks we utilize CRC implementation generated
for commonly used polynomials. The lookup continues with
hash values being used as addresses for reading records from
hash tables in memory. Each record forms a pair composed
of a key and data associated with the key. A record can also
be stored in a register outside the tables (the purpose of the
register is explained in the next paragraph). Subsequently, the
input key is compared with the keys from the memory (and
the register) records for equality. At most one comparison
may be successful, because each unique key appears only in
a single place at a time. Therefore, aggregation of result is
very simple – if none of the compared keys is equal to the
searched key, the found flag is not set, otherwise it is set and
data associated with the matching key are provided.

Update of an active key set is entirely managed by the
reconfiguration controller based on requests received from
the configuration interface. When inserting a new key, the
controller can take advantage of the reconfiguration register
included in the lookup path. Using this register the controller
can evict records from hash tables on-the-fly preserving the set
of active keys. More precisely, the insertion of a new key x
starts with storing x in the register. Then all possible locations
for x in the hash tables are checked sequentially. If one of them
is empty, x is inserted into the table and the reconfiguration
ends. Otherwise a victim y is selected and evicted from the
table, leaving free space for x. The evicted record y is actually

Memory

dd

Fig. 1. Conceptual schema of cuckoo hash based lookup engine.

n
-1

Binary Search Tree

Fig. 2. Conceptual schema of binary search tree based lookup engine.

swapped with x and the insertion continues with y except x
cannot be selected as the next victim. The reconfiguration cycle
can repeat itself multiple times, until the register is freed or
can even repeat itself infinite times when a chain of collisions
occurs. Until the register is freed the cuckoo hash engine is
considered full. Deletion of a key is possible even during active
insertion reconfiguration. Deletion of x starts by pausing the
reconfiguration process and continues with sequential checking
of all possible locations for x (i.e. the register and a single
position in each table). If a key identical to x is found in one
of those positions, it is invalidated. After the deletion ends, the
reconfiguration process is resumed.

The maximum capacity of the cuckoo hash engine can be
configured by two values: d – the number of used hash tables
(hash functions) and t – the size of individual table. Theoretical
capacity limit is defined by formula Ccuckoo = d× t+1. The
plus one accounts for the additional reconfiguration register.

C. Binary search tree lookup engine

Fig. 2 depicts a basic schema of our BST lookup engine.
The engine starts the lookup by a pipelined and sequential
search of an input key (red arrows) through the levels of the
tree. Each tree level forms a pipeline stage with its dedicated
piece of memory and a key comparator. The output of a stage
is an address of a node where to continue binary search in the
next tree level and the searched key. The address from the last
tree level is used to address the data array containing associated
data to the key. The lookup result must be corrected according
to a record in the reconfiguration register due to atomicity of
operations.

Update of an active key set is entirely managed by the
reconfiguration controller based on requests received from the
configuration interface. The controller can take advantage of

Poster Session 1

221

the single reconfiguration register included in the lookup path
during the update. More precisely, the update (deletion or
insertion of x) starts with storing the record x in the register.
Subsequently, the update process consists of three sequential
steps. (1) The key x is searched in the tree sequentially.
The search must fail when inserting x. The search must
succeed when deleting x. (2) The record x is activated in
the register to correct the lookup process in the last stage.
(3) Sequential reconfiguration is performed to merge x into
the nodes and the data array. Finally, the update process ends
and the reconfiguration register is freed. Deletion and insertion
share resources and cannot be active together as in cuckoo
hash engine. The engine can become full only after successful
insertion and can become empty again only after successful
deletion.

The capacity of the BST based engine can be configured
by the number of BST levels l. The capacity is then defined
by formula Cbst = 2l − 1 when adaptation for LPM is not
used or Cbst = 2l−1

− 1 when LPM lookup is supported. Our
implementation supports the adaptation for LPM, but if LPM
is not needed, it can be easily modified (simplified) to support
only precise key lookup gaining two times higher capacity.

D. Top-level lookup engine

Top-level engine instantiates both Cuckoo and BST engine
in parallel. The lookup of an input key is also performed
in parallel in both engines. The results are then stored in
FIFOs, because the two engines do not have same processing
delays. Result aggregation then selects data from engine with
successful lookup. When both engines successfully find a key,
the result from cuckoo hash is preferred, because in that case
the result from BST is only for a matching prefix, but the result
from cuckoo hash is for the whole matching key.

Reconfiguration of the key sets in both engines is managed
by the top level reconfiguration controller. All updates for
prefixes are directly forwarded into the BST stash. Deletions
of the whole keys are implemented in both engines in parallel.
Insertions of the whole keys are forwarded into the cuckoo
hash. If cuckoo hash is full (its reconfiguration register is
occupied) and new key insertion is requested, then the key that
is currently in cuckoo hash reconfiguration register is moved
into the stash and the new key is inserted into cuckoo hash.
The top-level engine is full when both the cuckoo hash and
the BST stash are full. Furthermore, in our implementation
the configuration interface of the top-level lookup engine is
connected to the block with address decoder and registers
for key, data, requests and status flags. This block is then
accessible from the software using standard memory interface.
This way the management of the active key set can be easily
controlled from the software.

The maximum capacity of the cuckoo hash with stash
lookup engine can be defined by three parameters: parameters
d and t of the cuckoo hash and the stash size s. Theoretical
capacity limit is then defined by formula Ctotal = d×t+1+s.

IV. EVALUATION AND RESULTS

The proposed architecture was implemented in VHDL
and synthesized into FPGA. We conducted experiments to
evaluate achievable memory utilization and FPGA resources

consumption in different configurations of the architecture. The
results of these evaluations are summed up in this section.

We start the evaluation by experiments on achievable
memory utilization of our concept. The achieved utilization can
be computed in two basic ways: Ucuckoo = (n−m)/Ccuckoo,
Utotal = n/Ctotal, where n is the total number of success-
fully inserted keys before the memory became full and m is
the number of keys that resides in the stash. Because, our
implementation uses stash which can be always filled up to
100% of its capacity, we can always put m = s. The values
of n must be acquired from the test runs.

In the first series of tests we have evaluated the relation
between achievable memory utilization of cuckoo hash and
the used sizes of stash for different parameters. The results
of these evaluations are shown in the graphs in Fig. 3 and 4.
We have tested three different values of d parameter (2, 3
and 4 not depicted in the figures), three different values of
t parameter (128, 1 024 and 8 192) and multiple values of s
(from 0 to t). We have also tested different key sizes (32 b,
64 b and 128 b), but the achieved results have been very similar,
therefore we do not show different graphs for each key size.
The memory utilization plotted in the graphs is Ucuckoo and
the size of the stash (s) is plotted as a portion of t. The graphs
show mean (thick darker lines) and minimal resp. maximal
(thin lighter lines) achieved utilizations from 10 000 tests with
random generated keys for each combination of values of d, t
and s. From data plotted in the graphs it is clear that the mean
achieved memory utilization of cuckoo hash is independent
on the values of t. Parameter t only influences the difference
between minimal and maximal achieved utilization, when the
span is higher for smaller values of t.

Moreover, Fig. 3 shows that the influence of stash size on
the achievable memory utilization is significant for two cuckoo
hash tables – the mean utilization raises from 50% in the case
without the stash to 75% with s = t/10 or even around
90% for s > t/2. Also the differences between minimal and
maximal achieved utilizations are reduced with the raising size
of stash. Fig. 4 shows that the importance of stash in case
of more than two cuckoo hash tables is not that high as for
two tables. But it contributes in achieving nearly 100% mean
memory utilization of cuckoo hash tables.

The second series of memory utilization tests is oriented on
a thorough examination of achievable memory utilizations for
a few selected sizes of stash. The results of these evaluations
are shown in the graphs in Fig. 5 and 6. Here we have also
tested three different values of d parameter (2, 3 and 4 not
depicted), but only a single value of t = 1024 and only a
few values of s (0, t/64, t/16, t/4, t/2 and t). The graphs
show histograms of probability (percentage of all conducted
tests) that achieved precisely the specified utilization (Ucuckoo

used) with highlighted mean (dashed line) and minimal resp.
maximal utilizations (points). The area under each histogram
line is exactly 100% even though the individual values are
rather small. The results are from 1 000 000 tests with random
generated keys for each combination of values of d and s.
From data plotted in the graphs it is clear that the dispersion
of achieved utilizations is lower for the rising stash size. Also
the effect of stashes with size s < t/16 for the cuckoo hash
with d > 2 is negligible.

Poster Session 1

222

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

s [% of t]

U
 [
%

]

t=128
t=1024
t=8192

Fig. 3. Achievable memory utilization for cuckoo hash with two tables
(d = 2) for different sizes of stash.

0 10 20 30 40 50 60 70 80 90 100
85

90

95

100

s [% of t]

U
 [
%

]

t=128
t=1024
t=8192

Fig. 4. Achievable memory utilization for cuckoo hash with three tables
(d = 3) for different sizes of stash.

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

U [%]

P
ro

b
a

b
ili

ty
 [

%
]

s=0
s=t/64
s=t/16
s=t/4
s=t/2
s=t

Fig. 5. Probability distribution of achievable memory utilization for cuckoo
hash with two tables (d = 2, t = 1024).

85 90 95 100
0

1

2

3

4

5

U [%]

P
ro

b
a

b
ili

ty
 [

%
]

s=0
s=t/64
s=t/16
s=t/4
s=t/2
s=t

Fig. 6. Probability distribution of achievable memory utilization for cuckoo
hash with three tables (d = 3, t = 1024).

The dispersion reduction is noticeable especially for the
cuckoo hash with two tables (Fig. 5). For two tables without
a stash there is a very real chance of achieving memory
utilization that is significantly lower than the mean utilization
(marked by red arrows). The solution to this problem is even a
relatively small stash (s = t/64 or s = t/16). This particular
situation is very important when cuckoo hash is implemented
using large external memory to store cuckoo hash tables. The

TABLE I. FPGA RESOURCES REQUIREMENTS AND MEMORY

UTILIZATIONS OF OUR LOOKUP ENGINE IMPLEMENTATION.

Key FPGA Resources Frequency Mean Mean

Width d t s LUTs FFs BRAMs [MHz] Utilization Capacity

32 2 8 192 2 047 3 721 2 111 45 264.116 83.5% 15 388

32 3 8 192 4 095 4 138 2 221 71 265.437 96.7% 27 711

128 2 1 024 255 8 336 4 059 15 257.631 83.5% 1 923

128 3 1 024 511 9 564 4 304 23 263.704 96.7% 3 463

bottleneck in such an implementation lays in the throughput of
external memory interface, which limits the number of usable
cuckoo hash tables usually to only 2. These results suggests
that stash of size s = t/64 or s = t/16 can significantly
improve the achievable memory utilizations in exactly this
case. So for example, the implementation of cuckoo hash with
d = 2 and t = 2

20 in external memory require stash with size
only s = 2

20/16 = 65 536 to achieve mean external memory
utilization of 70% (mean capacity over 1.5 million keys) with
very low chance to achieve utilization under 65%.

Finally, we present the FPGA resources requirements of
our top-level lookup engine in selected configurations. The
requirements in terms of LUTs, registers and BlockRAMs are
given in Tab. I together with the achievable clock frequencies.
Values in tables are acquired from the synthesis by XST tool
for the XilinxVirtex-7 870HT FPGA and data width of 32 bits.
Variable key widths (32 and 128 bits as lengths of IPv4 and
IPv6 addresses were selected) and capacity parameters d, t, s
are given in the table. Tab. I also presents mean achievable
memory utilization (Utotal) and capacity based on test results
presented earlier in this section. The achieved frequencies over
200MHz and the fact that each lookup implementation is
capable of one lookup on each clock cycle suggest, that our
architecture is capable of over 200million lookups per second,
which is sufficient for packet filtering on 100+Gbps networks.

V. CONCLUSION

The paper proposed a viable concept for fast packet
filtering for FPGA. The proposed architecture leverages the
combination of the cuckoo hash engine with BST engine with
a focus on parallel implementation in FPGA. The results of
evaluation show that the concept allows not only fast lookups
for every arriving packet on the 100+Gbps links but also
effective utilization of FPGA resources.

ACKNOWLEDGEMENT

This research has been supported by the grant MVCR
VG20102015022, BUT project FIT-S-14-2297 and the IT4-
Innovations Centre of Excellence CZ.1.05/1.1.00/02.0070.

REFERENCES

[1] J. Naous and et al., “Implementing an openflow switch on the netfpga
platform,” in Proceedings of ANCS, NY, USA, 2008, pp. 1–9.

[2] R. Pagh and F. F. Rodler, “Cuckoo hashing,” J. Algorithms, vol. 51, no. 2,
pp. 122–144, May 2004.

[3] B. Lampson, V. Srinivasan, and G. Varghese, “Ip lookups using multiway
and multicolumn search,” in INFOCOM, 1998, pp. 1248–1256.

[4] T. Tran and S. Kittitornkun, “Fpga-based cuckoo hashing for pattern
matching in nids/nips,” in MNGNS, ser. LNCS, 2007.

[5] A. Kirsch, M. Mitzenmacher, and U. Wieder, “More robust hashing:
Cuckoo hashing with a stash,” in ESA, ser. LNCS. Springer, 2008.

