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Introduction
• Embedded systems issues

• increasing complexity,
• programmability,
• one or more processors 

placed on a single chip
• Application Specific Instruction-

set Processors (ASIPs)
• optimized for a given task,
• low power consumption,
• tools for theirs design and, 

programming, testing and 
verification are needed,

• automatic toolchain
generation from an ASIP 
model in Architecture
Description Language

• CodAL architecture description 
language is used for ASIP design

• Automated generation of the 
tool-chain and the HDL description 
of the processor from CodAL

• One needs to verify that the C/C++ 
compiler generates correct 
executable files

• Instruction-accurate model allows 
generation of
• programming tools with the 

C/C++ compiler,
• simulation tools,
• golden model for verification

• Cycle-accurate model allows 
generation of
• programming tools without 

the C/C++ compiler,
• simulation tools,
• HDL description,
• verification environment

Conclusion

ASIP Design with Codasip® Framework
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Experimental Results
• 32-bit processor Codix

• 7 pipeline stages
• RISC instruction set

• Simulated instruction counts Automatic Generation of C/C++ Compiler
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• LLVM-based
• The same processor model is used to 

generate simulator and compiler
backend

• Automatic generation of instruction
selector, register allocator with
spilling, scheduler and other passes

• Profile-guided superblock formation
• Scheduling and bundle formation for

VLIW architectures

• Code quality comparable with hand-written compilers with many 
extensions

• gcc-compatible compiler driver with modified GNU binutils
• Fast and easy porting of the Newlib standard C library
• Production-quality Codasip® Framework for ASIP design can be obtained

from www.codasip.com, free academic license
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Coremark All benchmarks were compiled with -O3 
optimization level.
Compilers used:
• arm-gcc 4.8.1
• microblaze-gcc 4.8.1
• arc-gcc 4.8.0
• codix-llvm 3.2 (codasip)
• arm-llvm 3.2 (official)
Simulators used:
• Codasip intersim 3.0.1
• Open Virtual Platforms build 

20130630

• Hardware performance 
comparison
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Codix Codix  WPO Leon 3 Microblaze OpenRISC Nios II TI OMAP
3430 (ARM
Cortex A8)

CoreMark/MHz

Coremark benchmark was compiled with -O3 optimization level.
Compilers:
• leon-gcc 4.4.2, microblaze-gcc 4.1.2, open-risc-gcc 4.5.1, nios-gcc 4.2.1
• codix-llvm 3.2
Codix hardware: 100 Mhz, Virtex 5, 16kB instruction and 16kB data caches
Results for Leon 3, Microblaze, OpenRISC, Nios II and TI OMAP 3430 are from [1]

[1] Sven-Ake Andersson: Four soft-core processors for embedded systems, Realtime Embedded, 8th Jan 2013, 
http://www.eetimes.com/document.asp?doc_id=1280290&page_number=6

References

Instruction Accurate
CodAL model

Optional ABI specification
Optional user instruction aliases

Instruction Semantics
Description

C/C++ compiler
backend

Optional user optimizations and 
extensions

http://www.codasip.com/

