
ASIP Design with Automatic
C/C++ Compiler Generation

Adam Husár, Zdeněk Přikryl, Luďek Dolíhal, Karel Masařík, and Tomáš Hruška
Faculty of Information Technology, Brno University of Technology, Czech Republic

{ihusar, iprikryl, idolihal, masarik, hruska}@fit.vutbr.cz

Introduction
• Embedded systems issues

• increasing complexity,
• programmability,
• one or more processors

placed on a single chip
• Application Specific Instruction-

set Processors (ASIPs)
• optimized for a given task,
• low power consumption,
• tools for theirs design and,

programming, testing and
verification are needed,

• automatic toolchain
generation from an ASIP
model in Architecture
Description Language

• CodAL architecture description
language is used for ASIP design

• Automated generation of the
tool-chain and the HDL description
of the processor from CodAL

• One needs to verify that the C/C++
compiler generates correct
executable files

• Instruction-accurate model allows
generation of
• programming tools with the

C/C++ compiler,
• simulation tools,
• golden model for verification

• Cycle-accurate model allows
generation of
• programming tools without

the C/C++ compiler,
• simulation tools,
• HDL description,
• verification environment

Conclusion

ASIP Design with Codasip® Framework

This work was supported by the European Social Fund (ESF) in the project Excellent Young Researchers at BUT (CZ.1.07/2.3.00/30.0039), the IT4Innovations Center of Excellence
(CZ.1.05/1.1.00/02.0070), Brno Ph.D. Talent Scholarship Programme, the BUT FIT project FIT-S-11-2, research plan no. MSM0021630528.

Experimental Results
• 32-bit processor Codix

• 7 pipeline stages
• RISC instruction set

• Simulated instruction counts Automatic Generation of C/C++ Compiler

Algorithm prototype
(Matlab, C, etc.)

IA model template
or user definition

Perf.
gate

Profile

Generate
microarchitecture

Refine
IA CodAL

Profile

Perf.
gate

Integrate

Refine
CA CodAL

C/C++

Algorithm
refinement

Architecture
refinement

Implementation
refinement

C
o

n
strain

ts

• LLVM-based
• The same processor model is used to

generate simulator and compiler
backend

• Automatic generation of instruction
selector, register allocator with
spilling, scheduler and other passes

• Profile-guided superblock formation
• Scheduling and bundle formation for

VLIW architectures

• Code quality comparable with hand-written compilers with many
extensions

• gcc-compatible compiler driver with modified GNU binutils
• Fast and easy porting of the Newlib standard C library
• Production-quality Codasip® Framework for ASIP design can be obtained

from www.codasip.com, free academic license

0

0.2

0.4

0.6

0.8

1

1.2

Dhrystone 1

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

Dhrystone 2.1

0
0.2
0.4
0.6
0.8

1
1.2
1.4

Coremark All benchmarks were compiled with -O3
optimization level.
Compilers used:
• arm-gcc 4.8.1
• microblaze-gcc 4.8.1
• arc-gcc 4.8.0
• codix-llvm 3.2 (codasip)
• arm-llvm 3.2 (official)
Simulators used:
• Codasip intersim 3.0.1
• Open Virtual Platforms build

20130630

• Hardware performance
comparison

0

0.5

1

1.5

2

2.5

Codix Codix WPO Leon 3 Microblaze OpenRISC Nios II TI OMAP
3430 (ARM
Cortex A8)

CoreMark/MHz

Coremark benchmark was compiled with -O3 optimization level.
Compilers:
• leon-gcc 4.4.2, microblaze-gcc 4.1.2, open-risc-gcc 4.5.1, nios-gcc 4.2.1
• codix-llvm 3.2
Codix hardware: 100 Mhz, Virtex 5, 16kB instruction and 16kB data caches
Results for Leon 3, Microblaze, OpenRISC, Nios II and TI OMAP 3430 are from [1]

[1] Sven-Ake Andersson: Four soft-core processors for embedded systems, Realtime Embedded, 8th Jan 2013,
http://www.eetimes.com/document.asp?doc_id=1280290&page_number=6

References

Instruction Accurate
CodAL model

Optional ABI specification
Optional user instruction aliases

Instruction Semantics
Description

C/C++ compiler
backend

Optional user optimizations and
extensions

http://www.codasip.com/

