
A New Embedded Platform for Rapid Development
of Network Applications

Jan Korenek, Pavol Korcek, Vlastimil Kosar, Martin Zadnik, Jan Viktorin
Brno University of Technology

Faculty of Information Technology
IT4Innovations Centre of Excellence

Bozetechova 1/2,612 66 Brno, Czech Republic
{korenek, ikorcek, ikosar, izadnik}@fit.vutbr.cz, xvikto03@stud.fit.vutbr.cz

Categories and Subject Descriptors

C.3 [Special-purpose and application-based systems]:
Real-time and embedded systems

General Terms

Design, Embedded, Networking

Keywords

FPGA, Zynq, Embedded, Networking

1. INTRODUCTION
NetFPGA-1G [2] has shown its potential in enabling fast

traffic processing while introducing no packet loss and min-
imal delay. Now it is time to scale down in order to enable
a massive deployment of the FPGA solutions in networking.
We propose and build a low-cost and low-power platform
which is be capable of hosting embedded applications with
FPGA support. Such a platform might enable faster de-
ployment of new ideas in networking and might prove useful
for large-scale experiments (stacks of platforms) as its size,
power consumption and cost are expected to be ten times
lower of the NetFPGA-cube. It is recognized that the FPGA
coupled with the host processor comprises a powerful plat-
form for network traffic processing. The logic of such a solu-
tion is clear. Computational intensive tasks are handled by
the FPGA logic whereas more complex tasks by the proces-
sor. The proposed platform aims at such a design in which
the FPGA and the processor are even more tightly coupled
together on a single die SoC solution.

As a proof of this concept, we build a platform called
uG4-150. Its FPGA hosts a synthesized softcore processor
(e.g. Xilinx MicroBlaze). But our final goal is to utilize the
hardcore processor (e.g. ARM-based) integrated with the
FPGA such as Xilinx Zynq [1].

2. SYSTEM CONCEPT
The concept of the whole system is based on a modu-

lar and layered design (see Fig. 1) to minimize the efforts
when porting it to a new platform or when new components
are introduced. The concept comprises hardware platform,

Copyright is held by the author/owner(s).
ANCS’12, October 29–30, 2012, Austin, Texas, USA.
ACM 978-1-4503-1685-9/12/10.

Figure 1: Concept of the system.

Figure 2: uG4-150 hardware platform.

EDK-based framework, firmware, application IP cores, op-
erating system and application software libraries.

The first layer represents the hardware platform itself. In
our case it is uG4-150 platform (depicted in Fig. 2) with its
main processing element Xilinx Spartan-6 FPGA but other
similar platforms may fit as well. Based on the analysis of
FPGA components (i. e. Ethernet cores, DMA cores, Mi-
croBlaze soft processor core, AXI interconnection system
and packet processing system) we have equipped uG4-150
with the high-end Spartan-6 (XC6SLX150-3FGG484C).

uG4-150 also hosts additional components such as:

• 2x 256MB of DDR3 for the processor and the FPGA
processing system,

• 4x 1Gbps Ethernet over metallic RJ45 connectors,



• USB3.0 (type A) connector to a fast data storage,

• 16 MB 4-bit serial flash memory (FPGA boot),

• 512 kB I2C PROM (USB3.0 controller boot),

• slot for microSD memory cards, etc.

The EDK-based framework abstracts application IP cores
from specifics of the given platform by providing controllers
to the various peripheral components. The most important
modules are: AXI Ethernet (transforming RGMII interface
to AXI-Stream), SDRAM controller (AXI S6 DDRX con-
trols DDR3 memories), SD card controller and others.

The application IP cores implement various tasks of basic
packet processing. These tasks ranges from protocol analy-
sis, packet classification, to filtration and queuing. In case
of protocol analysis, the structure and encapsulation of pro-
tocols is described in XML and synthesized into VHDL.
Despite that the extracted fields may be changed on-the-
fly. Filter and classification components identify packets
based on the match of its IP addresses and/or ports and
protocol number against the given set of rules. The match-
ing of prefix rules is implemented using Tree bitmap algo-
rithm [6] whereas the matching of exact rules is implemented
as Cuckoo hashing [5]. Further the packets may be queued
in a fairly large buffer in DDR3 memories. The size of these
memories provide capacity large enough to store more than
a second of traffic at the wire-speed. Finally, there is a mod-
ule implementing fast and secure packet encoding and secure
delivery. All the cores may be assembled in a modular way
to perform more complex network operations. The mod-
ularity has been achieved through utilization of standard
AXI-Stream bus to pass data among modules and AXI-Lite
for management purposes.

The Linux OS [3] provides standard ways to access the
whole system. It allows to run a wide set of UNIX-based
software such as ssh server, iptables or the Click Modular
Router [4]. The current version of the operating system
can be used on the Zynq platform without any significant
modifications.

The access to the non-standard IP cores, which come
without any standard kernel-space driver, is done over an
abstract layer called HWIO. HWIO is a tiny library that
utilizes device-tree provided by the Open Firmware kernel 1

to access memory mapped registers of application-specific
components.

The application software initializes the HWIO and looks
for a compatible core which performs required job. If such is
found it is initialized and configured according to the needs
of user.

3. USE CASES
The uG4-150 has been tested in application scenario aim-

ing at legal network traffic interception. The system of the
probe is built using the proposed system. It utilizes the
IP cores to delay incoming packets, parse and extract their
headers, filter incoming packets and send them to the col-
lector. Tab. 1 shows synthesis results in ISE 14.1 xst tool
for 32-bit wide processing pipeline and 128 filtering rules.

The platform may serve other applications as well. The
striking one are specific routers or switches (OpenFlow), fire-
walls, various proxies, gateways and monitoring probes.

1www.openfirmware.org

Type BRAMs LUTs FFs Freq.
uG4-150 6(2%) 8887(9%) 2482(1%) 111 MHz
Zynq-7030 3(1%) 8046(7%) 2419(1%) 218 MHz

Table 1: Real and expected FPGA resource con-

sumption on uG4-150 and Zynq platforms respec-

tively.

4. CONCLUSIONS
This paper proposed a platform for rapid prototyping of

high-speed and low-power embedded applications in net-
working. The concept utilizes the FPGA with the embedded
processor to benefit from software flexibility and high per-
formance of hardware processing. In comparison with the
NetFPGA-cube, the proposed uG4-150 platform has signif-
icantly lower power consumption, cost and size.

As the processor is running OS Linux, the applications can
use standard Linux tools and libraries to shorten software
development. Moreover, hardware development is simplified
by the prepared set of IP cores. These cores accelerate basic
time-critical operations, provide AXI-Stream interface, and
can be simply connected with Xilinx EDK into the process-
ing pipeline. All IP cores are configurable from user space
by the HWIO library.

Currently, the uG4-150 platform utilizes Spartan-6 FPGA
with the MicroBlaze processor. But the aim is to utilize
Xilinx Zynq with hardcore ARM processor. The uG4-150 is
meant to be a functional testbed for upcoming development
of platform with Zynq.

5. ACKNOWLEDGMENTS
This work has been partially supported by the Research

Plan MSM 0021630528, IT4Innovations Centre of Excellence
project CZ.1.05/1.1.00/02.0070, the grant BUT FIT-S-12-1
and Sec6net project VG20102015022.

6. REFERENCES
[1] Xilinx Inc., Zynq-7000 EPP Overview, Advance

Product Specification, DS190 (v1.1.1) June 11, 2012
http://www.xilinx.com/support/documentation/

data_sheets/ds190-Zynq-7000-Overview.pdf.

[2] NetFPGA Team, NetFPGA-1G,
http://www.netfpga.org/php/specs.php.

[3] J. Viktorin, MicroBlaze Simple Linux,
https://github.com/jviki/mbsl

[4] Click Modular Router documentation -
http://pdos.csail.mit.edu/click/doc/

[5] Rasmus Pagh and Flemming Friche Rodler. Cuckoo
hashing. J. Algorithms, 51(2):122-144, 2004.

[6] W. Eatherton and G. Varghese and Z. Dittia. Tree
bitmap: hardware/software ip lookups with incremental
updates. SIGCOMM Comput. Commun. Rev.,
34:97-122, April 2004.


