Project Details
Rozvoj kryptoanalytických metod prostřednictvím evolučních výpočtů
Project Period: 1. 1. 2016 – 31. 12. 2018
Project Type: grant
Code: GA16-08565S
Agency: Czech Science Foundation
Program: Standardní projekty
cryptanalysis; cryptographic algorithm; distinguisher; security; evolutionary computing; optimization
Cryptographic algorithms usually go through elaborate testing by skilled experts who assert their overall security. We suggest to partly replace such extensive human labour by automating initial parts of such analyses. We base our approach on automatically generated "distinguishers" that show undesired statistical anomalies in an algorithm output. We design a distinguisher in the form of a multiple-output logic function, using evolutionary algorithms (genetic programming). We show that such approach leads to promising results comparable to the state-of-the-art testing. Our approach builds a distinguisher automatically and adaptively to the evaluated algorithm output. This opens up new possibilities for discovering those potential weaknesses in cryptographic algorithms that remained hidden from statistical tests and cryptanalysts sights. Our research will aim to answer two crucial questions of atmost importance when considering an algorithm security: (1) Is there anything wrong with a crypto algorithm? (2) What is wrong in the algorithm design?
Dobai Roland, Ing., Ph.D. (CM-SFE)
Grochol David, Ing., Ph.D.
Sekanina Lukáš, prof. Ing., Ph.D. (DCSY)
2019
- MRÁZEK, V.; SEKANINA, L.; DOBAI, R.; SÝS, M.; ŠVENDA, P. Efficient On-Chip Randomness Testing Utilizing Machine Learning Techniques. IEEE Trans. on VLSI Systems., 2019, vol. 27, no. 12,
p. 2734-2744. ISSN: 1063-8210. Detail
2018
- GROCHOL, D.; SEKANINA, L. Multi-Objective Evolution of Ultra-Fast General-Purpose Hash Functions. In European Conference on Genetic Programming. Lecture Notes in Computer Science. Berlin: Springer International Publishing, 2018.
p. 187-202. ISBN: 978-3-319-77553-1. Detail - MRÁZEK, V.; SÝS, M.; VAŠÍČEK, Z.; SEKANINA, L.; MATYÁŠ, V. Evolving Boolean Functions for Fast and Efficient Randomness Testing. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '18). Kyoto: Association for Computing Machinery, 2018.
p. 1302-1309. ISBN: 978-1-4503-5618-3. Detail
2017
- GROCHOL, D.; SEKANINA, L. Multiobjective Evolution of Hash Functions for High Speed Networks. In Proceedings of the 2017 IEEE Congress on Evolutionary Computation. San Sebastian: IEEE Computer Society, 2017.
p. 1533-1540. ISBN: 978-1-5090-4600-3. Detail - HUSA, J.; DOBAI, R. Designing Bent Boolean Functions With Parallelized Linear Genetic Programming. In GECCO Companion '17 Proceedings of the Companion Publication of the 2017 on Genetic and Evolutionary Computation Conference. Berlín: Association for Computing Machinery, 2017.
p. 1825-1832. ISBN: 978-1-4503-4939-0. Detail - KIDOŇ, M.; DOBAI, R. Evolutionary design of hash functions for IP address hashing using genetic programming. In 2017 IEEE Congress on Evolutionary Computation (CEC). San Sebastian: Institute of Electrical and Electronics Engineers, 2017.
p. 1720-1727. ISBN: 978-1-5090-4601-0. Detail
2016
- DOBAI, R.; KOŘENEK, J.; SEKANINA, L. Adaptive Development of Hash Functions in FPGA-Based Network Routers. In 2016 IEEE Symposium Series on Computational Intelligence. Athens: IEEE Computational Intelligence Society, 2016.
p. 1-8. ISBN: 978-1-5090-4240-1. Detail