
Alternative models of computation

Complexity Theory

Faculty of Information Technology
Brno University of Technology

Brno, Czech Republic

Lukáš Charvát

This material was created with the support of the Czech Ministry of Education,
Youth and Sports (project FRVŠ 166/2013/G1).

Motivation

Turing machines (TMs):
• Weak data structure and “instruction” set.
• Easy to analyse.

Can TMs implement arbitrary algorithms?
• Does their computing strength suffice?
• How efficient are they compared to real-world systems?

We will look at other models of computation, especially at random
access machines (RAMs) which model computers capable of
handling arbitrarily large integers.

Complexity Theory (FIT VUT) Alternative models of computation 2 / 22

Motivation – Assembly Language

C-language code:
1 unsigned int getmax(unsigned int* a) {
2 unsigned int max = *a;
3 while (*a > 0) {
4 if (*a > max)
5 max = *a;
6 ++a; }
7 return max; }

Assembly language (x86-64):
1 getmax: 14 movq -24(%rbp), %rax
2 pushq %rbp 15 movl (%rax), %eax
3 movq %rsp, %rbp 16 movl %eax, -4(%rbp)
4 movq %rdi, -24(%rbp) 17 .L3:
5 movq -24(%rbp), %rax 18 addq $4, -24(%rbp)
6 movl (%rax), %eax 19 .L2:
7 movl %eax, -4(%rbp) 20 movq -24(%rbp), %rax
8 jmp .L2 21 movl (%rax), %eax
9 .L4: 22 testl %eax, %eax
10 movq -24(%rbp), %rax 23 jne .L4
11 movl (%rax), %eax 24 movl -4(%rbp), %eax
12 cmpl -4(%rbp), %eax 25 popq %rbp
13 jbe .L3 26 ret

Complexity Theory (FIT VUT) Alternative models of computation 3 / 22

Random Access Machines (RAMs)

The process of computation of TMs is very distant from real
computing systems.

The architecture of RAMs is, on the other hand, very similar to
current computers.

The results of a complexity analysis of a RAM program is close to
the behaviour of real-world computers.

Moreover, we will observe that computing power of RAMs is
equivalent to the power of TMs.

Complexity Theory (FIT VUT) Alternative models of computation 4 / 22

Basic Definition

Random Access Machine (RAM):

• An (infinite) array of registers R = (r0, r1, . . .).

• Each register is capable of containing an arbitrarily large integer
(possibly negative).

• The possibility to directly access an arbitrary register.

• Register 0 serves as an accumulator.

• Program counter κ.

A RAM program Π = (π1, . . . , πm) is a finite sequence of
instructions.

The input is placed in a finite array of input registers I = (i1, . . . , in).

Three addressing modes: j , ↑ j , and = j .

Complexity Theory (FIT VUT) Alternative models of computation 5 / 22

Instruction Set

Instr. Op Semantics Instr. Op Semantics
READ j r0 ← ij HALF r0 ← r0/2
READ ↑ j r0 ← irj JUMP = j κ← j
STORE j rj ← r0 JPOS = j if r0 > 0 then κ← j
STORE ↑ j rrj ← r0 JZERO = j if r0 = 0 then κ← j
LOAD x r0 ← x ′ JNEG = j if r0 < 0 then κ← j
ADD x r0 ← r0 + x ′ HALT κ← 0
SUB x r0 ← r0 − x ′

note: x (resp. x ′) is one of j , ↑ j , = j (resp. rj , rrj , j)

Complexity Theory (FIT VUT) Alternative models of computation 6 / 22

Configurations of a RAM

A configuration is a pair C = (κ,R) where:

• κ ∈ N0 is the program counter,

• R = {(j1, rj1), . . . , (jk , rjk)} is a finite set of register-value pairs.

The initial configuration is (1, ∅), i.e., all registers are zeroed.

Let Π be a RAM program and I = (i1, . . . , in) an input array. Then,
the relation (κ,R) Π,I−→ (κ′,R′) (“yields in one step”) is defined as
follows:

• κ′ is the new value of κ after executing the κ-th instruction of Π,

• R′ is a modified version of R according to the semantics of the κ-th
instruction of Π.

The relations (κ,R) Π,I−→k (κ′,R′) and (κ,R) Π,I−→∗ (κ′,R′) are
defined analogously as for TMs.

Complexity Theory (FIT VUT) Alternative models of computation 7 / 22

The Function Computed by a RAM

Definition
Let Π be a program, D ⊆ Z∗ be a set of finite sequences of integers,
and φ be a function φ : D → Z. Π computes φ iff

∀I ∈ D : (1, ∅) Π,I−→∗ (0,R)⇒ (0, φ(I)) ∈ R.

Example (A RAM program computing φ(a,b) = |a− b| with I = (5,8))
Program Configurations

(1, ∅)
1 READ 2 (2, {(0, 8)})
2 STORE 2 (3, {(0, 8), (2, 8)})
3 READ 1 (4, {(0, 5), (2, 8)})
4 STORE 1 (5, {(0, 5), (2, 8), (1, 5)})
5 SUB 2 (6, {(0,−3), (2, 8), (1, 5)})
6 JNEG 8
7 HALT
8 LOAD 2 (9, {(0, 8), (2, 8), (1, 5)})
9 SUB 1 (10, {(0, 3), (2, 8), (1, 5)})

10 HALT (0, {(0, 3), (2, 8), (1, 5)})

Complexity Theory (FIT VUT) Alternative models of computation 8 / 22

Time and Space Complexity

Because RAMs use arbitrarily large integers, the computation cost
of an instruction can differ according to the size of the operand.

Possible approaches:

1 The size of the operand is ignored:
I The execution of a RAM instruction can be counted as one time step.
I A uniform cost of an operation.

2 The size of the operand is taken into account:
I The cost of an operation rises logarithmically with the size of the

operand.
I Closer to the behaviour of real-world programs.

Complexity Theory (FIT VUT) Alternative models of computation 9 / 22

Uniform Time and Space Complexity

The uniform time complexity of the computation of a RAM
program Π on the input I ∈ D is the function tuni

Π : D → N ∪ {∞}:
• tuni

Π (I) = k ⇐⇒ (1, ∅) Π,I−→k (0,R),
i.e., a RAM with the program Π stops on the input I after k steps.

• tuni
Π (I) =∞⇐⇒ (1, ∅) Π,I6−→∗ (0,R),
i.e., a RAM with the program Π does not stop on the input I.

The uniform space complexity of the computation of a program Π
on the input I = (i1, . . . , in) ∈ D is the function suni

Π : D → N∪{∞}:
• suni

Π (I) = n + max {|R| | ∃k ∈ N0 : (1, ∅) Π,I−→∗ (k ,R)},

• i.e., the length of the input plus the number of used registers.

Complexity Theory (FIT VUT) Alternative models of computation 10 / 22

Logarithmic Time Complexity

For an integer i ∈ Z, let bin(i) be its binary representation1.
The length of i is defined as len(i) = |bin(i)|.
The logarithmic time cost function c log

(Π,I) for a RAM program Π and
its input I, s.t. (1, ∅) Π,I−→k (0,R), is a mapping

c log
(Π,I) :

{
{1, . . . , k} → N
i 7→ max{len(xi) | xi ∈ Xi(Π, I)}

where Xi(Π, I) ⊆ Z is the set of all register indices, register values,
and constants used in the i-th step of the program Π on the input I.
The logarithmic time complexity of the computation of a RAM
program Π on the input I is the function t log

Π : D → N ∪ {∞}:
• t log

Π (I) =
∑

1≤i≤k
c log

(Π,I)(i)⇐⇒ (1, ∅) Π,I−→k (0,R),

• t log
Π (I) =∞⇐⇒ (1, ∅) Π,I6−→∗ (0,R).

1We assume no redundant leading 0s and a minus sign in front if negative.
Complexity Theory (FIT VUT) Alternative models of computation 11 / 22

Logarithmic Space Complexity

The length of I = (i1, . . . , in) is defined as

len(I) =
n∑

j=1

len(ij)

The logarithmic space complexity for register r during the
computation of a program Π on the input I = (i1, . . . , in) ∈ D is the
function slog

Π,r : D → N ∪ {∞}:

• slog
Π,r (I) = max{len(v) | ∃k ∈ N0 : (1, ∅) Π,I−→∗ (k ,R) ∧ (r , v) ∈ R}

The logarithmic space complexity of the computation of a program
Π on the input I = (i1, . . . , in) is the function slog

Π : D → N ∪ {∞}:
• slog

Π (I) = len(I) + slog
Π,r0

(I) + slog
Π,r1

(I) + . . .

Complexity Theory (FIT VUT) Alternative models of computation 12 / 22

Time and Space Complexity – Size of Input

The time complexity of the computation of a RAM program Π is
the function TΠ:

TΠ :

{
N→ N ∪ {∞}
k 7→ max{tΠ(I) | len(I) = k}

The space complexity of the computation of a RAM program Π is
the function SΠ:

SΠ :

{
N→ N ∪ {∞}
k 7→ max{sΠ(I) | len(I) = k}

tΠ (resp. sΠ) can be either uniform tuni
Π (suni

Π) or logarithmic t log
Π

(slog
Π) time (resp. space) complexity functions.

Complexity Theory (FIT VUT) Alternative models of computation 13 / 22

Simulation of a TM using a RAM

We will observe that each TM can be simulated by a RAM
program with a linear loss in efficiency.

For a single-tape TM M with the input alphabet Σ = {a1, . . . ,ak},
the input domain DΣ of the simulating RAM program is defined as

DΣ = {(i1, . . . , in,0) | n ∈ N ∧ ∀1 ≤ j ≤ n : 1 ≤ ij ≤ k}

Then, for each language L ∈ Σ∗, we can define φL : DΣ → {0,1}:

φL((i1, . . . , in,0)) = 1⇐⇒ ai1 · · · ain ∈ L

φL((i1, . . . , in,0)) = 0⇐⇒ ai1 · · · ain 6∈ L

Computing φL is equivalent to deciding L.

Complexity Theory (FIT VUT) Alternative models of computation 14 / 22

Simulation of a TM using a RAM

Proposition

Let L ∈ DTIME(f (n)). Then there is a RAM program that computes φL
with the uniform (resp. logarithmic) complexity in O(f (n)) (resp.
O(f (n) ∗ log(f (n)))).

Proof (Idea)
For each state q of M, we construct in ΠM a subroutine that
simulates the behaviour of M in q.

. . . q2 . . .

. . .

q4 . . .

cells: ∆ a a b a b . . .

a/b,←

b/a,→

regs: 6 ∆ a a b a b . . .

q2,a?: LOAD ˆ1 STORE 1
SUB =a JUMP q4,a?
JZERO q2,a q2,b?: LOAD ˆ1
JUMP q2,b? ...

q2,a: LOAD =b reject: LOAD =0
STORE ˆ1 HALT
LOAD 1 accept: LOAD =1
ADD =-1 HALT

Complexity Theory (FIT VUT) Alternative models of computation 15 / 22

Simulation of a RAM using a TM

Now, we will try to show that each RAM can be simulated by a TM
with a polynomial loss in efficiency.

A sequence of integers I = (i1, . . . , in) can be encoded into the
binary representation code(I) as the string bin(i1)| . . . |bin(in)
where the symbol “|” serves as the delimiter.

Proposition
Let Π be a RAM program that computes a function φ : D → Z with the
uniform time complexity f (n). Then, there exists a 7-tape TM MΠ that
computes the function fMΠ

: Σ∗ → Σ∗ for which

fMΠ
(code(I)) = bin(φ(I)).

Moreover, MΠ computes φ in the time O(f (n)3).

Complexity Theory (FIT VUT) Alternative models of computation 16 / 22

Simulation of a RAM using a TM – Proof idea 1/3

Proof (Idea)
The tapes of the TM MΠ serve for the following purposes:

1 The input I
2 Holds the registers’ contentsa ∆(0 : [r0]) � (1 : [r1]) � . . . (n : [rn])/
3 The program counter κ
4 The currently sought register address

5-7 Extra space for the execution

Each instruction of the RAM program Π is implemented by a group
of states of MΠ.
Simulating an instruction of Π on MΠ takes O(f (n)2) steps.

• Fetching the values of the registers from the second tape takes
O(f (n)2) time (there are O(f (n)) pairs, each of the length O(f (n))).

• Computation of the result of the instruction on integers of the length
O(f (n)) can be done in O(f (n)) time.

aUpdate: the old value is replaced by # . . .# and a new one is appended.

Complexity Theory (FIT VUT) Alternative models of computation 17 / 22

Simulation of a RAM using a TM – Proof idea 2/3

Proof (Idea)

Based on the previous observation, the simulation of f (n) steps of
Π takes O(f (n)3) steps of MΠ.

It remains to show that after simulating f (n) steps of Π, the largest
integer in the registers has the maximum size of O(f (n)).

Proposition
After the t-th step of the computation of a RAM program Π on the
input I, the contents of any register have the length at most
t + len(I) + len(b) where b is the largest integer referred to in an
instruction of Π.

Complexity Theory (FIT VUT) Alternative models of computation 18 / 22

Simulation of a RAM using a TM – Proof idea 3/3

Proof (Idea)
Base case: the claim is true when t = 0.

Induction hypothesis: the claim is true after the (t − 1)-th step.

Case analysis over instruction types of the t-th instruction:
• Most of the instructions do not create new values (jumps, HALT,

LOAD, STORE, READ). For these, the claim holds.

• For arithmetic instructions involving a pair of integers, the length of
the result is one plus the length of the longest operand, which is by
the induction hypothesis at most t − 1 + len(I) + len(b). Thus, the
result has the length at most t + len(I) + len(b).

Complexity Theory (FIT VUT) Alternative models of computation 19 / 22

Random Access Stored Program (RASP) Machines

Analogy to universal Turing machines (UTMs):

• Input: The code of a TM M and an input word w .

• UTM simulates M on the word w .

Universal RAM program:

• Input registers of I contain an encoded RAM program Π and input
registers IΠ of Π.

• The RASP machine simulates the RAM program Π with the input IΠ.

Complexity Theory (FIT VUT) Alternative models of computation 20 / 22

Random Access Stored Program (RASP) Machines

A possible encoding of a RAM program:

• Assign unique code to each instruction-modifier combination.

• Example: “LOAD ↑” 7→ 1, “LOAD =” 7→ 2, . . .

• Keep operand value of instruction separated.

• Compose the input I as follows:
(code1,op1, . . . , codek ,opk ,0, iΠ1 , . . . , iΠn)

The purpose of the registers of a RAM program:
• r1 – the program counter of the RAM program Π,
• r2 – the pointer to input IΠ of the RAM program Π,
• r3 – the current instruction,
• r4 – the current operand value,
• r5 – an extra register,
• r6, r7, . . . – registers r0, r1, . . . of the RAM program Π.

Complexity Theory (FIT VUT) Alternative models of computation 21 / 22

Random Access Stored Program (RASP) Machines

Simulation (main loop):

1 Write the position of the delimiter (“0”) to r2.

2 Read the instruction from the position (↑ 1) ∗ 2 to r3.

3 Read the operand value from the position (↑ 1) ∗ 2 + 1 to r4.

4 Simulate the instruction with the code in r3. Increment the operand
value j by 5, when the addressing modes ↑ j or j are used.

5 Update r1 properly.

6 Goto step 2.

Proposition

If the uniform time complexity of a RAM program Π is O(f (n)), then the
number of the steps of a RASP machine simulating Π is upper
bounded by c ∗ f (len(IΠ)).

Complexity Theory (FIT VUT) Alternative models of computation 22 / 22

