
Models of Parallel Computation

Complexity Theory

Faculty of Information Technology
Brno University of Technology

Brno, Czech Republic

Lukáš Charvát

This material was created with the support of the Czech Ministry of Education,
Youth and Sports (project FRVŠ 166/2013/G1).

Parallel Computation

Raises new questions from the point of view of complexity:

• Given a task, can it be efficiently parallelised?

• Is there a connection between the number of processes used and
the required run time?

We will investigate two models of parallel computation:

• PRAM: Parallel Random Access Machine,

• Boolean Circuits.

A new complexity class NC containing algorithms that can be
easily executed in parallel will be defined and described as well.

Complexity Theory (FIT VUT) Models of Parallel Computation 2 / 28

A Quick Revision of RAMs

Random Access Machine (RAM):

• An (infinite) array of registers R = (r0, r1, . . .).

• Each register is capable of containing an arbitrarily large integer
(possibly negative).

• The possibility to directly access an arbitrary register.

• Register 0 serves as an accumulator.

• Program counter κ.

A RAM program Π = (π1, . . . , πm) is a finite sequence of
instructions.

The input is placed in a finite array of input registers I = (i1, . . . , in).

Three addressing modes: j , ↑ j , and = j .
Complexity Theory (FIT VUT) Models of Parallel Computation 3 / 28

Parallel Random Access machine (PRAM)

A parallel extension of RAM.

A PRAM program is a (possibly infinite) sequence of RAM
programs: P = (Π0,Π1,Π2, . . .) (one for each RAM).

An infinite array of shared registers: C = (c0, c1, c2, . . .)

Each RAM has its own array of local registers.

New instructions for accessing shared registers are introduced.

Complexity Theory (FIT VUT) Models of Parallel Computation 4 / 28

Read and Write Conflicts

What happens when several RAMs want to access the same
shared registers at the same time?

Three policies:

• EREW: exclusive read and exclusive write,

• CREW: concurrent read and exclusive write,

• CRCW: simultaneous read and write allowed.

We will assume the CREW policy further.

Complexity Theory (FIT VUT) Models of Parallel Computation 5 / 28

PRAM – A Note About Conventions

Let I = (i1, . . . , in) be the input placed into shared registers
c1, ..., cn.

Only a finite number of machines is activated to perform the
computation:

1 The RAM with the program Π0 is activated first.

2 Based on the number of integers in the input I, and its total length
len(I), Π0 determines the number q of RAMs needed for the
computation.

3 Additional RAMs are activated.

After all RAMs halt, the output O = (o1, . . . ,ok) can be read from
registers c1, . . . , ck .

Complexity Theory (FIT VUT) Models of Parallel Computation 6 / 28

Function Computed by PRAM

Definition
Let P be a program, D ⊆ Z∗ be a set of finite sequences of integers,
and φ, t ,p be functions s.t. φ : D → D, t : N→ N, p : N→ N. P
computes F in parallel time t with p processors iff ∀I = (i1, . . . , in) ∈ D:

the PRAM running P activates less than p(len(I)) RAMs,
all RAMs stop after at most t(len(I)) steps,
φ(i1, . . . , in) = (c1, . . . , ck).

Proposition

A language L is decided in parallel time nO(1) with nO(1) processors iff
L is decided in sequential time nO(1).

Corollary
The class of parallelly solvable problems is equivalent to the class P.

Complexity Theory (FIT VUT) Models of Parallel Computation 7 / 28

Boolean Circuits

Definition
A Boolean circuit C over the set of variables X is a finite directed
acyclic graph with labeled nodes:

the input nodes are labeled with a variable x ∈ X or with a
constant 0 or 1,
the gate nodes have one or more incoming edges and they are
labelled with one of the Boolean functions {∧,∨,¬}a,
the output node has no outgoing edge.

athe no. of incoming edges for ∧ and ∨ is greater than one, and one for ¬

Definition
We denote by size(C) the number of gates of C and by depth(C) the
maximum distance from an input to the output of C.

Complexity Theory (FIT VUT) Models of Parallel Computation 8 / 28

Deciding Languages with Circuits

A single Boolean circuit cannot be used to decide languages with
strings of arbitrary length.
Problem can be solved by definition of a family {Ci} of Boolean
circuits.
Each member of the family is then dedicated for deciding strings
of a certain length.

Definition
A language L ⊆ {0,1}∗ is decided by a family of circuits {Ci}, where
Cn takes n input variables, if ∀x ∈ L : C|x |(x) = 1⇐⇒ x ∈ L.

Definition
Let d, s : N→ N be functions. We say that a family {Ci} has depth d
and size s iff ∀n ∈ N : depth(Cn) ≤ d(n) ∧ size(Cn) ≤ s(n).

Complexity Theory (FIT VUT) Models of Parallel Computation 9 / 28

Families of Boolean Circuits – Examples

Example

Lop = {x ∈ {0,1}∗ | x has an odd number of 1s}
each ⊕-gate is of the depth 3
logarithmic depth

x1 x2 . . .

¬ ¬

∧ ∧ . . .

∨ . . .

Example

Luhalt = {1n | n encodes tuple (M, x) such that TM M halts on x}
For each n such that 1n ∈ Luhalt , the circuit Cn is a tree of ∧-gates.
Otherwise Cn is the constant-0 circuit.
Luhalt is clearly undecidable yet can be decided by a family of
circuits of linear size.

Complexity Theory (FIT VUT) Models of Parallel Computation 10 / 28

Uniform Boolean Circuits

The description of the circuit family for Luhalt presented in the last
example is not computable.

Definition
A family of polynomially-sized circuits {Ci} is logspace-uniform if there
exists a logspace deterministic TM M which for every n computes the
transformation 1n 7→ Cn where Cn denotes the description of Cn.

Example
The circuit family for Lop is logspace-uniform.

Complexity Theory (FIT VUT) Models of Parallel Computation 11 / 28

Simulation between PRAMs and Boolean Circuits

Proposition

A function f : {0,1}∗ → {0,1}∗ can be computed by a uniform family of
circuits {Ci} with depth d(n) = logO(1) n and size s(n) = nO(1) iff f can
be computed by a PRAM in parallel time t(n) = logO(1) n with
p(n) = nO(1) processors.

Note that the notation logk x is an abbreviation for (log x)k

Proof (Idea)
“⇒”:

Based on |n|, compute the description of Cn.
One circuit node←→ one processor.
Each processor computes its output and sends it (via shared
registers) to all other processors that need it.

Complexity Theory (FIT VUT) Models of Parallel Computation 12 / 28

Simulation between PRAMs and Boolean Circuits

Proof (Idea)
“⇐”:

Configuration of the simulated PRAM is a bit-vector containing the
value of the program counter and registers for each RAM.

We must face three major problems for all RAMs:
1 The type of instruction must be determined.
2 Operand must be fetched (by examining all register-value pairs).
3 Write conflicts must be resolved.

The first two problems can be solved by redundancy (computing
all possible instructions with all operands at once in parallel).

The last problem involves recording of all writes in current step
with subsequent conflict resolution.

Complexity Theory (FIT VUT) Models of Parallel Computation 13 / 28

Nick’s Class NC

Definition
The class NC is the class of languages decidable in parallel time
logO(1) n with nO(1) processors.

Lemma

NC ⊆ P

Describes an efficient parallel computation:
• polynomially many processors,
• polylogarithmic time.

NC is robust w.r.t. different PRAM models (and circuits).
Includes problems such as list-ranking, matrix multiplication, sum
of prefixes.

Complexity Theory (FIT VUT) Models of Parallel Computation 14 / 28

NC-reduction and P-completeness

Similarly to the P ?
= NP question, we do not know whether the

inclusion NC ⊆ P is proper, or not.

Definition
A language L1 is NC-reducible to language L2 (denoted L1 ≤NC L2) iff
there exist an NC-computable function r : Σ∗ → Σ∗ such that

x ∈ L1 ⇐⇒ r(x) ∈ L2

Definition
A language L is P-hard if ∀L′ ∈ P : L′ ≤NC L.

Definition
A language L is P-complete if L is P-hard and L ∈ P.

Complexity Theory (FIT VUT) Models of Parallel Computation 15 / 28

P-completeness of the Circuit Value Problem (CVP)

Definition
Let C be a circuit and x its input. A pair (C, x) ∈ CVP ⇐⇒ C(x) = 1.

Proposition
The Circuit Value Problem (CVP) is P-complete.

Proof
Assume TM M = (Q,Σ,Γ,δ,q0,qf) that decides L in time T (n) where
Q = {q0, . . . ,qs} and Γ = {a1, . . . ,am}. We will design an
NC-algorithm that given x computes a circuit r(x) such that x ∈ L iff
r(x) ∈ CVP. The layered circuit r(x) computes the following functions:

h(i , t) = 1 ⇐⇒ the head of M is on the i-th cell in the t-th step,
c(i , j , t) = 1 ⇐⇒ the contents of the i-th cell is aj in the t-th step,
s(k , t) = 1 ⇐⇒ M is in the state qk in the t-th step.

Complexity Theory (FIT VUT) Models of Parallel Computation 16 / 28

P-completeness of the Circuit Value Problem (CVP)
h(i , t) = 1 ⇐⇒ the head of M is on the i-th cell in the t-th step,

c(i , j , t) = 1 ⇐⇒ the contents of the i-th cell is aj in the t-th step,
s(k , t) = 1 ⇐⇒ M is in the state qk in the t-th step.

Proof
We set the initial head position h(1,0) = 1 and h(i ,0) = 0 for all i > 1.
Let Id = {(k ′, j ′) | δ(qk ′ ,aj ′) = (qk ,d)} for d ∈ {L,R} and
IΓ = {(k ′, j ′) | δ(qk ′ ,aj ′) = (qk ,aj)} for aj ∈ Γ. Then, for t > 0,

h(i , t) =

(
h(i − 1, t − 1) ∧

∨
(k ′,j ′)∈IR

c(i − 1, j ′, t − 1) ∧ s(k ′, t − 1)

)
∨(

h(i + 1, t − 1) ∧
∨

(k ′,j ′)∈IL
c(i + 1, j ′, t − 1) ∧ s(k ′, t − 1)

)
∨(

h(i , t − 1) ∧
∨

(k ′,j ′)∈IΓ
c(i , j ′, t − 1) ∧ s(k ′, t − 1)

)
h(i , t) can be evaluated by a {∧,∨}-circuit of constant size O(|Q| · |Γ|)
and can be generated in constant time using O(T 2(n)) processors.

Complexity Theory (FIT VUT) Models of Parallel Computation 17 / 28

P-completeness of the Circuit Value Problem (CVP)

h(i , t) = 1 ⇐⇒ the head of M is on the i-th cell in the t-th step,
c(i , j , t) = 1 ⇐⇒ the contents of the i-th cell is aj in the t-th step,
s(k , t) = 1 ⇐⇒ M is in the state qk in the t-th step.

Proof
We set the initial tape contents c(i , j ,0) = 1 iff the i-th cell contains aj .
Let Wj = {(k ′, j ′) | δ(qk ′ ,aj ′) = (qk ,aj)} where aj ∈ Γ. Then, for t > 0,

c(i , j , t) = (¬h(i , t − 1) ∧ c(i , j , t − 1)) ∨(
h(i , t − 1) ∧

(∧
(k ′,j ′)∈Wj

c(i , j ′, t − 1) ∧ s(k ′, t − 1)

))

Similarly, c(i , j , t) can be evaluated by a {∧,∨,¬}-circuit of constant
size and can be generated in constant time using O(T 2(n))
processors.

Complexity Theory (FIT VUT) Models of Parallel Computation 18 / 28

P-completeness of the Circuit Value Problem (CVP)

h(i , t) = 1 ⇐⇒ the head of M is on the i-th cell in the t-th step,
c(i , j , t) = 1 ⇐⇒ the contents of the i-th cell is aj in the t-th step,
s(k , t) = 1 ⇐⇒ M is in the state qk in the t-th step.

Proof
Finally, we set the initial state s(0,0) = 1 and s(k ,0) = 0 for all k > 0.
Let Sk = {(k ′, j ′) | δ(qk ′ ,aj ′) = (qk , x)} where x ∈ Γ∪{L,R}. For t > 0,

s(k , t) =
∨

1≤i≤T (n),(k ′,j ′)∈Sk

h(i , t − 1) ∧ c(i , j ′, t − 1) ∧ s(k ′, t − 1)

s(k , t) can evaluated as a {∧,∨}-circuit of the size O(T (n)) and can be
generated in the time O(log n) using O(T 2(n)) processors.
If we assume that M writes 1 ∈ Γ to the first cell when it accepts, then
the node c(1,u,T (n)) where au = 1 is the output of the circuit r(x).

Complexity Theory (FIT VUT) Models of Parallel Computation 19 / 28

Some Modifications of CVP

Following modifications of CVP are P-complete as well:

• MCVP – The problem of the value of a monotone circuit, i.e. a
circuit that contains no ¬-gates.

• MCVP2 – MCVP where the number of outgoing edges of a node is
restricted to at most 2 and the output is a ∨-gate.

∨ ∨

∨

∨

Complexity Theory (FIT VUT) Models of Parallel Computation 20 / 28

Example of NC-reduction from MCVP2 to MAXFLOW

s t

∨

0

∧

1

∧

2

1

3

1

04

0

5

1

6

23

24

0

26

0

0

0

0

23

24

0

26

0

0

0

0

23

24

25

26

23 + 24 − 1 · 21

22

23

24

0

26

0

0

0

0

23

24

25

26

23 + 24 − 1 · 21

25 + 26 − 1 · 22

21

22

21 + 22 − 1 · 20

23

24

0

26

0

0

0

0

23

24

25

26

23 + 24 − 1 · 21

25 + 26 − 1 · 22

21

22

21 + 22 − 1 · 20
1

23

24

0

26

0

0

0

0

23

24

25

26

23 + 24 − 1 · 21

25 + 26 − 1 · 22

21

22

21 + 22 − 1 · 20
1

23

24

0

26

0

0

0

0

23

24

25

26

23 + 24 − 1 · 21

25 + 26 − 1 · 22

21

22

21 + 22 − 1 · 20
1

23

0

0

26

0

0

0

0

23

24

25

26

23 + 24 − 1 · 21

25 + 26 − 1 · 22

21

22

21 + 22 − 1 · 20
1

Complexity Theory (FIT VUT) Models of Parallel Computation 21 / 28

Example of NC-reduction from MCVP2 to MAXFLOW

s t∨0

∧1

∧2

13

1

0

4

05

16

23

24

0

26

0

0

0

0

23

24

0

26

0

0

0

0

23

24

25

26

23 + 24 − 1 · 21

22

23

24

0

26

0

0

0

0

23

24

25

26

23 + 24 − 1 · 21

25 + 26 − 1 · 22

21

22

21 + 22 − 1 · 20

23

24

0

26

0

0

0

0

23

24

25

26

23 + 24 − 1 · 21

25 + 26 − 1 · 22

21

22

21 + 22 − 1 · 20
1

23

24

0

26

0

0

0

0

23

24

25

26

23 + 24 − 1 · 21

25 + 26 − 1 · 22

21

22

21 + 22 − 1 · 20
1

23

24

0

26

0

0

0

0

23

24

25

26

23 + 24 − 1 · 21

25 + 26 − 1 · 22

21

22

21 + 22 − 1 · 20
1

23

0

0

26

0

0

0

0

23

24

25

26

23 + 24 − 1 · 21

25 + 26 − 1 · 22

21

22

21 + 22 − 1 · 20
1

Complexity Theory (FIT VUT) Models of Parallel Computation 21 / 28

Example of NC-reduction from MCVP2 to MAXFLOW

s t∨0

∧1

∧2

13

1

0

4

05

16

23

24

0

26

0

0

0

0

23

24

0

26

0

0

0

0

23

24

25

26

23 + 24 − 1 · 21

22

23

24

0

26

0

0

0

0

23

24

25

26

23 + 24 − 1 · 21

25 + 26 − 1 · 22

21

22

21 + 22 − 1 · 20

23

24

0

26

0

0

0

0

23

24

25

26

23 + 24 − 1 · 21

25 + 26 − 1 · 22

21

22

21 + 22 − 1 · 20
1

23

24

0

26

0

0

0

0

23

24

25

26

23 + 24 − 1 · 21

25 + 26 − 1 · 22

21

22

21 + 22 − 1 · 20
1

23

24

0

26

0

0

0

0

23

24

25

26

23 + 24 − 1 · 21

25 + 26 − 1 · 22

21

22

21 + 22 − 1 · 20
1

23

0

0

26

0

0

0

0

23

24

25

26

23 + 24 − 1 · 21

25 + 26 − 1 · 22

21

22

21 + 22 − 1 · 20
1

Complexity Theory (FIT VUT) Models of Parallel Computation 21 / 28

Example of NC-reduction from MCVP2 to MAXFLOW

s t∨0

∧1

∧2

13

1

0

4

05

16

23

24

0

26

0

0

0

0

23

24

0

26

0

0

0

0

23

24

25

26

23 + 24 − 1 · 21

22

23

24

0

26

0

0

0

0

23

24

25

26

23 + 24 − 1 · 21

25 + 26 − 1 · 22

21

22

21 + 22 − 1 · 20

23

24

0

26

0

0

0

0

23

24

25

26

23 + 24 − 1 · 21

25 + 26 − 1 · 22

21

22

21 + 22 − 1 · 20
1

23

24

0

26

0

0

0

0

23

24

25

26

23 + 24 − 1 · 21

25 + 26 − 1 · 22

21

22

21 + 22 − 1 · 20
1

23

24

0

26

0

0

0

0

23

24

25

26

23 + 24 − 1 · 21

25 + 26 − 1 · 22

21

22

21 + 22 − 1 · 20
1

23

0

0

26

0

0

0

0

23

24

25

26

23 + 24 − 1 · 21

25 + 26 − 1 · 22

21

22

21 + 22 − 1 · 20
1

Complexity Theory (FIT VUT) Models of Parallel Computation 21 / 28

Example of NC-reduction from MCVP2 to MAXFLOW

s t∨0

∧1

∧2

13

1

0

4

05

16

23

24

0

26

0

0

0

0

23

24

0

26

0

0

0

0

23

24

25

26

23 + 24 − 1 · 21

22

23

24

0

26

0

0

0

0

23

24

25

26

23 + 24 − 1 · 21

25 + 26 − 1 · 22

21

22

21 + 22 − 1 · 20

23

24

0

26

0

0

0

0

23

24

25

26

23 + 24 − 1 · 21

25 + 26 − 1 · 22

21

22

21 + 22 − 1 · 20
1

23

24

0

26

0

0

0

0

23

24

25

26

23 + 24 − 1 · 21

25 + 26 − 1 · 22

21

22

21 + 22 − 1 · 20
1

23

24

0

26

0

0

0

0

23

24

25

26

23 + 24 − 1 · 21

25 + 26 − 1 · 22

21

22

21 + 22 − 1 · 20
1

23

0

0

26

0

0

0

0

23

24

25

26

23 + 24 − 1 · 21

25 + 26 − 1 · 22

21

22

21 + 22 − 1 · 20
1

Complexity Theory (FIT VUT) Models of Parallel Computation 21 / 28

Example of NC-reduction from MCVP2 to MAXFLOW

s t∨0

∧1

∧2

13

1

0

4

05

16

23

24

0

26

0

0

0

0

23

24

0

26

0

0

0

0

23

24

25

26

23 + 24 − 1 · 21

22

23

24

0

26

0

0

0

0

23

24

25

26

23 + 24 − 1 · 21

25 + 26 − 1 · 22

21

22

21 + 22 − 1 · 20

23

24

0

26

0

0

0

0

23

24

25

26

23 + 24 − 1 · 21

25 + 26 − 1 · 22

21

22

21 + 22 − 1 · 20
1

23

24

0

26

0

0

0

0

23

24

25

26

23 + 24 − 1 · 21

25 + 26 − 1 · 22

21

22

21 + 22 − 1 · 20
1

23

24

0

26

0

0

0

0

23

24

25

26

23 + 24 − 1 · 21

25 + 26 − 1 · 22

21

22

21 + 22 − 1 · 20
1

23

0

0

26

0

0

0

0

23

24

25

26

23 + 24 − 1 · 21

25 + 26 − 1 · 22

21

22

21 + 22 − 1 · 20
1

Complexity Theory (FIT VUT) Models of Parallel Computation 21 / 28

Example of NC-reduction from MCVP2 to MAXFLOW

s t∨0

∧1

∧2

13

1

0

4

05

16

23

24

0

26

0

0

0

0

23

24

0

26

0

0

0

0

23

24

25

26

23 + 24 − 1 · 21

22

23

24

0

26

0

0

0

0

23

24

25

26

23 + 24 − 1 · 21

25 + 26 − 1 · 22

21

22

21 + 22 − 1 · 20

23

24

0

26

0

0

0

0

23

24

25

26

23 + 24 − 1 · 21

25 + 26 − 1 · 22

21

22

21 + 22 − 1 · 20
1

23

24

0

26

0

0

0

0

23

24

25

26

23 + 24 − 1 · 21

25 + 26 − 1 · 22

21

22

21 + 22 − 1 · 20
1

23

24

0

26

0

0

0

0

23

24

25

26

23 + 24 − 1 · 21

25 + 26 − 1 · 22

21

22

21 + 22 − 1 · 20
1

23

0

0

26

0

0

0

0

23

24

25

26

23 + 24 − 1 · 21

25 + 26 − 1 · 22

21

22

21 + 22 − 1 · 20
1

Complexity Theory (FIT VUT) Models of Parallel Computation 21 / 28

Example of NC-reduction from MCVP2 to MAXFLOW

s t∨0

∧1

∧2

13

1

0

4

05

16

23

24

0

26

0

0

0

0

23

24

0

26

0

0

0

0

23

24

25

26

23 + 24 − 1 · 21

22

23

24

0

26

0

0

0

0

23

24

25

26

23 + 24 − 1 · 21

25 + 26 − 1 · 22

21

22

21 + 22 − 1 · 20

23

24

0

26

0

0

0

0

23

24

25

26

23 + 24 − 1 · 21

25 + 26 − 1 · 22

21

22

21 + 22 − 1 · 20
1

23

24

0

26

0

0

0

0

23

24

25

26

23 + 24 − 1 · 21

25 + 26 − 1 · 22

21

22

21 + 22 − 1 · 20
1

23

24

0

26

0

0

0

0

23

24

25

26

23 + 24 − 1 · 21

25 + 26 − 1 · 22

21

22

21 + 22 − 1 · 20
1

23

0

0

26

0

0

0

0

23

24

25

26

23 + 24 − 1 · 21

25 + 26 − 1 · 22

21

22

21 + 22 − 1 · 20
1

Complexity Theory (FIT VUT) Models of Parallel Computation 21 / 28

Example of NC-reduction from MCVP2 to MAXFLOW

s t∨0

∧1

∧2

13

1

04

05

16

23

24

0

26

0

0

0

0

23

24

0

26

0

0

0

0

23

24

25

26

23 + 24 − 1 · 21

22

23

24

0

26

0

0

0

0

23

24

25

26

23 + 24 − 1 · 21

25 + 26 − 1 · 22

21

22

21 + 22 − 1 · 20

23

24

0

26

0

0

0

0

23

24

25

26

23 + 24 − 1 · 21

25 + 26 − 1 · 22

21

22

21 + 22 − 1 · 20
1

23

24

0

26

0

0

0

0

23

24

25

26

23 + 24 − 1 · 21

25 + 26 − 1 · 22

21

22

21 + 22 − 1 · 20
1

23

24

0

26

0

0

0

0

23

24

25

26

23 + 24 − 1 · 21

25 + 26 − 1 · 22

21

22

21 + 22 − 1 · 20
1

23

0

0

26

0

0

0

0

23

24

25

26

23 + 24 − 1 · 21

25 + 26 − 1 · 22

21

22

21 + 22 − 1 · 20
1

Complexity Theory (FIT VUT) Models of Parallel Computation 21 / 28

P-completeness of MAXFLOW

Proposition
The MAXFLOW Problem is P-complete.

Proof
We will show a NC-reduction of the MCVP2 problem to MAXFLOW.
Let C be a circuit with the gate nodes {g0, . . . ,gn} where g0 is the
output gate. We will construct a graph G = (V ,E) such that the
maximal flow is odd iff (C, x) ∈ MCVP2.

V = {v0, . . . , vn} ∪ {s, t} where vertex vi corresponds to gi .
For each input node gi of C, we create the edge (s, vi) with the
capacity c(s, vi) = 2i if gi = 1 and c(s, vi) = 0 otherwise. We
include edges (vi , s) with c(vi , s) = 0 too.

Complexity Theory (FIT VUT) Models of Parallel Computation 22 / 28

P-completeness of MAXFLOW

Proof
For each ∧-gate gi = gj ∧ gk we create edges (vj , vi), (vk , vi),
(vi , t) with capacities c(vj , vi) = 2j , c(vk , vi) = 2k , and
c(vi , t) = 2j + 2k − d · 2i where d ≤ 2 is the fan-out of vi .
For each ∨-gate gi = gj ∨ gk we create edges (vj , vi), (vk , vi),
(vi , s) with capacities c(vj , vi) = 2j , c(vk , vi) = 2k , and
c(vi , s) = 2j + 2k − d · 2i .
Finally, we add the edge (v0, t) with c(v0, t) = 1.

The above described construction maps each gate of C to at most
three edges of G. Such a construction can be done with
an NC-algorithm. It remains to show that the reduction is correct.

Complexity Theory (FIT VUT) Models of Parallel Computation 23 / 28

P-completeness of MAXFLOW

Proof
We define a function f : E → N and show that f is a maximal flow in G.

For each input node gi we set f (s, vi) = c(s, vi)

For each edge (vi , vj) ∈ E such that vi , vj 6∈ {s, t} we set
f (vi , vj) = 2i when gi is a node evaluated to 1, and f (vi , vj) = 0
otherwise.
For each ∧-gate gi = gj ∧ gk we set f (vi , t) = c(vi , vt) when gi is a
node evaluated to 1, and f (vi , t) = f (vj , vi) + f (vk , vi) otherwise.
For each ∨-gate gi = gj ∨ gk we set
f (vi , s) = f (vj , vi) + f (vk , vi)− d · 2i when gi is a node evaluated to
1, and f (vi , s) = 0 otherwise.
Finally, we set f (v0, t) = 1 if g0 is evaluated to 1, and f (v0, t) = 0
otherwise.

Complexity Theory (FIT VUT) Models of Parallel Computation 24 / 28

P-completeness of MAXFLOW

Proof
Clearly, function f is a flow in G. We will show that f is always a
maximal flow.

Assume the opposite. Then there must exist an auxiliary path Q
for f in G.
The path Q has to start with a “backward” edge, because
capacities of all edges (s, vi) are filled.
Moreover, the path Q must end with a “forward” edge — the vertex
t has no outgoing edges.
Therefore, there must be three serially connected vertices
vj , vi , vk ∈ V such that (vj , vi) is a backward edge and (vi , vk) is a
forward edge.
We will show that such a case cannot exist.

Complexity Theory (FIT VUT) Models of Parallel Computation 25 / 28

P-completeness of MAXFLOW

Proof
To show this, one has to investigate three possibilities:

1 gi is an output node. Then vj = s which implies f (vi , s) = 0,
contradiction.

2 gi is an ∧-gate. Then the output of gj is gi and the fact that
f (vi , vj) > 0 implies f (vi , vk) = c(vi , vk), contradiction.

3 gi is an ∨-gate. Then the flow f outgoing from gi is either zero or
the capacity of all edges is filled (with the possible exception of the
edge (vi , s)). Because vk 6= s and f (vi , vk) < c(vi , vk) then
f (vi , vj) = 0 which is in contraction with the fact that (vi , vj) is a
backward edge.

Complexity Theory (FIT VUT) Models of Parallel Computation 26 / 28

P-completeness of MAXFLOW

We eliminated the possibility of the existence of an auxiliary path
for f in G.

The parity of MAXFLOW is derived only from the value of f (v0, t)
(other edges have even values assigned).

Therefore the output of the circuit C is 1 iff the result of
MAXFLOW is odd.

Complexity Theory (FIT VUT) Models of Parallel Computation 27 / 28

Other P-complete Problems

Word membership for context free grammars.
• For a given CFG G and a word w decide whether w ∈ L(G).

Language emptiness for context free grammars.
• For a given CFG G decide whether L(G) = ∅.

Language finiteness for context free grammars.
• For a given CFG G decide whether L(G) is finite.

Complexity Theory (FIT VUT) Models of Parallel Computation 28 / 28

