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Completeness

The concept of completeness is one of the most important in
complexity theory.

Definition (Hardness, Completeness)
Let C be a complexity class. We call a language L

C-hard if for all L′ ∈ C, L′ ≤ L,
C-complete if L is C-hard and L ∈ C.

Note: We use L1 ≤ L2 to denote that there exists a polynomial
reduction from L1 to L2, i.e. that there exists a PTIME Turing Machine
computing a function R : Σ∗ → Σ∗ s.t. w ∈ L1 ⇐⇒ R(w) ∈ L2.

This means that C-complete problems are the hardest problems of C.
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Motivation

Proving that a problem A is NP-complete means that:
there is probably no fast algorithm for solving A,
naı̈ve ways for solving A will probably not work,
heuristics may be necessary for practical algorithms,
or we may just try to find an approximate solution,
Richard M. Karp. Reducibility Among Combinatorial Problems.
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SAT

SAT: Is a given propositional formula ψ satisfiable?

Theorem (Cook-Levin)
SAT is NP-complete.

Proof.
SAT ∈ NP — by constructing an NPTIME TM accepting SAT.
SAT is NP-hard — by showing that for any NPTIME TM M and its
input w , there is a PTIME reduction to a propositional formula ψ
s.t. ψ is satisfiable iff w ∈ L(M).
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CNF

CNF: Is a given propositional formula ϕ in the conjunctive
normal form satisfiable?

Theorem
CNF is NP-complete.

Proof.
CNF is NP-hard — from SAT using Tseitin transformation

• transforms ψ into an equisatisfiable formula ϕ in CNF,
• the size of ϕ grows linearly with the size of ψ,
• naı̈ve transformation (using De Morgan’s laws and distribution)

yields exponentially larger formula in the worst case.

Note: in practice, “SAT” is often used to mean “CNF”.

Complexity Theory (FIT VUT) NP-completeness 5 / 19



k -CNF (k -SAT)

k -CNF: A restricted version of CNF where each clause has
exactly k literals.

Theorem
2CNF ∈ P.

Proof.
Clauses can be rewritten to implications which can be viewed as Horn
clauses. There is a PTIME algorithm for solving HORNSAT.
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k -CNF (k -SAT)

Theorem
k-CNF is NP-complete for k ≥ 3.

Proof.
3-CNF is NP-hard — by reduction from CNF (similarly for other k ).
We can transform every clause

(a ∨ b ∨ c ∨ · · · ∨ f ∨ g)

into the conjunction

(a ∨ b ∨ x) ∧ (¬x ∨ c ∨ y) ∧ · · · ∧ (¬z ∨ f ∨ g)

which is equisatisfiable and only linearly larger.

3-CNF (3-SAT) is interesting because it is the variant of k -CNF with the
lowest k that is NP-complete.
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CLIQUE

CLIQUE: Given a graph G = (V ,E) and k ∈ N, does G contain a
clique (a complete subgraph) of size k?

Theorem
CLIQUE is NP-complete.

Proof.
CLIQUE is NP-hard — by reduction from CNF. For a formula
C1 ∧ · · · ∧ Cn we set k = n and construct an undirected graph
G = (V ,E) such that

V = {(σ, i) | σ is a literal and occurs in Ci}
E = {{(σ, i), (δ, j)} | i 6= j ∧ σ 6= ¬δ}
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INDEPENDENT SET

INDEPENDENT SET: Given a graph B = (W , J) and m ∈ N, does B
contain an independent set of vertices (a set of vertices
no two of which are adjacent) of size at least m?

Theorem
INDEPENDENT SET is NP-complete.

Proof.
INDEPENDENT SET is NP-hard — by reduction from CLIQUE.
For a graph G = (V ,E) and k , we set m = k and construct

B = (V ,V 2 \ E)

Note that cliques are independent sets in graphs’ complements.
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VERTEX COVER

VERTEX COVER: Given a graph H = (U,F ) and l ∈ N, does H have
a vertex cover of size at most l? I.e., is there a set of
vertices S ⊆ U of size |S| ≤ l such that all edges of H are
incident with at least one vertex from S?

Theorem
VERTEX COVER is NP-complete.

Proof.
VERTEX COVER is NP-hard — by reduction from
INDEPENDENT SET. For a graph B = (W , J) and m, we set
l = |W | −m and H = B.

Note that a set is independent iff its complement is a vertex cover.
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GRAPH COLOURING

GRAPH COLOURING: Given a graph M = (Y ,L) and p ∈ N, can the
vertices of M be coloured using p colours such that no
two adjacent vertices are assigned the same colour?

Theorem
GRAPH COLOURING ∈ P for p = 2.

Proof.
A graph is 2-colourable iff it is bipartite, which can be determined
using BFS in linear time.
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GRAPH COLOURING

Theorem
GRAPH COLOURING is NP-complete for p ≥ 3.

Proof.
GRAPH COLOURING for p ≥ 3 is NP-hard — by reduction from
3-CNF. For a formula ϕ1 ∧ · · · ∧ϕk over variables x1, . . . , xr , we set
p = r + 1 and construct the graph M = (Y ,L) in the following way:
Assume the formula

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2)

1 Make sure there are at least 4 variables (r ≥ 4), otherwise add.
• we add x4 to the set of variables→ {x1, x2, x3, x4}, and
• set the number of colours p = 5, call them { A , B , C , D , E }.
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GRAPH COLOURING

Proof (cont).
2 Create a clique with a node yi for every variable xi .

y1 y2

y3 y4

A B

C D

Each node of the clique
needs to be coloured with a
different colour.
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GRAPH COLOURING

Proof (cont).
3 For every variable xi , add nodes labelled with xi and xi and

connect them with each other and with all yj , i 6= j , from the clique.

y1 y2

y3 y4

A B

C D

x3

x3

C E

C

E

The node x3 is coloured ei-
ther by C (which stands for
x3 = true) or by E (for
x3 = false). The node x3
is coloured with the opposite
colour.
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GRAPH COLOURING

Proof (cont).
4 Add a node for every clause ϕi . For every xj , connect ϕi with xj if

xj /∈ ϕi , and with x j if ¬xj /∈ ϕi .

(x1 ∨ x2 ∨ x3)︸ ︷︷ ︸
ϕ1

∧ (x1 ∨ ¬x2 ∨ ¬x3)︸ ︷︷ ︸
ϕ2

∧ (¬x1 ∨ x2)︸ ︷︷ ︸
ϕ3

x1 x1

A E A E

x2

x2

B

E

B

E

x3x3
CECE

x4

x4

D

E

D

E

ϕ1
A B

C

ϕ1 can be coloured only if
the colour of at least one of
x1, x2, x3 is E .

→ M is p-colourable iff

ϕ1 ∧ · · · ∧ ϕk

is satisfiable.
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SUBSET SUM

SUBSET SUM: Let S be a finite set of elements and w be the weight
function w : S → Z. Is there a subset S′ of elements of S,
S′ ⊆ S, s.t. the total weight of elements from S′ is W , i.e.∑

s∈S′

w(s) = W ?

Theorem
SUBSET SUM is NP-complete.

Proof.
SUBSET SUM is NP-hard — by reduction from 3-SAT. For a
formula ϕ1 ∧ · · · ∧ ϕk over variables x1, . . . , xn, we set
S = {t1, . . . , tn, f1, . . . , fn, c1, . . . , ck , c′1, . . . , c

′
k} and assign values

to w and W in the following way: (next slide)
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SUBSET SUM
Proof (cont).

Assume the formula

(x1 ∨ x2 ∨ x3)︸ ︷︷ ︸
ϕ1

∧(x1 ∨ ¬x2 ∨ ¬x3)︸ ︷︷ ︸
ϕ2

∧(¬x1 ∨ x2)︸ ︷︷ ︸
ϕ3

We consider decimal encoding
of w and W of length n + k .
Each variable xi is assigned a
pair of elements ti and fi .
Each clause ϕj is assigned a
pair of elements cj and c′j .

x1 x2 x3 ϕ1 ϕ2 ϕ3
t1 1 0 0 1 1 0
f1 1 0 0 0 0 1
t2 0 1 0 1 0 1
f2 0 1 0 0 1 0
t3 0 0 1 1 0 0
f3 0 0 1 0 1 0
c1 0 0 0 1 0 0
c′1 0 0 0 1 0 0
c2 0 0 0 0 1 0
c′2 0 0 0 0 1 0
c3 0 0 0 0 0 1
c′3 0 0 0 0 0 1
W 1 1 1 3 3 3

x1

x1 ∈ ϕ1 ¬x1 ∈ ϕ3
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SUBSET SUM
Proof (cont).
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PARTITION

PARTITION: Let T be a finite set of elements and v be the weight
function v : T → Z. Can T be partitioned into two sets T ′

and T \ T ′ of equal total weight, i.e.∑
t∈T ′

v(t) =
∑

t∈T\T ′

v(t) ?

Theorem
PARTITION is NP-complete.

Proof.
PARTITION is NP-hard — by reduction from SUBSET SUM. For
the elements S, weight function w and target weight W , we set
T = S ∪ {z} where z /∈ S, and v = w ∪ {z 7→ (w(S)− 2W )}
where w(S) =

∑
s∈S w(s).
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KNAPSACK

KNAPSACK: Let R be a finite set of elements, u be the weight
function u : R → Z, and v be the value function
v : R → Z. Is there a subset R′ of elements of R, R′ ⊆ R,
s.t. the total weight of elements from R′ is at most U and
their total value is at least V , i.e.∑

r∈R′

u(r) ≤ U ∧
∑
r∈R′

v(r) ≥ V ?

Theorem
KNAPSACK is NP-complete.

Proof.
KNAPSACK is NP-hard — by reduction from SUBSET SUM. For
the elements S, weight function w and target weight W , we set
R = S, u = w , v = w , U = W , and V = W .
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