
Counting Classes

Complexity Theory

Faculty of Information Technology
Brno University of Technology

Brno, Czech Republic

Ondřej Lengál

This material was created with the support of the Czech Ministry of Education,
Youth and Sports (project FRVŠ 166/2013/G1).

Classification of Problems

Decision problems

Search problems

Optimisation problems Counting problems

Function problems

Given a relation R ⊆ X × Y and x ∈ X :
Decision problems: decide membership in a language (yes/no).
• Is there some y ∈ Y s.t. R(x , y)?

Function problems: generate some additional output.
• Search problems: Find any y ∈ Y s.t. R(x , y).
• Optimisation problems: Find the best y ∈ Y s.t. R(x , y).
• Counting problems: How many y ∈ Y are there s.t. R(x , y)?

Complexity Theory (FIT VUT) Counting Classes 2 / 20

Counting Problems

Definition (Counting problem)

Consider a relation R ⊆ X × Y and the decision problem DR ⊆ X
s.t. x ∈ DR ⇐⇒ ∃y ∈ Y .R(x , y). The counting problem associated
with R, #DR, is defined as

#DR(x) = |{y ∈ Y |R(x , y)}| .

Examples:
#SAT: how many different assignments satisfy given formula?
#CLIQUE: how many cliques of size k or larger are in a graph?
#HAMILTONIAN PATH: how many different Hamiltonian paths are
in a graph?

Complexity Theory (FIT VUT) Counting Classes 3 / 20

Example: Counting Perfect Matchings

u1

u2

u3

u4

v1

v2

v3

v4

Definition (MATCHING)

Is there a perfect matching in the bipartite graph G = (U,V ,E)?

Definition (#MATCHING)

How many perfect matchings are in the bipartite graph G = (U,V ,E)?

Complexity Theory (FIT VUT) Counting Classes 4 / 20

Example: Counting Perfect Matchings

Recall that MATCHING can be solved by checking whether the
determinant of the adjacency matrix AG of G is not identically zero.

det AG =
∑
π

(
σ(π)

n∏
i=1

AG
i,π(i)

)
where

π ranges over all permutation of n elements,
σ(π) = 1 if π contains an even number of transpositions, else −1.

u1

u2

u3

u4

v1

v2

v3

v4

AG =

v1 v2 v3 v4
u1 1 0 1 0
u2 1 0 1 0
u3 0 1 0 1
u4 0 1 1 1

Complexity Theory (FIT VUT) Counting Classes 5 / 20

Example: Counting Perfect Matchings

det AG =
∑
π

(
σ(π)

n∏
i=1

AG
i,π(i)

)

Note that the summation is done over all perfect matchings, but
including the undesirable σ(π) element.

If we get rid of the σ(π) element, we arrive at a different
characteristic of a matrix called the permanent.

perm AG =
∑
π

(
n∏

i=1

AG
i,π(i)

)

The permanent of AG is precisely the number of perfect matchings
in G, the problem is therefore known as PERMANENT.

Complexity Theory (FIT VUT) Counting Classes 6 / 20

Example: Counting Perfect Matchings

det AG =
∑
π

(
σ(π)

n∏
i=1

AG
i,π(i)

)

Note that the summation is done over all perfect matchings, but
including the undesirable σ(π) element.
If we get rid of the σ(π) element, we arrive at a different
characteristic of a matrix called the permanent.

perm AG =
∑
π

(
n∏

i=1

AG
i,π(i)

)

The permanent of AG is precisely the number of perfect matchings
in G, the problem is therefore known as PERMANENT.

Complexity Theory (FIT VUT) Counting Classes 6 / 20

Example: Counting Perfect Matchings

Further, the number of perfect matchings in G = (U,V ,E) is equal
to the number of cycle covers in the directed graph

G′ = ({1, . . . , |U|}, {(i , j) | (ui , vj) ∈ E}) .

1

4

2

3

AG =

v1 v2 v3 v4
u1 1 0 1 0
u2 1 0 1 0
u3 0 1 0 1
u4 0 1 1 1

Complexity Theory (FIT VUT) Counting Classes 7 / 20

Example: Counting Perfect Matchings

u1

u2

u3

u4

v1

v2

v3

v4

1

4

2

3

AG =

v1 v2 v3 v4
u1 1 0 1 0
u2 1 0 1 0
u3 0 1 0 1
u4 0 1 1 1

Complexity Theory (FIT VUT) Counting Classes 8 / 20

Example: Counting Perfect Matchings

u1

u2

u3

u4

v1

v2

v3

v4

1

4

2

3

AG =

v1 v2 v3 v4
u1 1 0 1 0
u2 1 0 1 0
u3 0 1 0 1
u4 0 1 1 1

perm AG =
∑
π

(
n∏

i=1

AG
i,π(i)

)
= ?

Complexity Theory (FIT VUT) Counting Classes 8 / 20

Example: Counting Perfect Matchings

u1

u2

u3

u4

v1

v2

v3

v4

1

4

2

3

AG =

v1 v2 v3 v4
u1 1 0 1 0
u2 1 0 1 0
u3 0 1 0 1
u4 0 1 1 1

perm AG =
∑
π

(
n∏

i=1

AG
i,π(i)

)
= 4

Complexity Theory (FIT VUT) Counting Classes 8 / 20

Example: Graph Reliability

Counting is relevant to probability; consider the decision problem

Definition (REACHABILITY)
Given a graph G, is there a path from node u to node v?

This gives rise to the following counting problem:

Definition (GRAPH RELIABILITY)

Given a graph G with m edges, how many of the 2m subgraphs of G
contain a path from node u to node v?

The problem is called GRAPH RELIABILITY because it gives a precise
estimate of the probability that u and v will remain connected when all
edges fail independently with probability 1

2 each.

Complexity Theory (FIT VUT) Counting Classes 9 / 20

#P

Definition (#P)
#P is the class of all counting problems associated with polynomially
balanced polynomial-time decidable relations.

#P is pronounced “number P”, “sharp P”, or “pound P”.
Polynomially balanced relation: if R(x , y), then |y | ≤ p(|x |).
Polynomial-time decidable relation:
• given x and y , it is checkable in polynomial time whether R(x , y).

Complexity Theory (FIT VUT) Counting Classes 10 / 20

Reduction of Counting Problems

All decision problems are easily reducible to their corresponding
counting problems.

As with other function problems, a reduction between counting
problems A and B consists of two parts:
• part R mapping instances x of A to instances R(x) of B,
• part S recovering from the answer y of R(x) the answer S(y) of x .

For counting problems, there is a convenient class of reductions:

Definition (Parsimonious Reduction)
A reduction is parsimonious when S = id.

Complexity Theory (FIT VUT) Counting Classes 11 / 20

#SAT is #P-complete

Theorem
#SAT is #P-complete.

Proof.
Parsimonious variant of Cook’s theorem (for CIRCUIT SAT):

Each polynomially balanced and polynomial-time decidable binary
relation R ⊆ X × Y together with x ∈ X can be in deterministic
polynomial time reduced to a CNF formula φR(x) with input
variables I = {i1, . . . , in}.
Each satisfying truth assignment to I corresponds to a unique
y ∈ Y s.t. R(x , y).

Complexity Theory (FIT VUT) Counting Classes 12 / 20

PERMANENT is #P-complete.

Theorem (Valiant’s Theorem)
PERMANENT is #P-complete.

Interesting because MATCHING ∈ P.

Proof. (idea)

By reduction from #SAT.
For a 3SAT formula φ, we construct a graph Gφ such that the cycle
covers of Gφ somehow correspond to satisfying assignments of φ.
The construction is very similar to the proof of NP-completeness
of HAMILTONIAN PATH.

Complexity Theory (FIT VUT) Counting Classes 13 / 20

PERMANENT is #P-complete.

For each Boolean variable x in φ, we create a choice gadget.
For each clause in φ, we create a clause gadget:
• no cycle cover traverses all 3 external edges,
• for any proper subset S of external edges (including ∅), there is

exactly one cycle cover traversing only external edges from S and
no other external edges.

x = true x = false

choice gadget clause gadget

Complexity Theory (FIT VUT) Counting Classes 14 / 20

PERMANENT is #P-complete.

External edges from clause gadgets are connected to
corresponding edges of choice gadgets using XOR gadgets:
• if exactly one of the edges (1,1′) or (2,2′) is traversed, the number

of cycle covers is multiplied by 4,
• there is no cycle cover in the graph if none or both are traversed.

1

2′

1′

2

XOR gadget

For each satisfying assignment of φ, there are 4m cycle covers
• where m is the total number of literal occurrences in the formula.

Details are rather technical and can be found in the literature:
• structure of the XOR gadget,
• reduction to PERMANENT MOD N.

Complexity Theory (FIT VUT) Counting Classes 15 / 20

How Strong Is Counting?

Counting is very powerful indeed!
Is #P more powerful than PH?

Note that we cannot directly compare #P to PH:
• #P . . . a class of functions,
• PH . . . a class of languages.

However, recall the class PP:
• PP . . . the class of languages L s.t. there is a poly. nondet. TM M,

x ∈ L iff more than 1
2 computations of M on x end up accepting.

There is a close relation between #P and PP:
• try looking at the MSB of the number of accepting computations.

Theorem (Toda’s Theorem)

PH ⊆ PPP

Complexity Theory (FIT VUT) Counting Classes 16 / 20

How Strong Is Counting?

Counting is very powerful indeed!
Is #P more powerful than PH?
Note that we cannot directly compare #P to PH:
• #P . . . a class of functions,
• PH . . . a class of languages.

However, recall the class PP:
• PP . . . the class of languages L s.t. there is a poly. nondet. TM M,

x ∈ L iff more than 1
2 computations of M on x end up accepting.

There is a close relation between #P and PP:
• try looking at the MSB of the number of accepting computations.

Theorem (Toda’s Theorem)

PH ⊆ PPP

Complexity Theory (FIT VUT) Counting Classes 16 / 20

⊕P

Definition (⊕P)
⊕P is the class of languages L for which there is a polynomially
balanced polynomial-time decidable relation R such that x ∈ L iff the
number of y ’s such that R(x , y) is odd.

⊕P is pronounced “odd P”, or “parity P”.
⊕SAT and ⊕HAMILTONIAN PATH are ⊕P-complete,
• a reduction similar to #SAT and #HAMILTONIAN PATH.

Complexity Theory (FIT VUT) Counting Classes 17 / 20

⊕P = co⊕P

Theorem
⊕P is closed under complement, i.e.

⊕P = co⊕P .

Proof.
The complement of ⊕SAT is obviously co⊕P-complete.
This language reduces to ⊕SAT of φ(x1, . . . , xn) as follows:

1 Add a new variable z to each clause of φ.
2 Also add n clauses (z =⇒ xi) for 1 ≤ i ≤ n.

Any SAT assignment in the old formula is still SAT (z = false).
We get a new all-true SAT assignment (z = true).

Complexity Theory (FIT VUT) Counting Classes 18 / 20

NP ⊆ RP⊕P

Theorem

NP ⊆ RP⊕P

RP . . . the class of languages for which there exists a polynomial
Monte Carlo Turing machine.

Proof. (idea)

Construct a polynomial MC TM for SAT using an oracle for ⊕SAT.
We are given formula φ over variables {x1, . . . , xn}.
For S ⊆ {x1, . . . , xn} a hyperplane ηS is a Boolean expression in
CNF stating an even number among the variables in S are true.
• For variables y0, . . . , yn, ηS is the conjunction of clauses (y0), (yn),

plus for each 1 ≤ i ≤ n

{
(yi ⇐⇒ (yi−1 ⊕ xi)) if xi ∈ S
(yi ⇐⇒ yi−1) if xi /∈ S

Complexity Theory (FIT VUT) Counting Classes 19 / 20

NP ⊆ RP⊕P

The algorithm:
1 φ0 := φ
2 For i = 1, . . . ,n + 1 repeat the following:

1 Generate a random subset Si ⊆ {x1, . . . , xn}.
2 Set φi = φi−1 ∧ ηSi .
3 If φi ∈ ⊕SAT answer “φ is satisfiable.”
4 Else continue.

3 Answer “φ is probably unsatisfiable.”

The probability of a false negative is no larger than 7
8 .

• becomes less than 1
2 by repeating the algorithm 6×.

Complexity Theory (FIT VUT) Counting Classes 20 / 20

