Complexity Classes

Complexity Theory

Faculty of Information Technology Brno University of Technology Brno, Czech Republic

Lukáš Charvát

This material was created with the support of the Czech Ministry of Education, Youth and Sports (project FRVS 166/2013/G1).

Complexity Classes – Motivation

- We have studied the relation of a complexity class of a certain type on a function which is used for its definition.
- \blacksquare Now, we will focus on investigating the relation between complexity classes of different types.
- **Although a lot effort has been invested in this area in recent years,** some problems (such as $P\stackrel{?}{=}$ *NP*) remain unsolved.

Complexity Classes – Motivation

Inclusion of Complexity Classes

■ We will show that the following chain of inclusions holds:

DLOG ⊆ **NLOG** ⊆ **P** ⊆ **NP** ⊆ **PSPACE** ⊆ **EXP** ⊆ **NEXP**

 \blacksquare To do this, we will prove the statements shown below:

- a) **DSPACE**(*f*(*n*)) ⊆ **NSPACE**(*f*(*n*)),
- b) **DTIME**(*f*(*n*)) ⊆ **NTIME**(*f*(*n*)),
- $\mathsf{c})$ NTIME $(f(n)) \subseteq \bigcup_{c>0}$ DTIME $(c^{f(n)}),$
- d) **NTIME**(*f*(*n*)) ⊆ **DSPACE**(*f*(*n*)),
- e) **NSPACE**(*f*(*n*)) ⊆ **DTIME**(2 *^O*(*^f* (*n*))) for *f*(*n*) ≥ log *n*,
- f) $\mathsf{NSPACE}(f(n)) \subseteq \mathsf{DSPACE}(f(n)^2)$ for $f(n) \geq \log n$ (*Savitch's theorem)*.

where *f*(*n*) is a time and space constructible function.

Proof of the Inclusion of Complexity Classes (1/4)

Proof (Parts a, b, c, and d)

- *Parts a)* (**DSPACE**(*f*(*n*)) ⊆ **NSPACE**(*f*(*n*))) *and b)* (**DTIME**(*f*(*n*)) ⊆ **NTIME**(*f*(*n*))) *are trivial since each deterministic TM is a special case of a nondeterministic TM.*
- \mathcal{P} *art c)* (NTIME $(f(n)) \subseteq \bigcup_{c>0}$ DTIME $(c^{f(n)}))$ has been proven in *the previous lecture.*
- *The inclusion d)* (**NTIME**(*f*(*n*)) ⊆ **DSPACE**(*f*(*n*))) *is a consequence of the proof of the proposition* **NTIME**(*f*(*n*)) ⊆ **DTIME**(2 *f* (*n*))*. A nondeterministic TM M^N can make at most f*(*n*) *nondeterministic choices. The deterministic TM M^D simulating M^N uses f*(*n*) *cells of the tape to represent the choices of* M_N *and at most* $f(n)$ *cells for simulating the tape of* M_N *. M^D simulates the possible runs of M^N one by one.*

Proof of the Inclusion of Complexity Classes (2/4)

Proof (Part e)

- $\mathsf{NSPACE}(f(n)) \subseteq \mathsf{DTIME}(2^{O(f(n))})$ *for f* $(n) \geq \log n$
- *We will define the configuration graph G*(*M*, *w*) *of an NTM M with the input w. The vertices of the graph G*(*M*, *w*) *are configurations that may occur during a computation of M on w. There is an edge between the vertices C*¹ *and C*² *iff M can do a transition from the configuration* C_1 *to* C_2 *in a single step.*
- We ask whether there is a path from the vertex denoting the *initial configuration to the vertex representing the accepting one.*
- *For each input w, the number of vertices of G*(*M*, *w*) *can be* μ pper-bounded by $2^{O(\log |w| + f(|w|))}$.
- *The already known algorithm REACHABILITY can solve the problem in time O*(*m*²) *for graphs with m vertices. Therefore, the overall time complexity of a DTM simulating M is* 2 *O*(log *n*+*f* (*n*)) *.*

Proof of the Inclusion of Complexity Classes (3/4)

Proof (Part f)

- **NSPACE**($f(n)$) ⊆ **DSPACE**($f(n)^2$) *for f*(n) ≥ log *n (Savitch's th.)*
- *First, we will show that REACHABILITY* \in DSPACE(log² n).
- *Let G be a graph with n vertices.*
- *Let x*, *y be two distinct vertices from G.*
- *Then, the longest path from x to y can have at most length n.*
- *We use a DTM to implement the procedure path*(*x*, *y*, *i*) *which returns true iff there exists a path from x, y of length at most* 2 *i .*

procedure path(x, y, i) *if* ($i = 0$) **then return** (($x = y$) \vee ((x, y) \in **G**)) **else for** all vertices z ∈ G **do if** (path(x, z, i-1) ∧ path(z, y, i-1)) **then return** true **return** false

Proof of the Inclusion of Complexity Classes (4/4)

Proof (Part f)

- *Recursive calls of path*(*x*, *y*, *i*) *create a tree of depth i.*
- **F** For our problem, it suffices to check whether path $(x, y, \lceil \log n \rceil)$ *holds.*
- *The DTM implementing the path procedure will have to store call stack* with at most $\lceil \log n \rceil$ *triplets of length* 3 \cdot log *n*.
- *Therefore, the space complexity of REACHABILITY is* $O(log^2 n)$ *.*
- *For a NTM M^N we can create a DTM M^D which uses another DTM deciding REACHABILITY for each accepting configuration of MN.*
- *The number of vertices of* $G(M_N, w)$ *cannot be bigger than* $c^{f(|w|)}$ *.*
- *Thus, the space complexity of* M_D *<i>is O*(log² $c^{f(n)}$) = $O(f(n)^2)$ *.*

Inclusion of Complexity Classes: Conclusion

■ We have shown that

DLOG ⊆ **NLOG** ⊆ **P** ⊆ **NP** ⊆ **PSPACE** ⊆ **EXP** ⊆ **NEXP**

- **Ne** expect all inclusion to be proper but for none of them has this been either proved or refuted yet.
- **However, because of Time/Space Hierarchy Theorems (not** covered here), it is known that some inclusions need to be proper. It is known that:

DLOG ⊂ **PSPACE P** ⊂ **EXP NP** ⊂ **NEXP**

Definition of Complements of Complexity Classes (1/2)

Definition

Let L ⊆ Σ [∗] *be a language. The complement of L denoted co–L is the language*

$$
co-L=\Sigma^*\setminus L.
$$

The same approach can be extended for decision problems.

Definition

The complement of a decision problem A, denoted A–COMPL, is a problem for which the solution is:

> *yes* \iff *the solution for A is no no* ⇐⇒ *the solution for A is yes*

■ Formally, A–*COMPL* is not a complement of a language because $A \cup A$ –*COMPL* $\neq \Sigma^*$.

Complexity Theory (FIT VUT) [Complexity Classes](#page-0-0) 10 / 27

Definition of Complements of Complexity Classes (2/2)

Definition

Let C *be a complexity class. The complement of* C*, denoted co–*C*, is the complexity class*

$$
co-C = \{co-L \mid L \in C\}.
$$

- Clearly, deterministic time and space complexity classes are closed under complement:
- **E** each DTM accepting *L* can be transformed into a DTM accepting *co*–*L* by swapping accepting and rejecting states.

$$
\mathsf{DTIME}(f(n)) = co-\mathsf{DTIME}(f(n))
$$

$$
\text{DSPACE}(f(n)) = co\text{-DSPACE}(f(n))
$$

Complements of Nondeterministic Complexity Classes

- Nondeterminism introduces an asymmetry in acceptance of a given input by NTM *M*:
	- $w \in L(M) \iff$ there is an accepting run of M on *w*, $w \notin L(M) \iff$ there is no accepting run of M on w.
- Thus, it suffices that one accepting computation exists for the former case but it is required that all computations are rejecting for the latter one.

Nondeterministic Space Complexity Classes (1/8)

Proposition (Immerman-Szelepcsényi Theorem)

 $\mathbf{NSPACE}(f(n)) = co-\mathbf{NSPACE}(f(n))$ *for f* > log *n*

- We have seen that *REACHABILITY* is in **NLOGSPACE**.
- **First, we will demonstrate that the converse of** *REACHABILITY***,** called *UNREACHABILITY*, is in **NLOGSPACE** too.

Definition

UNREACHABILITY

■ *Input: Graph G* = (V, E) *, a pair of vertices x, y ∈ V.*

Output: YES if there is no path from x to y, NO otherwise.

Proposition

UNREACHABILITY ∈ **NLOGSPACE**

Complexity Theory (FIT VUT) [Complexity Classes](#page-0-0) 13/27

Nondeterministic Space Complexity Classes (2/8)

- We will first devise an algorithm that computes the *number* of *reachable nodes in a graph in O*(log *n*) *space,*
	- *and later modify it to solve UNREACHABILITY .*
- Let $G = (V, E)$ be a graph and $x \in V$.
- *S*(*k*) *is the set of nodes reachable from x in k or less steps,*
	- |*S*(*k*)| *is the number of nodes reachable from x in k or less steps.*
- \blacksquare *adjac*(*v, u*) *is true iff* $v = u \lor (v, u) \in E$ *, otherwise false.*
- **procedure** numReachable(x, (V, E))
	- *nondeterministically either* **FAIL***s or returns the number of nodes reachable from x,*
	- *we will start with a procedure working in O*(*n*) *space and modify it in several steps to use O*(log *n*) *space.*

Nondeterministic Space Complexity Classes (3/8)

Proof (*UNREACHABILITY* ∈ **NLOGSPACE**)

procedure numReachable(x, (V, E)) $|S(0)| := 1$ **for** $k := 1$ **to** $|V|-1$ **do** compute $|S(k)|$ from $|S(k-1)|$

$return |S(|V|-1)|$

Complexity Theory (FIT VUT) [Complexity Classes](#page-0-0) 15/27

Nondeterministic Space Complexity Classes (4/8)

Proof (*UNREACHABILITY* ∈ **NLOGSPACE**)

```
procedure numReachable(x, (V, E))
|S(0)| := 1for k := 1 to |V|-1 do
//compute |S(k)| from |S(k-1)|\ell := 0
  for each node u := 1 to |V| do
    if u \in S(k) then \ell++
```


Complexity Theory (FIT VUT) [Complexity Classes](#page-0-0) 16 / 27

Nondeterministic Space Complexity Classes (4/8)

```
procedure numReachable(x, (V, E))
|S(0)| := 1for k := 1 to |V|-1 do
//compute |S(k)| from |S(k-1)|\ell := 0
  for each node u := 1 to |V| do
    if u \in S(k) then l++
```

```
|S(k)| := \ellreturn |S(|V|-1)|
```
Nondeterministic Space Complexity Classes (5/8)

```
procedure numReachable(x, (V, E))
|S(0)| := 1for k := 1 to |V|-1 do
//compute |S(k)| from |S(k-1)|\ell := 0for each node u := 1 to |V| do
\frac{f}{f} if u \in S(k) then l_{++}reply := false
    for each node v := 1 to |V| do
      if v \in S(k-1) then
        if adjac(v, u) then reply := true
```

```
if reply then l++|S(k)| := \ellreturn |S(|V|-1)|
```
Nondeterministic Space Complexity Classes (5/8)

```
procedure numReachable(x, (V, E))
|S(0)| := 1for k := 1 to |V|-1 do
//compute |S(k)| from |S(k-1)|\ell := 0for each node u := 1 to |V| do
// if u \in S(k) then l++reply := false
    for each node v := 1 to |V| do
      if \mathbf{v} \in S(k-1) then
        if adjac(v, u) then reply := true
    if reply then l++|S(k)| := \ellreturn |S(|V|-1)|
```
Nondeterministic Space Complexity Classes (6/8)

```
procedure numReachable(x, (V, E))
|S(0)| := 1for k := 1 to |V|-1 do
//compute |S(k)| from |S(k-1)|\ell := 0for each node u := 1 to |V| do
// if u \in S(k) then l++reply := false, m := 0
    for each node v := 1 to |V| do
      if reachNondet(x, v, k-1) then m++ // v \in S(k-1)if adjac(v, u) then reply := true
   if m < |S(k-1)| then FAIL
   if reply then l++|S(k)| := \ellreturn |S(|V|-1)|
```
Nondeterministic Space Complexity Classes (6/8)

```
procedure numReachable(x, (V, E))
|S(0)| := 1for k := 1 to |V|-1 do
//compute |S(k)| from |S(k-1)|\ell := 0for each node u := 1 to |V| do
\frac{f}{f} if u \in S(k) then l++reply := false, m := bfor each node v := 1 to |V| do
      if reachNondet(x, v, k-1) then m++ // v \in S(k-1)if adjac(v, u) then reply := true
    if m < |S(k-1)| then FAIL
    if reply then l<sup>++</sup>
  |S(k)| := \ellreturn \ |S(|V|-1)|quesses path from x to v of
                                       length at most k-1:
                                       returns true iff path is OK,
                                       false if path is wrong
                                     if calls to reachNondet() did
                                     not guess all the paths correctly,
                                     terminate the computation
```
Nondeterministic Space Complexity Classes (6/8)

```
procedure numReachable(x, (V, E))
|S(0)| := 1for k := 1 to |V|-1 do
//compute |S(k)| from |S(k-1)|\ell := 0for each node u := 1 to |V| do
// if u \in S(k) then l++reply := false, m := 0
    for each node v := 1 to |V| do
      if reachNondet(x, v, k-1) then m++ // v \in S(k-1)if adjac(v, u) then reply := true
   if m < |S(k-1)| then FAIL
   if reply then l++|S(k)| := \ellreturn |S(|V|-1)|
```
Nondeterministic Space Complexity Classes (7/8)

Proof (*UNREACHABILITY* ∈ **NLOGSPACE**)

```
procedure reachNondet(x, v, d)
W_0 := Xfor p := 1 to d do
  guess a node wp
  if ¬adjac(wp−1, wp) then return false
return (W_d = V)
```
For UNREACHABILITY(*G*, *x*, *y*)*, modify* numReachable()*:*

... **if** m < |S(k-1)| **then return false** if reply **then** $l++$ **if** $k = |V|-1$ **and** $u = y$ **then return** $\neg reply$...

Nondeterministic Space Complexity Classes (8/8)

- *UNREACHABILITY can be implemented using a NTM M that works in space O*(log *n*)*.*
- *M* keeps binary values of $|S(k-1)|$, ℓ , k , u , v , m , $reply$, p , w_p , w*p*−¹ *on separate tapes.*
- *Variables are only incremented or compared with each other.*
- *Values of all variables are at most* |*V*|*, their length at most* log |*V*|*.*

Nondeterministic Space Complexity Classes (7/7)

Proposition (Immerman-Szelepcsényi Theorem)

 $\mathsf{NSPACE}(f(n)) = co - \mathsf{NSPACE}(f(n))$ *for f* $\geq \log n$

Proof

- *Let L* ∈ **NSPACE**(*f*(*n*)) *be a language decided by a NTM M^N and let w be its input.*
- *We can construct a DTM M^D working in* **NSPACE**(*f*(*n*)) *deciding co–L.*
- *M_D* simulates the UNREACHABILITY algorithm for the *configuration graph G*(*M*, *w*)*.*

Corrolary

$NPSPACE(f(n)) = co-NPSPACE(f(n)), \ldots$

Complexity Theory (FIT VUT) [Complexity Classes](#page-0-0) 25 / 27

Nondeterministic Time Complexity Classes (1/2)

■ We have seen that

$$
\mathsf{NTIME}(f(n)) \subseteq \bigcup_{c>0} \mathsf{DTIME}(c^{f(n)})
$$

Each problem from class $NTIME(f(n))$ can be deterministically decided in time $\bigcup_{c>0}$ <code>DTIME</code>($c^{f(n)}$).

Corrolary

$$
co-\mathsf{NTIME}(f(n)) \subseteq \bigcup_{c>0}\mathsf{DTIME}(c^{f(n)})
$$

Nondeterministic Time Complexity Classes (2/2)

Relationship between complements of nondeterministic time complexity classes remains unsolved:

$$
NTIME(f(n)) \stackrel{?}{=} co - NTIME(f(n))
$$

Corrolary

$$
\mathsf{NP}(f(n)) \stackrel{?}{=} co\mathsf{-NP}(f(n))
$$

Corrolary

$$
NEXP(f(n)) \stackrel{?}{=} co-EXP(f(n))
$$