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Complexity Classes – Motivation

We have studied the relation of a complexity class of a certain
type on a function which is used for its definition.

Now, we will focus on investigating the relation between
complexity classes of different types.

Although a lot effort has been invested in this area in recent years,
some problems (such as P ?

= NP) remain unsolved.
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Inclusion of Complexity Classes

We will show that the following chain of inclusions holds:

DLOG ⊆ NLOG ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP ⊆ NEXP

To do this, we will prove the statements shown below:

a) DSPACE(f (n)) ⊆ NSPACE(f (n)),
b) DTIME(f (n)) ⊆ NTIME(f (n)),
c) NTIME(f (n)) ⊆

⋃
c>0 DTIME(cf (n)),

d) NTIME(f (n)) ⊆ DSPACE(f (n)),
e) NSPACE(f (n)) ⊆ DTIME(2O(f (n))) for f (n) ≥ log n,

f) NSPACE(f (n)) ⊆ DSPACE(f (n)2) for f (n) ≥ log n
(Savitch’s theorem).

where f (n) is a time and space constructible function.
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Proof of the Inclusion of Complexity Classes (1/4)

Proof (Parts a, b, c, and d)

Parts a) (DSPACE(f (n)) ⊆ NSPACE(f (n))) and
b) (DTIME(f (n)) ⊆ NTIME(f (n))) are trivial since each
deterministic TM is a special case of a nondeterministic TM.
Part c) (NTIME(f (n)) ⊆

⋃
c>0 DTIME(cf (n))) has been proven in

the previous lecture.
The inclusion d) (NTIME(f (n)) ⊆ DSPACE(f (n))) is a
consequence of the proof of the proposition
NTIME(f (n)) ⊆ DTIME(2f (n)). A nondeterministic TM MN can
make at most f (n) nondeterministic choices. The deterministic TM
MD simulating MN uses f (n) cells of the tape to represent the
choices of MN and at most f (n) cells for simulating the tape of MN .
MD simulates the possible runs of MN one by one.
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Proof of the Inclusion of Complexity Classes (2/4)

Proof (Part e)

NSPACE(f (n)) ⊆ DTIME(2O(f (n))) for f (n) ≥ log n
We will define the configuration graph G(M,w) of an NTM M with
the input w. The vertices of the graph G(M,w) are configurations
that may occur during a computation of M on w. There is an edge
between the vertices C1 and C2 iff M can do a transition from the
configuration C1 to C2 in a single step.
We ask whether there is a path from the vertex denoting the initial
configuration to the vertex representing the accepting one.
For each input w, the number of vertices of G(M,w) can be
upper-bounded by 2O(log |w |+f (|w |)).
The already known algorithm REACHABILITY can solve the
problem in time O(m2) for graphs with m vertices. Therefore, the
overall time complexity of a DTM simulating M is 2O(log n+f (n)).
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Proof of the Inclusion of Complexity Classes (3/4)

Proof (Part f)

NSPACE(f (n)) ⊆ DSPACE(f (n)2) for f (n) ≥ log n (Savitch’s th.)
First, we will show that REACHABILITY ∈ DSPACE(log2 n).
Let G be a graph with n vertices.
Let x , y be two distinct vertices from G.
Then, the longest path from x to y can have at most length n.
We use a DTM to implement the procedure path(x , y , i) which
returns true iff there exists a path from x, y of length at most 2i .
procedure path(x, y, i)
if (i = 0) then return ((x = y) ∨ ((x,y) ∈ G))
else for all vertices z ∈ G do

if (path(x, z, i-1) ∧ path(z, y, i-1)) then
return true

return false
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Proof of the Inclusion of Complexity Classes (4/4)

Proof (Part f)

Recursive calls of path(x , y , i) create a tree of depth i.
For our problem, it suffices to check whether path(x , y , dlog ne)
holds.
The DTM implementing the path procedure will have to store call
stack with at most dlog ne triplets of length 3 · log n.
Therefore, the space complexity of REACHABILITY is O(log2 n).
For a NTM MN we can create a DTM MD which uses another DTM
deciding REACHABILITY for each accepting configuration of MN .
The number of vertices of G(MN ,w) cannot be bigger than cf (|w |).
Thus, the space complexity of MD is O(log2 cf (n)) = O(f (n)2).
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Inclusion of Complexity Classes: Conclusion

We have shown that

DLOG ⊆ NLOG ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP ⊆ NEXP

We expect all inclusion to be proper but for none of them has this
been either proved or refuted yet.
However, because of Time/Space Hierarchy Theorems (not
covered here), it is known that some inclusions need to be proper.
It is known that:

DLOG ⊂ PSPACE

P ⊂ EXP

NP ⊂ NEXP
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Definition of Complements of Complexity Classes (1/2)

Definition
Let L ⊆ Σ∗ be a language. The complement of L denoted co–L is the
language

co–L = Σ∗ \ L.

The same approach can be extended for decision problems.

Definition
The complement of a decision problem A, denoted A–COMPL, is a
problem for which the solution is:

yes ⇐⇒ the solution for A is no
no ⇐⇒ the solution for A is yes

Formally, A–COMPL is not a complement of a language because
A ∪ A–COMPL 6= Σ∗.
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Definition of Complements of Complexity Classes (2/2)

Definition
Let C be a complexity class. The complement of C, denoted co–C, is
the complexity class

co–C = {co–L | L ∈ C}.

Clearly, deterministic time and space complexity classes are
closed under complement:
each DTM accepting L can be transformed into a DTM accepting
co–L by swapping accepting and rejecting states.

DTIME(f (n)) = co–DTIME(f (n))

DSPACE(f (n)) = co–DSPACE(f (n))
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Complements of Nondeterministic Complexity Classes

Nondeterminism introduces an asymmetry in acceptance of a
given input by NTM M:

w ∈ L(M) ⇐⇒ there is an accepting run of M on w ,
w 6∈ L(M) ⇐⇒ there is no accepting run of M on w .

Thus, it suffices that one accepting computation exists for the
former case but it is required that all computations are rejecting for
the latter one.
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Nondeterministic Space Complexity Classes (1/8)

Proposition (Immerman-Szelepcsényi Theorem)

NSPACE(f (n)) = co–NSPACE(f (n)) for f ≥ log n

We have seen that REACHABILITY is in NLOGSPACE.
First, we will demonstrate that the converse of REACHABILITY ,
called UNREACHABILITY , is in NLOGSPACE too.

Definition
UNREACHABILITY

Input: Graph G = (V ,E), a pair of vertices x , y ∈ V.
Output: YES if there is no path from x to y, NO otherwise.

Proposition

UNREACHABILITY ∈ NLOGSPACE
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Nondeterministic Space Complexity Classes (2/8)

Proof (UNREACHABILITY ∈ NLOGSPACE)
We will first devise an algorithm that computes the number of
reachable nodes in a graph in O(log n) space,

• and later modify it to solve UNREACHABILITY .

Let G = (V ,E) be a graph and x ∈ V.
S(k) is the set of nodes reachable from x in k or less steps,

• |S(k)| is the number of nodes reachable from x in k or less steps.

adjac(v ,u) is true iff v = u ∨ (v ,u) ∈ E, otherwise false.
procedure numReachable(x, (V, E))

• nondeterministically either FAILs or returns the number of nodes
reachable from x,

• we will start with a procedure working in O(n) space and modify it
in several steps to use O(log n) space.
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Nondeterministic Space Complexity Classes (3/8)

Proof (UNREACHABILITY ∈ NLOGSPACE)
procedure numReachable(x, (V, E))
|S(0)| := 1
for k := 1 to |V|-1 do

compute |S(k)| from |S(k-1)|

return |S(|V|-1)|
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Nondeterministic Space Complexity Classes (4/8)

Proof (UNREACHABILITY ∈ NLOGSPACE)
procedure numReachable(x, (V, E))
|S(0)| := 1
for k := 1 to |V|-1 do
//compute |S(k)| from |S(k-1)|

` := 0
for each node u := 1 to |V| do
if u ∈ S(k) then `++

|S(k)| := `
return |S(|V|-1)|
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Nondeterministic Space Complexity Classes (4/8)

Proof (UNREACHABILITY ∈ NLOGSPACE)
procedure numReachable(x, (V, E))
|S(0)| := 1
for k := 1 to |V|-1 do
//compute |S(k)| from |S(k-1)|

` := 0
for each node u := 1 to |V| do
if u ∈ S(k) then `++

|S(k)| := `
return |S(|V|-1)|
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Nondeterministic Space Complexity Classes (5/8)

Proof (UNREACHABILITY ∈ NLOGSPACE)
procedure numReachable(x, (V, E))
|S(0)| := 1
for k := 1 to |V|-1 do
//compute |S(k)| from |S(k-1)|

` := 0
for each node u := 1 to |V| do

// if u ∈ S(k) then `++
reply := false
for each node v := 1 to |V| do

if v ∈ S(k-1) then
if adjac(v, u) then reply := true

if reply then `++
|S(k)| := `

return |S(|V|-1)|
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Nondeterministic Space Complexity Classes (5/8)

Proof (UNREACHABILITY ∈ NLOGSPACE)
procedure numReachable(x, (V, E))
|S(0)| := 1
for k := 1 to |V|-1 do
//compute |S(k)| from |S(k-1)|

` := 0
for each node u := 1 to |V| do

// if u ∈ S(k) then `++
reply := false
for each node v := 1 to |V| do

if v ∈ S(k-1) then
if adjac(v, u) then reply := true

if reply then `++
|S(k)| := `

return |S(|V|-1)|
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Nondeterministic Space Complexity Classes (6/8)

Proof (UNREACHABILITY ∈ NLOGSPACE)
procedure numReachable(x, (V, E))
|S(0)| := 1
for k := 1 to |V|-1 do
//compute |S(k)| from |S(k-1)|

` := 0
for each node u := 1 to |V| do

// if u ∈ S(k) then `++
reply := false, m := 0
for each node v := 1 to |V| do

if reachNondet(x, v, k-1) then m++ // v ∈ S(k-1)
if adjac(v, u) then reply := true

if m < |S(k-1)| then FAIL
if reply then `++

|S(k)| := `
return |S(|V|-1)|
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Nondeterministic Space Complexity Classes (6/8)

Proof (UNREACHABILITY ∈ NLOGSPACE)
procedure numReachable(x, (V, E))
|S(0)| := 1
for k := 1 to |V|-1 do
//compute |S(k)| from |S(k-1)|

` := 0
for each node u := 1 to |V| do

// if u ∈ S(k) then `++
reply := false, m := 0
for each node v := 1 to |V| do

if reachNondet(x, v, k-1) then m++ // v ∈ S(k-1)
if adjac(v, u) then reply := true

if m < |S(k-1)| then FAIL
if reply then `++

|S(k)| := `
return |S(|V|-1)|

guesses path from x to v of
length at most k-1:
returns true iff path is OK,
false if path is wrong

if calls to reachNondet() did
not guess all the paths correctly,
terminate the computation
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Nondeterministic Space Complexity Classes (6/8)

Proof (UNREACHABILITY ∈ NLOGSPACE)
procedure numReachable(x, (V, E))
|S(0)| := 1
for k := 1 to |V|-1 do
//compute |S(k)| from |S(k-1)|

` := 0
for each node u := 1 to |V| do

// if u ∈ S(k) then `++
reply := false, m := 0
for each node v := 1 to |V| do

if reachNondet(x, v, k-1) then m++ // v ∈ S(k-1)
if adjac(v, u) then reply := true

if m < |S(k-1)| then FAIL
if reply then `++

|S(k)| := `
return |S(|V|-1)|
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Nondeterministic Space Complexity Classes (7/8)

Proof (UNREACHABILITY ∈ NLOGSPACE)
procedure reachNondet(x, v, d)
w0 := x
for p := 1 to d do

guess a node wp
if ¬adjac(wp−1, wp) then return false

return (wd = v)

For UNREACHABILITY (G, x , y), modify numReachable():
...

if m < |S(k-1)| then return false
if reply then `++
if k = |V|-1 and u = y then return ¬reply

...
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Nondeterministic Space Complexity Classes (8/8)

Proof (UNREACHABILITY ∈ NLOGSPACE)
UNREACHABILITY can be implemented using a NTM M that
works in space O(log n).

M keeps binary values of |S(k-1)|, `, k, u, v, m, reply, p, wp,
wp−1 on separate tapes.

Variables are only incremented or compared with each other.

Values of all variables are at most |V |, their length at most log |V |.
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Nondeterministic Space Complexity Classes (7/7)

Proposition (Immerman-Szelepcsényi Theorem)

NSPACE(f (n)) = co–NSPACE(f (n)) for f ≥ log n

Proof
Let L ∈ NSPACE(f (n)) be a language decided by a NTM MN and
let w be its input.
We can construct a DTM MD working in NSPACE(f (n)) deciding
co–L.
MD simulates the UNREACHABILITY algorithm for the
configuration graph G(M,w).

Corrolary

NPSPACE(f (n)) = co–NPSPACE(f (n)), . . .
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Nondeterministic Time Complexity Classes (1/2)

We have seen that

NTIME(f (n)) ⊆
⋃
c>0

DTIME(cf (n))

Each problem from class NTIME(f (n)) can be deterministically
decided in time

⋃
c>0 DTIME(cf (n)).

Corrolary

co–NTIME(f (n)) ⊆
⋃
c>0

DTIME(cf (n))
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Nondeterministic Time Complexity Classes (2/2)

Relationship between complements of nondeterministic time
complexity classes remains unsolved:

NTIME(f (n))
?
= co − NTIME(f (n))

Corrolary

NP(f (n))
?
= co–NP(f (n))

Corrolary

NEXP(f (n))
?
= co–EXP(f (n))
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