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Introduction
This  document  describes  the  design  of  the  Netbench  experimental  framework  from  the 
programmer's point of view. The aim of the framework is to serve as independent platform for 
researchers seeking the easiest way to implement their algorithms, as well as a comparison of their 
algorithms with reference implementations of the other approaches.

Netbench  focus  is  in  the  field  of  longest  prefix  matching,  packet  classification  and  regular 
expression  matching.  There  are  many  approaches  to  IP lookup,  packet  classification  and  RE 
matching. They vary in the technology used. The list of common technologies includes software 
implementation for general-purpose processors, network processors, implementations for graphics 
processing units (GPUs), FPGA and ASIC designs, TCAMs. While all of these technologies are 
rapidly  innovated,  algorithms for  IP lookup,  packet  classification  and  RE matching  are  often 
independent on the technology, and may only benefit from technology improvements.

The following chapter briefly introduces the Netbench design, while three chapters then describe 
separate parts in more detail.
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Netbench Design
The Netbench framework is built around a set of Python 2.6 classes. There are common classes for 
the representation of frequent objects (packet, packet header, prefix, symbol, ...). Based on these 
classes, models of various algorithms are built. Algorithms also often use the helper classes to load 
inputs from files (PCAP parser,  classification rules parser, ...).  There are also packet traces and 
example rule sets for instant algorithm testing. Fig. 2 Shows the basic idea behind Netbench.

Common Classes

Common classes are stored in the common directory. The structure of these classes is shown in Fig. 
2.

LPM

Figure 1: Netbench design

Figure 2: Diagram of common classes.



Basic  classes  used in  Longest  Prefix  Match  /  IP lookup are stored in  the  lpm/ directory.  The 
lpm/algorithms directory contains several LPM algorithm models together with the test script. The 
basic structure of LPM classes is shown in Figure 3.

The most important class for the longest prefix match is the BLPM, which is used as a base class for 
all LPM algorithms. All derived classes must implement three basic methods:

• load_prefixset()  is  used  to  load  one  prefix set  into  the  algorithm  and  to  generate  all 
necessary data structures for the LPM operation.

• lookup()  uses  the  generated data  structures  to  perform IP lookup operation on given IP 
address. It returns the list of matched prefixes starting with the longest one.

• report_memory()  prints text information, which depends on the nature of the algorithm. The 
information may contain numbers and sizes of data structures, depth of tree etc.

BLPM moreover implements one final (leaf) method  check()  which compares result of  lookup()  
method and standard linear search (validation of new methods).

Algorithms

Algorithms for IP lookup are usually tree-based, because prefix directly corresponds to the descent 
path in binary tree. However, Netbench implements also approaches based on range searching or 
hashing.

Unibit Trie is a basic memory structure which includes all prefixes directly in its construction. Each 
node may contain prefix and up to two pointers to the child nodes. One input value bit is processed 
in each cycle during the Trie algorithm run. According to this bit the next node is the left (with bit =  
0) or right (with bit = 1) successor until there is no continuation possible. The longest prefix is the 
last matched node in the Trie. The main disadvantage of this algorithm is low matching speed given 
by the high number of processing steps. Therefore many following algorithms focus on speed (and 
memory) optimizations.

Controlled Prefix Expansion (CPE) algorithm introduces multiple bits processing per clock cycle 
and  therefore  higher  algorithm  speed.  Processing  of  more  input  bits  is  enabled  by  prefixes 
expansion to requested processing width, which leads to higher memory requirements. The leaf 
pushing  optimization  decreases  the  memory requirements  typically  to  one  half  of  the  original 
memory structure. 

Lulea starts with a conceptual leaf pushed expanded trie and replaces all consecutive elements in a 

Figure 3: Diagram of LPM classes.



trie node that have the same value with a single value.  This can greatly reduce the number of 
elements in a trie node. To allow trie indexing to take place even with the compressed nodes, a 
bitmap with 0’s corresponding to the removed positions is associated with each compressed node.

LC-Tries (LCT) are another form of compressed multibit tries. The main idea behind LC-Tries is to  
recursively pick strides (and therefore multibit tries) that result in having real prefixes at all of the 
leaves. Having fully populated leaves means that none of the internal prefixes need to be pushed to 
the leaves of the multibit tree or to lower trees (no leaf pushing). In addition to this strategy, LC-
Tries use path compression to save space on non-branching paths.

Tree Bitmap (TBM) structure is focused on hardware suitable implementation. Therefore it doesn't 
use LC-Tries scheme with variable processing steps, but it further optimizes memory usage of Lulea 
structure. Each compressed node of the structure represents $2^n$ unibit trie elements and stores 
only pointers to the first successor node and the first prefix. Next successors and prefixes follow in 
the memory, so their positions are given by the bitmaps. 

Hash-Tree Bitmap algorithm (HTBM) is focused on longer IPv6 addresses processing and reduction 
of number of Tree Bitmap steps. This is done by hash functions which serve as shortcuts in the trie 
memory  structure.  The  resulting  algorithm run  consists  of  three  stages:  parallel  multiple  hash 
functions,  longest  matched  prefix  selection  and  consequent  matching  using  the  Tree  Bitmap 
algorithm.

Shape  Shifting  Trie  (SST)  starts  with  the  Tree  Bitmap  structure  and  introduces  memory 
optimization for long non-branched segments. Each node can represent the standard balanced tree 
or any other “shape” which is more suitable for given prefix set and allows to move faster and with 
better memory utilization through the prefix space.

Binary Search on Ranges (BSR) treats a database of prefix addresses as a set of intervals. It expands 
all prefixes to full length and builds a sorted table of intervals limits where more specific intervals 
have higher priority then less specific ones. Binary search or B-Tree search is subsequently used to 
find the match for specific input IP address.

Binary Search on Prefix Lengths (BSP) is based on the idea of modifying a prefix table to make it 
possible to use hashing. The hashing is used to search among all entries of a given prefix length. 
Instead of searching every possible prefix length and picking the longest prefix length with a match, 
binary search is used to reduce the number of searches. 

MultiMatch is trivial hardware algorithm which splits input prefixes to $n$ subsets with the same 
length. Shorter prefixes are expanded to get requested length. After that, parallel hash searches are 
used to find the LPM in the group and the longest positive search is the operation result.

Data Sets

We gather and add to Netbench several data sets. For IP lookup, we focus on three target data sets -- 
IPv4 routing tables, IPv4 firewall tables and IPv6 routing tables. After further deployment of IPv6 
to end user networks the IPv6 firewall tables will be added.



Most of the new LPM algorithm's authors use BGP tables from Potaroo, but unfortunately the AS 
numbers, table release dates and numbers of currently available prefixes change in time. Therefore 
we download available IPv4 and IPv6 BGP tables and store them on regular time basis. As a result, 
any author can use the same data sets for comparison of introduced approach to other algorithms. 
Some more BGP table sources are also included. 

As IP lookup is the important step of decomposition based classification methods, we use the same 
data sets for firewall tables as in the packet classification section. Both source and destination IP 
addresses are extracted from the rules and obtained sets form a benchmark for firewall IPv4 tables.

Please follow README in lpm directory for more information.

Example Use

Please follow README in lpm directory.

Classification
Basic classes used in  packet  classification are stored in  the  classification directory.  The 
classification/algorithms directory  contains  several  models  of  packet  classification 
algorithms together with the test script. The basic structure of classification classes is shown in 
Figure 5.

The most important class for the packet classification is the Bclassification, which is used as a base 
class  for  all  packet  classification  algorithms.  All  derived  classes  must  implement  three  basic 
methods:

• load_ruleset() is  used  to  load  one rule  set  into the algorithm and to generate  all 
necessary data structures for the classification.

• classify() uses  the  generated  data  structures  to   classify one  packet.  It  returns  the 

Figure 4: Diagram of classification classes.



selected rule.
• report_memory() writes  text  information,  which  depends  on  the  nature  of  the 

algorithm. The information may contain numbers and sizes of data structures, depth of tree 
etc.

Packet Classification Algorithms

Distributed Crossproducing of Field Labels (DCFL) by Taylor and Turner modifies the LPM to 
return all valid prefixes (not only the longest one) for the given field value.  What follows is the 
hierarchical structure of small crossproduct engines. Inputs of each engine are two sets of prefixes 
(or  Labels,  in  general).  Engine  then  performs set  membership  query for  each possible  pair  of 
Labels. Result of the engine is another set of Labels. The result of the last engine is in fact a set of 
rules, from which the one with the highest priority is selected.
Multi Subset Crossproduct Algorithm (MSCA) by Dharmapurikar et al. provides heuristics on how 
to break rule set into several subsets, eliminating the memory requirements significantly. The paper 
also identifies rules that generate excessive amount of memory. These rules are called spoilers and 
are treated in a separate algorithm branch to further reduce the memory.
Perfect  Hashing  Crossproduct  Algorithm  (PHCA)  improves  MSCA  by  using  specifically 
constructed hash function to map all possible results of the LPM stage directly onto the correct rule. 
Considerable  amount  of  memory  is  saved  this  way.  Perfect  (collision-free)  hash  construction 
algorithm is used, but in this case, many collisions are intentionally introduced to create many-to-
one mapping of LPM results to rules.
Prefix Filtering Classification Algorithm (PFCA) improves PHCA in terms of memory. It is based 
on the  observation  that  many rules  does  not  specify condition  for  all  dimensions.  PFCA finds 
generalization rules to avoid meaningless combinations of the LPM stage results.
Prefix  Coloring  Classification  Algorithm  (PCCA)  further  improves  PHCA.  The  LPM  stage  is 
extended by adding abstract color property to prefixes. Prefixes now contain bitmaps of allowed 
and suppressed colors of prefixes from other dimensions. Simple logic is then used to filter out most 
of unwanted combinations of LPM results. This lowers the perfect hash table size significantly, 
while the throughput is not affected.
Multi Subset Prefix Coloring Classification Algoritm (MSPCCA) combines MSCA and PCCA to 
obtain even lower memory requirements while keeping the same throughput as in PCCA.
Hi-Cuts algorithm takes completely different approach. It constructs a decision tree which divides 
the state space into several smaller ones in each node. Packet classification then equals to the tree 
descent. Leaf nodes contain several remaining rules which are processed sequentially.

Data sets

The classification/rulesets directory contains several rule sets generated by ClassBench 
and also some very simple rule sets for early experiments and debugging. All rule sets are stored in  
the NIFIC format, which is used by the parser in classification/parsers. The rule format 
is also described in that directory. For testing purposes, packets from common/test.pcap are 
used.

Example Use

In the classification/algorithms directory type

python2.6 test.py dcfl ../rulesets/simple2.rul

to  run a  test  script.  This  script  creates  an instance of  the  selected algorithm,  loads  it  with the 
selected rules and then runs classification of packets from the  common/test.pcap file.  The 
outputs of the algorithm are compared to the outputs of linear search in rules. In case of mismatch, 
an error is reported.



Pattern Matching
Basic  classes  used  in  pattern  matching  are  stored  in  the  pattern_match directory.  The 
pattern_match/algorithms directory  contains  several  implementations  of  pattern  match 
algorithms together with the test script. The simplified basic structure of pattern match classes is 
shown in Figure 5.

Pattern  matching  in  Netbench  is  mainly  focused  on  algorithms  for  regular  expression  (RE) 
matching based on nondeterministic finite automata (NFA) and on deterministic finite automata 
(DFA), although some basic support for string matching algorithms exist.

Netbench provides several sets of classes to support those algorithms. Parser classes (pcre_parser 
and msfm_parser  [removed in Netbench 1.8 as deprecated]) based on abstract class  nfa_parser 
provides access from python to RE parsers. Class parser provides cover over various parser classes 
and independent interface to various parser classes. Class nfa_data store an automaton and provides 

Figure 5: Simplified diagram of  pattern match classes.



basic methods for automata construction. This class is used internally and also for inter algorithm 
exchange of automata. States are represented by  b_State class or by  ColouredStates class, when 
state coloring is  needed. Symbol classes are  based on abstract  class  b_Symbol,  which provides 
common  interface  for  all  symbols.  There  are  classes  for  various  symbols.  Class  b_Sym_char 
represents single ASCII char or epsilon, class  b_Sym_char_class represents character class, class 
b_Sym_kchar implements strided symbol which can have any stride and each subsymbol can be 
either ASCII char or char class, b_Sym_EOF represents end of input symbol, class DEF_SYMBOLS 
implements default symbol, class  b_Sym_string represents string of ASCII characters and finaly 
b_Sym_cnt_constr represents  PCRE  counting  constraint.  Abstract  class  b_ptrn_match provides 
common interface  for  any pattern  matching algorithm.  Abstract  class  b_Automaton implements 
many  common  algorithms  for  finite  automata  and  provides  means  for  automatic  automata 
construction via parser objects.  Any implemented algorithm based on NFA should be based on 
b_nfa class and any algorithm implementation based on on DFA should be based on b_dfa class. 
NFA based algorithms can also be based on class nfa_reductions. The class nfa_reductions provides 
various algorithms for reduction of NFA.

New algorithm should be based on correct class and must implement those methods:

• compute() - implementation of algorithm. Should expect that parsed REs ware already 
loaded.

• report_memory*() -  all  DFA based  algorithms  must  implement  these  methods  – 
minimal and maximal limits of utilised memory for this algorithm and /or real number of 
utilised memory if exact mapping of transition table to memory is specified.

• report_logic() -  all  NFA based  algorithms  must  implement  this  method.  Reports 
amount of utilised logic for FPGA, ... .

• get_state_num() and get_trans_num() - should be overloaded if necessary. These 
methods reports number of states and number of transitions.

• search() - should be overloaded if necessary. Search() method performs pattern matching 
on input string.

Algorithms

Dedicated  decoders  for  each  transition  (sindhu_prasana_nfa)  ware  introduced  by  Sindhu  and 
Prasana. Each transition has dedicated character decoder and each state is implemented by FlipFlop 
(FF). Our implementation of the algorithm also supports strided Nondeterministic finite automata 
(NFA).

Algorithm  by  Clark  et  al.  (clark_nfa)  improves  previous  algorithm by  introduction  of  shared 
character decoders, prefix sharing and NFA striding.

Architecture  by  Sourdis  and  Bispo  (sourdis_bispo_nfa)  improves  previous  algorithm  by 
introduction of character class sharing, separate matching of string subpatterns of RE by DCAM 
string matching algorithm and special units for implementation of PCRE counting constrains.

The  Nfa  Split  architecture  (nfa_split)  compute  sets  of  states  in  collision  and  then  splits  NFA 
according to those sets into deterministic and nondeterministic parts of NFA. Two states are in 
collision if they can be active at once.  The deterministic parts are implemented as DFA and the  
nondeterministic part are implemented as NFA.

Delay DFA (DELAY_DFA) by Kumar at al. introduce default transitions, that do not accept any 
character and connect states with similar outgoing transitions. Delay transitions exploits fact, that 
many states in DFA have very similar sets of outgoing transitions. Since the default transition does 
not  accept  any  symbol,  the  throughput  of  the  DDFA may  be  slower  than  DFA but  the  time 
complexity of accepting one symbol remains constant. 



History DFA (history_fa) by Kumar et al address one of the DFA problems – forgetting history of 
matching.  To solve  this  problem,  Kumar  introduces  additional  memory to  store  history of  the 
matching. Content of this memory can be used as a condition on the transition of the automaton. 

History DFA with counting (history_counting_fa) by Kumar et al. address another DFA problem – 
counting constraints in PCRE. Additional counters are introduced by Kumar to store the number of 
repetitions. Those counters can be used as condition on the transition of the automaton. 

Hybrid finite automaton (hybrid_fa) by Becchi et al. solve problem of exponentially larger memory 
requirements of DFA than NFA. DFA construction algorithm stops  as soon as state  blow-up is 
recognized. The remaining parts of the automaton are left as NFA or transformed into new DFAs. 
This method provides speed and memory consumption trade-off. 

Sparse transition table of DFA can be effectively implemented using Perfect hash function (phf_dfa
).  PHF can be created as collision-free for given set  of keys (transitions of DFA in this  case). 
However, collisions occur for unknown keys – the non-existent transitions. Therefore the value of 
each key must be stored in the PHF table for the validation of the transition.

Classes j_hybrid_fa and j_history_fa implement experimental variants of hybrid_fa and history_fa 
algorithms. Those variants use both RE and FA to construct the pattern matching algorithm.

Class DGA implements experimental pattern matching algorithm based on deterministic generalized 
automaton..

Experimental class extend_fa currently implements only NFA based variant of this pattern matching 
algorithm.

Data Sets

The  pattern_match/rulesets/* directories contain sets of regular expressions (RE) from 
various real systems such as Snort and Bro IDS and L7 project. Directory L7 contains set of RE 
from the L7 project. Directory Snort contains sets of RE from the Snort IDS. Set of RE from the 
Bro IDS is in directory Bro. 

The pattern_match part of Netbench provides parser of RE. The PCRE parser is stored in directory 
pattern_match/pcre_parser and supports wide range of PCRE features. This parser can be 
used  from  python  code  via  the  pcre_parser class.  The  deprecated  old  parser  and  python 
msfm_parser class ware removed from Netbench 1.8.

Example Use

In the pattern_match/algorithms/<algorithm> directory type

python2.6 example_of_use.py

to run an example script. This script creates an instance of the selected algorithm, loads it with set  
of regular expressions and then creates a representation of the algorithm. 

Makefile System

Pattern match part of Netbench uses Makefiles for easy usage of the library. Makefile target doc 
opens documentation, run executes the above mentioned example of use, test runs unit tests and 
clean removes  generated  files.  Makefiles  are  located  in  algorithms  directories  and  in  parent 
directories of algorithms: pattern_match, algorithms and experimental. Makefiles 
in parent directories executes the targets for all child directories.



Further Reading
• Most  directories  in  Netbench  contain  README file  with  detailed  description  of  that 

directory. This is especially true for the netbench root directory, where the instructions about 
the environment settings are.

• All  Netbench  classes  are  documented  by the  Doxygen-like  Sphinx  tool.  The  generated 
documentation in HTML format can be found in the doc directory.

• There is motivation document netbench.pdf stored also in the doc directory.
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