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Abstract—As computer and embedded systems are becoming
more complex and distributed, keeping accurate time throughout
the whole system becomes a challenging task. The IEEE 1588
Precision Time Protocol was designed to achieve very accurate
synchronization in distributed environments. Linux is becoming
the leading operating system for embedded devices, but little
attention has been paid to the issue of how to internally
synchronize the Linux system clock with the PTP hardware clock.
Our paper presents the current status in this area, highlights
possible solutions for this problem, and describes our efforts to
address this key issue.
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I. INTRODUCTION

Computer systems have evolved over the last decades from
fairly isolated units to highly complex and distributed systems
interconnected through various types of communication me-
dia. This evolution can be observed in many areas, such as
industrial automation and test and measurement. As systems
are becoming more complex and more distributed every day,
keeping one accurate time source for these systems is a chal-
lenging task. Applications running in distributed environments
need to correlate events, data, or actions to a moment in time
in order to act like one greater virtual system.

The Precision Time Protocol (PTP) was designed to achieve
very accurate synchronization in distributed environments, for
example between nodes that communicate over unreliable
and non-deterministic networks. While Linux is becoming
the leading operating system for embedded systems, support
for IEEE 1588 is only slowly being introduced into the
mainstream kernel. We argue that better PTP support, fully
integrated into the operating system, is necessary so that all
applications can profit from the more precise time keeping.

The IEEE 1588 community has been concentrating for some
time on issues like accuracy of PTP clocks, the influences
of the network infrastructure on the achievable precision, or
improving synchronization accuracy between nodes. Most of
the PTP solutions regard the problem purely from an IEEE
1588 perspective, with the focus on how to keep the PTP
clock synchronized with high precision to the master. Until
now, little attention has been paid to the applications running
on top of the system, and issues such as how to synchronize
the operating system clock with the PTP clock have been
completely left aside. In our opinion, this is a key issue that

must be addressed in order to ensure a wider acceptance of
the IEEE 1588 standard in the real world.

Most of today’s applications are unaware of the PTP clock
and get their time information from the system clock using
standard APIs like time or gettimeofday. It is important to
synchronize the Linux system clock to the PTP clock with
acceptable accuracy, without imposing the need to rewrite
or modify the applications running on top of the operating
system.

The paper presents our efforts to synchronize the Linux
system clock to the PTP clock. First, we review the previous
work done in this area. Next, we propose a solution for syn-
chronizing the system clock. We present the results achieved
using our methods. Finally, we discuss conclusions and lay
out the steps to be done in future.

II. BACKGROUND AND PREVIOUS WORK

David Mills, the father of NTP, was perhaps one of the
first to struggle with synchronizing the system clock to an
external time source. Even though his proposal for a new
kernel model for precision timekeeping is almost twenty years
old [1] [2] [3], many of his methods and results remain quite
relevant in the context of the new hardware that we have today.
Since NTP does not require hardware timestamps, being a pure
software solution, it directly synchronizes the kernel clock and
disciplines the frequency of the system clock. Mills described
using a Pulse Per Second (PPS) input or external clocks and
oscillators to improve the system clock accuracy and stability,
limited only by the jitter of the operating system and the
stability of the synchronization source.

Introducing IEEE 1588 support into the GNU/Linux oper-
ating system required designing and integrating two important
services in the kernel, namely control of the hardware clock
and packet timestamping at the hardware layer. In February
2009 Patrick Ohly introduced support for hardware assisted
timestamping into Linux version 2.6.30 and published a mod-
ified version of the ptpd program using the proposed API [4].

In 2010 a Linux kernel framework for PTP Hardware Clock
(PHC) support was proposed, as described by [5], who also
provide experimental evidence demonstrating the soundness of
that solution. The framework has gone through several rounds
of review on the mailing list and received positive feedback.
Background support [6] for the PHC patch series was merged
into kernel version 2.6.39, and full PHC support is expected
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Fig. 1: Synchronizing the System Clock to the PTP Clock

to appear in version 3.0.0. Although timestamping and PHC
support have been successfully introduced into the kernel, one
issue still needs to be addressed, namely how to accurately
synchronize the Linux kernel to the very precise PTP time
source. Figure 1 gives an illustration of the Linux PTP
hardware clock subsystem. We will return to this figure and
to the questions surrounding the system clock in Section IV.

Patrick Ohly [7] proposed two methods to achieve this goal.
The first he called “assisted system time,” and the second “two-
level PTP.” This second method bears some resemblance to our
proposed solution, and we discuss it in some detail, below.

Ohly’s first solution uses the PTP hardware clock for
timestamping only, adding an offset to the timestamp which
corrects the difference between the PHC and the system time.
The basic idea is to directly control the system clock from the
ptpd program, but to track the difference between the two
clocks in the Ethernet device driver. Since the two clocks
run with different frequencies, their offset wanders, and so
must be measured periodically. Each measurement reads the
PHC once and the system clock twice, once before and once
after the PHC reading. To calculate the time offset, Ohly
averages a sequence of ten measurements, first removing
outliers by eliminating 25% of the data points. Ohly arrived at
the number of averages based on trial and error on a particular
hardware. An implementation of Ohly’s “assisted system time”
was merged into the Linux kernel along with the hardware
timestamping support, under the name timecompare.

One significant problem with this approach is that the
number of repetitions is hard coded into each individual
Ethernet driver, but the actual number needed to achieve good
results depends on the system as a whole. The measurements
are performed in kernel space to avoid disruption, and so
tuning the number of repetitions requires recompiling the

TABLE I: Cyclictest latency in microseconds

Arch Load Min Avg Max
x86 idle 6 94 3445

CPU load 7 1855 1202288
cache thrash 24 620892 5606967

ppc idle 9 11 84
CPU load 9 1118 29391
cache thrash 9 962 4766

kernel. In general it is impossible to choose one set of driver
parameters that will work on all different kinds of systems.
The timecompare method is further flawed in the assumption
that the PHC time reading occurs exactly midway between the
two system time readings. While this may be true for PHCs
integrated into a System-on-Chip or connected via a fast bus,
this assumption does not hold in general.

We tried comparing the system time on an Intel ARM
IXP425 with the PHC time from a National Semiconductor
DP83640 PHY and found that the timecompare result was
not stable. On this platform, reading the PHC goes over the
MDIO bus clocked at 2.5 MHZ. Each MDIO bus transaction
takes at least 64 bus cycles. One read requires five transactions
with the PHY registers. Our experiments demonstrate a delay
of approximately 170-190 µs for one read operation, yet the
PHC time value is latched in the PHY on the first read.

Clearly, the assumption that the PHC timestamp occurs
halfway between the system timestamps is only true for
some particular kinds of hardware. In addition, hard coding
important synchronization parameters into Ethernet drivers
makes it much harder to correctly tune a system. Since the
parameters are related not to the driver, but rather to the system
as a whole, in our view hard coding them into the kernel is
the wrong approach.

Ohly’s second idea, the “two-level PTP” method, is some-
what similar to using a PPS to synchronize the system clock
to the PHC. This method proposes using two instances of the
PTP stack. The first synchronizes the PTP hardware clock to
the PTP master over the network, and the second one adjusts
the system time to the PHC. Ohly postulated that the drawback
of this solution would be increased system complexity. In our
opinion, the idea is worth pursuing, but we agree that running
two instances of the PTP software on the same node is rather
impractical.

III. LINUX SYSTEM LATENCY

The idea of offering the PTP hardware clock to the Linux
kernel as a combined clock source and clock event device
was considered but ultimately rejected, as discussed in [5].
Although this approach would obviate the need for internal
PHC-system synchronization, it was quite obvious that certain
kinds of hardware clocks cannot be used in this way, since they
are far too slow, for example PHY chips addressed over the
MDIO bus. Instead, the PHC subsystem depends on the PPS
subsystem to synchronize the Linux system time to the PTP
clock. We support this idea, arguing that the synchronization
accuracy would be good enough for most applications without
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Fig. 2: Clock servo topologies (a) The PTP clock and the kernel clock are driven by separate oscillators. Synchronization of
the clocks is established by two independent control loops. (b) Driving the clocks by a common oscillator reduces the influence
of the noise n(t) caused by operating system latencies.

imposing the need to rewrite them to use the PTP clock.
Applications with more demanding time requirements can
always use the new PTP interfaces directly.

Interrupt and scheduling latency determine on how quickly
sleeping tasks can be switched to running mode. If the
synchronization accuracy of the system clock to the PTP clock
is much better than the scheduling latency of the system, we
argue that the achieved synchronization is good enough for
most applications. To support this claim, we briefly examine
current Linux kernel interrupt and scheduling latency.

Since version 2.4, the Linux kernel scheduler has been
greatly improved. In the past, the scheduler had one execu-
tion queue for all processors, resulting in O(n) scheduling
complexity. The new scheduler was improved to have O(1)
complexity, each processor having its own running queue [8].
Reducing kernel and user space latency is an ongoing effort.
The PREEMPT RT branch has been partially merged into
mainline Linux, resulting in improved real time performance.
Still, depending on kernel version and hardware architecture,
Linux exhibits typical scheduling latencies in the millisecond
range.

In order to illustrate current Linux performance, we dis-
cuss measurements using the cyclictest program on different
hardware platforms. Stemming from the Linux PREEMPT RT
kernel development effort, this program measures overall sys-
tem latency from the application point of view. By repeatedly
yielding the CPU for a specific duration and comparing with
the actual time blocked, cyclictest measures overall scheduling
latency of a user space program.

Table I shows the results of our latency tests. We ran
cyclictest with command line arguments -i 10000 -l 100000
on an IBM Lenovo W510 with an Intel Core i7 CPU running
Ubuntu kernel 2.6.32-29-generic-pae and on the Freescale
P2020RDB PowerPC platform running kernel 2.6.39. The

tests ran both under heavy load and when the machine was
otherwise idle. The average scheduling latency without CPU
load did not exceed 100 µs. While minimum values reach 5-
10 µs without load, absolute maximum values can exceed one
second, especially when running cache thrashing programs.

Although latency measurements vary widely depending on
the hardware architecture, kernel version, and system load,
we find that our measurements are in broad agreement with
results reported by others [9] [10] [11]. We can conclude that,
if the synchronization accuracy between the PTP and system
clocks is kept within 100 µs, this should be good enough to
have accurate time information for most of the applications
running on top of the system.

IV. SYNCHRONIZING THE LINUX SYSTEM CLOCK

A block diagram of the Linux PTP hardware clock subsys-
tem is shown in Figure 1. Starting at the top, timestamped
packets from the PHC are made available to the PTP stack
via the SO TIMESTAMPING socket option. The PTP stack
calculates an appropriate correction and tunes the PHC using
standard POSIX clock functions. At the same time, a PPS
signal from the PHC is timestamped by the kernel in an
Interrupt Service Routine (ISR), and this is made available
to a user space program via the standard NTP interface for
PPS. The main focus of our study is on the detailed operation
of this program.

Figure 2a depicts a typical clock servo topology used to
synchronize both a PHC and the Linux kernel clock to the
PTP master of the network. This topology represents a system
where PHC and kernel clock reside on two distinct hardware
components, for example a network card and a CPU, driven
by two separate oscillators. Such a constellation is typically
found on a standard PC.



A PTP implementation running on the system determines
the time offset o(t) between the master and the slave clock.
The first clock servo aims to minimize this clock offset by
tuning the PTP clock using the control signal u(t). Once the
PHC is properly synchronized to the master clock, the task
is to use the precise time information to discipline the Linux
system clock.

We discussed two basic approaches to the problem of
estimating the value of the clock offset e(t) in Section II. One
can either read the clock value of both clocks and calculate
the clock offset or use the PPS timestamps of the signal
generated by the PHC. In both cases, since these measurements
are essentially software timestamps, they are perturbed by
the system latencies discussed in Section III. The quantity
n(t) represents the measurement noise introduced by these
latencies. Our experiments have indicated that this noise n(t)
may be an order of magnitude higher than the actual clock
offset e(t), negatively affecting the performance of the control
loop. As an example, Figure 3 shows a histogram of PPS
timestamps taken on the Freescale P2020RDB while under
heavy load. These data were collected by setting the system
time to the PHC time and then observing the PHC’s PPS offset
as seen by the system clock over a few minutes. Depending on
system activity, the ISR can be delayed a dozen microseconds
or more. Even though these particular data were acquired with
an unrealistically heavy load (see the script in Section V), still
we observed similar latencies when the system was idle, albeit
with much lower frequency of occurrence.

Designers of embedded systems are not generally bound to
the architecture of Figure 2a. For these systems, we suggest a
different approach that may result in better synchronization
between the PHC and the system clock. System-on-Chip
devices like the Freescale P2020 integrate CPU and PTP
hardware clock on the same chip, operating the CPU clock
and the PHC from the same oscillator. In other designs where
the PHC is external to the CPU, a common oscillator can be
used to drive both the PHC and the CPU (and thus the kernel)
clock.

Figure 2b shows a configuration where both the PHC and
the kernel clock are driven by the same oscillator. As in Figure
2a, the PTP stack derives o(t), the offset between the slave
and the master clock. A clock servo again is used to tune the
PHC. After the control loop has settled and the PHC is aligned
to the master clock, the control signal u(t) is only adjusted to
correct for the wander of the local clock.

The variations in oscillator frequency now affect both the
PHC and the kernel clock in the same way, and the control
signal required to maintain synchronization is the same for
both clocks. We therefore directly feed u(t) not only to the
PHC but use it also to tune the kernel clock. Since we cannot
set the new tuning value for both clocks simultaneously, a time
delay τ is introduced, but seeing as this time delay is typically
small compared to the sampling time of the control loop (the
PTP sync rate), it may be neglected.

Since the two clocks are driven by the same oscillator and
are tuned by the same signal u(t), they are syntonized. The
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Fig. 3: PPS Timestamping Under Heavy Load

second control loop is only required to eliminate the constant
phase offsets between the clocks. Although the controller input
e(t) + n(t) of this servo is affected by measurement noise
due to system latencies, the controller must only correct the
small influence of τ . Thus it can be tuned slowly by using
appropriate filters to remove the measurement noise.

V. PROOF OF CONCEPT

We conducted a pair of experiments to determine just how
well the system clock may be synchronized with the PHC by
using a PPS. For these tests we used the Freescale P2020RDB
and a Meinberg Lantime M600 master clock. To test the case
where the PHC and system clocks are operated as in Figure 2a,
we used a version of the ptpd [12] that has been extended to
use the PHC interface. We ran this program as a slave-only
ordinary clock and synchronized with a PTP master clock over
the network. Synchronizing to the PTP master naturally forces
the PHC to diverge from the system clock.

To discipline the system clock, we wrote a simple program
implementing a proportional-integral (PI) controller. The clock
servo’s transfer function is given by

U(z)

E(z)
= kp +

kiz

z − 1
. (1)

Here, U(z) and E(z) are the Z-transforms of the frequency
adjustment that is applied to the clock and the offset between
the PHC and the system clock, respectively. The coefficients
kp = 0.0784 and ki = 0.0016 were found by pole placement
and showed good controller performance on our system. The
sampling time was one second.

In addition to reading the PPS timestamps and tuning the
system clock, this program also checks the actual clock offset
using the timecompare method discussed in Section II.

We ran our tests under two different kinds of system load.
In order to determine the absolute worst case synchronization
behavior, we first ran the tests under an extreme system load.
Then, in order to provide a comparison with various other
published results, we ran the tests under a much lighter load.
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Fig. 4: Three Hour Synchronization Performance

In order to study the effect of system load, we let the
following script run during the test, which produces an endless
sequence of about five minutes of extreme load followed by
five minutes idle time.

while [ 1 ] ; do
find /
dd if=/dev/zero of=/dev/null count=1000000
./hackbench -g 2 -T 8 -s 10000 -l 10000
./calibrator 400 2M /tmp/out
sleep 300

done

The result of the test over a three hour period is shown in
Figure 4. The top line shows the received PPS timestamps,
and the bottom line shows the result of the timecompare
measurements.1 The periodic disturbances from the load script
are clearly visible, as are occasionally ISR latencies of up
to about 30 microseconds. The apparent effect of the heavy
system load is a time error of about six microseconds.

1The timecompare offset of about four microseconds merely reflects the
average ISR latency. Normally the PPS timestamps would be corrected by
this offset, but we did not do this.

-10

-9

-8

-7

-6

-5

-4

-3

 500  1000  1500  2000  2500  3000

O
F

F
S

E
T

 M
IC

R
O

S
E

C
O

N
D

S

SECONDS

TIME COMPARE

Fig. 5: PHC and System Clock Syntonized

In order to evaluate the servo scheme of Figure 2b, we
repeated the test with a hybrid ptpd version, altered to adjust
the PHC and system clock at the same time. In this way, a
single program, the ptpd, implements both the PTP stack and
the PPS servo.

At first glance, the performance of the syntonized servo
scheme appears to be about the same as with the first scheme.
However, a closer look uncovers some performance differ-
ences. Figure 5 shows detail of the syntonized test compared
with Figure 6 from the first test. Note that Figure 6 shows a
detailed view of the lower trace from Figure 4. When the
clocks are syntonized, the overall peak-to-peak time error
due to system load is reduced by about one microsecond.
In addition, in the absence of the system load (during the
excursions in the upper half of Figure 5) the curve appears
much smoother.

Considering the typical Linux scheduling latencies dis-
cussed in Section III, the synchronization performance
achieved here seems quite acceptable. From these experiments,
it appears that using the PPS from the PTP hardware clock
to the system clock can provide good results. Even under
an extreme system load, the induced drift did not exceed six
microseconds.

Figures 7 and 8 show the synchronization performance
under light system load with our syntonization scheme and
without it, respectively. The effect of the load is a one
microsecond time error, visible at the 600 second mark. It is
instructive to compare these with Figures 5 and 6. Once again,
when the clocks are syntonized, the peak-to-peak time error is
less and the trace is smoother overall. These results compare
favorably with various other methods using software time
stamping. Correll [12] reports synchronization within 10 µs on
a “fairly busy” m68k CPU. Similar results are reported for the
RADclock [13] method under “very light system load.” Our
experiments clearly demonstrate how synchronization based
on software time stamping methods is significantly affected
by system load. In our view, measurements reported without
exactly specifying the system load are probably optimistic and
should be viewed with healthy skepticism.
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Fig. 6: PHC and System Clock Separate
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Fig. 7: PHC and System Clock Syntonized
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Fig. 8: PHC and System Clock Separate

VI. CONCLUSIONS AND FUTURE WORK

Synchronization of the Linux system clock to the PTP
hardware clock is of great importance, since it will enable
all applications to benefit from the more precise PTP time
source. The solution presented here eliminates the need to
rewrite applications to directly use the PTP clock. Our efforts
have been focused on synchronizing the clocks, and we
presented two clock servo topologies to achieve this. The servo
architecture using two different oscillators can be used in any
device running Linux. Embedded systems and System-On-
Chip designs can take advantage of the improved architecture,
which features a common frequency source. In this case, the
clocks are syntonized, and the second control loop is only
required to eliminate small offsets between the PTP hardware
clock and the system clock.

The tests also demonstrate the soundness of the concept.
The synchronization accuracy is, in our opinion, good enough
to be used in a wide range of applications. The proposed
solution has also the advantage of using standard kernel
components (the PHC and PPS subsystems), without imposing
the need to modify or recompile the kernel.

Although the existing Linux timecompare method remains

useful for evaluating synchronization experiments, when con-
trasted with well established PPS servo methods it appears to
be an unattractive, ad hoc solution. One great advantage of
our proposal is that it keeps the clock servo programs in user
space. In this way, system administrators and end users can
easily adapt the servo algorithms to their particular needs.

However, there is more work yet to be done. Support for
feeding the PPS timestamp directly into the NTP servo in
the kernel (the so called “hard PPS” method) was added
into kernel 2.6.38. It would be interesting to compare the
synchronization performance of this kernel space method to
our user space approach. Although the results of our first
experiments are quite promising, still we should like to test a
wider variety of hardware and software combinations.

We expect that our solution will have a positive impact on
the acceptance of PTP within the open source community,
enabling IEEE 1588 to become a standard synchronization
option for the GNU/Linux operating system. Only when PTP
solutions are fully integrated into the operating system will
we reap the full benefit of IEEE 1588 for the great majority
of Linux devices and applications.
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