
P/N 71-003849 REV A

Overview Manual

Spirent TestCenter
Automation
January 2008

TM

Spirent Communications, Inc.
26750 Agoura Road
Calabasas, CA
91302 USA

Copyright
© 2008 Spirent Communications, Inc. All Rights Reserved.

All of the company names and/or brand names and/or product names referred to in this document, in particular, the
name “Spirent” and its logo device, are either registered trademarks or trademarks of Spirent plc and its subsidiaries,
pending registration in accordance with relevant national laws. All other registered trademarks or trademarks are the
property of their respective owners. The information contained in this document is subject to change without notice
and does not represent a commitment on the part of Spirent Communications. The information in this document is
believed to be accurate and reliable, however, Spirent Communications assumes no responsibility or liability for any
errors or inaccuracies that may appear in the document.

Limited Warranty
Spirent Communications, Inc. (“Spirent”) warrants that its Products will conform to the description on the face of
order, that it will convey good title thereto, and that the Product will be delivered free from any lawful security interest
or other lien or encumbrance.

Spirent further warrants to Customer that hardware which it supplies and the tangible media on which it supplies
software will be free from significant defects in materials and workmanship for a period of twelve (12) months, except
as otherwise noted, from the date of delivery (the “Hardware Warranty Period”), under normal use and conditions.

To the extent the Product is or contains software (“Software”), Spirent also warrants that, if properly used by Customer
in accordance with the Software License Agreement, the Software which it supplies will operate in material
conformity with the specifications supplied by Spirent for such Software for a period of ninety (90) days from the date
of delivery (the “Software Warranty Period”). The “Product Warranty Period” shall mean the Hardware Warranty
Period or the Software Warranty Period, as applicable. Spirent does not warrant that the functions contained in the
Software will meet a specific requirement or that the operation will be uninterrupted or error free. Spirent shall have no
warranty obligations whatsoever with respect to any Software which has been modified in any manner by Customer or
any third party.

Defective Products and Software under warranty shall be, at Spirent's discretion, repaired or replaced or a credit issued
to Customer's account for an amount equal to the price paid for such Product provided that: (a) such Product is
returned to Spirent after first obtaining a return authorization number and shipping instructions, freight prepaid, to
Spirent's location in the United States; (b) Customer provides a written explanation of the defect or Software failure
claimed by Customer; and (c) the claimed defect actually exists and was not caused by neglect, accident, misuse,
improper installation, improper repair, fire, flood, lightning, power surges, earthquake, or alteration. Spirent will ship
repaired Products to Customer, freight prepaid, based on reasonable best efforts after the receipt of defective Products.
Except as otherwise stated, any claim on account of defective materials or for any other cause whatsoever will
conclusively be deemed waived by Customer unless written notice thereof is given to Spirent within the Warranty
Period. Spirent reserves the right to change the warranty and service policy set forth above at any time, after
reasonable notice and without liability to Customer.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, ALL IMPLIED WARRANTIES, INCLUDING BUT
NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT AND FITNESS
FOR A PARTICULAR PURPOSE, ARE HEREBY EXCLUDED, AND THE LIABILITY OF SPIRENT, IF ANY,
FOR DAMAGE RELATING TO ANY ALLEGEDLY DEFECTIVE PRODUCT SHALL BE LIMITED TO THE
ACTUAL PRICE PAID BY THE CUSTOMER FOR SUCH PRODUCT. THE PROVISIONS SET FORTH ABOVE
STATE SPIRENT'S ENTIRE RESPONSIBILITY AND CUSTOMER'S SOLE AND EXCLUSIVE REMEDY WITH
RESPECT TO ANY BREACH OF ANY WARRANTY.

Contents
About this Guide . 5
Introduction . 6
Related Documentation . 6
How to Contact Us. 8

Chapter 1: Introduction . 9
Spirent TestCenter Automation . 10

Spirent TestCenter Conformance . 11
Key Benefits of Spirent TestCenter Automation . 11

Automation in the Spirent TestCenter Environment . 11
The Spirent TestCenter API. 13
This Manual . 14

Chapter 2: The Spirent TestCenter Data Model . 15
The Network Test Environment. 16
The Software Test Environment . 17
Common Object Types . 18
Creating a Spirent TestCenter Test . 20

General Steps to Set Up and Run Tests . 20
A Spirent TestCenter Test (Traffic Generation and Analysis) . 21

Chapter 3: Using the Spirent TestCenter API . 23
Test Elements and Test Execution . 24

Test Configuration Objects . 24
Relations . 24
Commands and Command Objects. 24

The API Functions . 25
Spirent TestCenter API Syntax . 26
Object Handles . 28

Creating Object Handles . 28
Using Object Handles . 28
Direct Descendant Notation . 29

Object Attributes . 29
Setting Attributes . 29
Retrieving Attribute Values . 30
Descendant-Attribute Notation . 30

Automatic Object Creation . 30
Using Relations . 31
Test Output. 32
Spirent TestCenter Automation Overview | 3

Contents
Spirent TestCenter Test Results . 32
Data Capture . 34

Spirent TestCenter Automation Run-Time Environment . 35
Creating Test Configurations . 35
Using the Tcl Interface (An Example) . 36

Initialization . 36
Chassis Connection and Port Reservation . 37
Project and Port Objects . 37
Traffic Configuration . 38
Result Subscription . 39
Test Execution . 41
Cleanup . 42

Test Completion. 43

Appendix A: Spirent TestCenter Licenses . 45

Index . 47
4 | Spirent TestCenter Automation Overview

About this Guide
In About this Guide...

• Introduction 6

• Related Documentation 6

• How to Contact Us 8
Spirent TestCenter Automation Overview | 5

About this Guide
Introduction
Introduction
This manual provides an overview of Spirent TestCenter Automation and how to use the
Spirent TestCenter API to create a test configuration, run the test, and retrieve test results.
The manual includes a description of the Spirent TestCenter software packages, the object
model, and the Tcl functions in the API.

Note: This manual is not intended as a reference guide for any of the Spirent TestCenter
Automation packages. For detailed information on the features, functions, operations,
attributes, and methodology of the software for your particular Spirent TestCenter
package, refer to the document set on the CD with your Spirent TestCenter Automation
software.

This manual is intended for users who wish to use the Spirent TestCenter Automation API
to perform tests using the features of one of the Spirent TestCenter Automation packages
(such as the Multicast base package or the RFC 2544 test package). It is assumed that
users of this manual have the following knowledge and experience:

• Familiarity with the operating system environment on your PC or workstation
(Microsoft® Windows® or Linux®/Unix®).

• Moderate familiarity with Spirent TestCenter equipment

• Working knowledge of data communications theory and practice

• Ability to program with the Tcl scripting language.

Related Documentation
Additional documentation items that are related to this manual are listed below.

• Spirent TestCenter Automation Object Reference. Contains reference information
about the objects in the Spirent TestCenter data model.

• Spirent TestCenter Automation Programmer’s Guide. Describes the Spirent
TestCenter Automation functions and contains information about using the API to
write Tcl scripts for specific protocols and particular elements of network
performance testing.

• Spirent TestCenter Conformance Automation Object Reference. Contains reference
information about the objects in the Spirent TestCenter Conformance data model.

• Spirent TestCenter Conformance Automation Programmer’s Guide. Describes
how to use Spirent TestCenter Conformance Automation to write Tcl scripts for
conformance and interoperability tests on Spirent TestCenter.

• External Time Reference (GPS/CDMA) User Guide. Describes the GPS/CDMA kits
available from Spirent Communication, explains GPS/CDMA theory of operation,
and describes how to set up GPS/CDMA for use with Spirent TestCenter and
SmartBits equipment.
6 | Spirent TestCenter Automation Overview

About this Guide
Related Documentation
• Getting Started with Spirent TestCenter provides hardware set up, software
installation, and licensing instructions for Spirent customers who are receiving and
installing new Spirent TestCenter chassis.

• Spirent TestCenter System Reference Manual. Describes the Spirent TestCenter
chassis, modules, accessories, and software applications. General information is also
provided on system administration functions, testing procedures, and diagnostics.

In addition to these manuals, all Spirent TestCenter software applications include detailed,
context-sensitive online Help systems.

A glossary of Spirent TestCenter terminology is available in each Spirent TestCenter
online Help file.
Spirent TestCenter Automation Overview | 7

About this Guide
How to Contact Us
How to Contact Us
To obtain technical support for any Spirent Communications product, please contact our
Support Services department using any of the following methods:

Americas

E-mail: support@spirent.com
Web: http://support.spirentcom.com
Toll Free: +1 800-SPIRENT (+1 800-774-7368) (US and Canada)
Phone: +1 818-676-2616
Fax: +1 818-880-9154
Hours: Monday through Friday, 05:30 to 16:30, Pacific Time

Europe, Africa, Middle East

E-mail: support@spirent.com
Web: http://support.spirentcom.com
Phone: +33 (0) 1 61 37 22 70
Fax: +33 (0) 1 61 37 22 51
Hours: Monday through Thursday, 09:00 to 18:00, Friday, 09:00 to 17:00, Paris Time

Asia Pacific

E-mail: supportchina@spirent.com
Web: http://support.spirentcom.com.cn
Phone: 400 810 9529 (mainland China)
Phone: +86 400 810 9529 (outside China)
Fax: +86 10 8233 0022
Hours: Monday through Friday, 09:00 to 18:00, Beijing Time

The latest versions of user manuals, application notes, and software and firmware updates
are available on the Spirent Communications Customer Service Center websites at
http://support.spirentcom.com and http://support.spirentcom.com.cn (China).

Information about Spirent Communications and its products and services can be found on
the main company websites at http://www.spirentcom.com and
http://www.spirentcom.com.cn (China).

Company Address

Spirent Communications, Inc.
26750 Agoura Road
Calabasas, CA 91302
USA
8 | Spirent TestCenter Automation Overview

mailto:support@spirent.com
http://support.spirentcom.com
mailto:support.europe@spirent.com
http://support.spirentcom.com
mailto:supportchina@spirent.com
http://support.spirentcom.com.cn
http://support.spirentcom.com
http://support.spirentcom.com.cn
http://www.spirentcom.com
http://www.spirentcom.com.cn

Chapter 1

Introduction
In this chapter...

• Spirent TestCenter Automation 10

• Automation in the Spirent TestCenter Environment 11

• The Spirent TestCenter API 13

• This Manual 14
Spirent TestCenter Automation Overview | 9

Chapter 1: Introduction
Spirent TestCenter Automation
Spirent TestCenter Automation
Spirent TestCenter Automation is an automated software system for network performance
analysis. Spirent TestCenter Automation provides a Tcl-based Application Programming
Interface (API) that you use to create and run tests. You use Spirent TestCenter software
together with a network hardware configuration that includes Spirent TestCenter hardware
and your network device(s). The Spirent TestCenter software/hardware combination
generates test traffic to measure the performance of your network device.

Spirent Communications distributes Spirent TestCenter Automation software as part of
the Spirent TestCenter software product. The Spirent TestCenter Automation capabilities
are available in the set of Spirent TestCenter software packages that support network
protocols and RFC test methodologies. There are two classes of Spirent TestCenter
packages:

• The Base packages provide software for testing network protocols.

• The Test packages provide software for testing based on well-defined test
methodologies that are either RFC-based standards or developed by Spirent in
working with its customers.

To locate product datasheets that describe these packages, use the Spirent Document
Finder. The Document Finder is located here:

http://www.spirentcom.com/about/index.cfm?media=7&ws=327

To use the Spirent TestCenter packages, you must obtain the appropriate license(s). (For
information about licenses, see Appendix A, “Spirent TestCenter Licenses.”) For
information about installing Spirent TestCenter software, refer to the Getting Started with
Spirent TestCenter document.

The Spirent TestCenter software includes a graphical user interface (GUI) for the test
system. The Spirent TestCenter GUI is separate from the Spirent TestCenter Automation
software. The GUI allows you to generate tests, run the tests, and review the results
without writing any scripts or programs. These GUI interfaces are both easy to use and
powerful, but many users require the ability to develop unique tests or tests that will run
unattended for hours or days. Spirent TestCenter Automation also supports easy
customization of tests. In general, the automation interface and the GUI provide the same
capabilities.
10 | Spirent TestCenter Automation Overview

http://www.spirentcom.com/about/index.cfm?media=7&ws=327

Chapter 1: Introduction
Automation in the Spirent TestCenter Environment
Spirent TestCenter Conformance

Spirent Communications provides automation software for Spirent TestCenter
Conformance Application. Spirent TestCenter Conformance Application executes Spirent
Communications conformance and interoperability test suites on Spirent TestCenter.

• A conformance test suite verifies the compliance of an implementation under test
(IUT) to a standard or specification.

• An interoperability test suite verifies how two systems work together in accordance
with a standard or specification.

Spirent TestCenter Conformance Automation defines a set of commands that you use to
manipulate the components of a test suite configuration.You use Spirent TestCenter
Conformance Automation in the context of the Spirent TestCenter Automation
Application Programming Interface (API) to create and then run the test suite.

For information about using Spirent TestCenter Conformance Automation, see the Spirent
TestCenter Conformance Automation Programmer’s Guide.

Key Benefits of Spirent TestCenter Automation

Test automation You can create complex tests with numerous repetitions and virtually unlimited test
durations. You can automate your results verification, because Spirent TestCenter
Automation allows access to both the results and the test configurations while the program
is running.

Single interface Spirent TestCenter Automation packages share a common architecture, syntax, and set of
functions. The Spirent TestCenter API provides access to the complete set of test
capabilities.

Default values Spirent TestCenter Automation provides an extensive set of default values for test
attributes.

Tcl support Spirent TestCenter Automation provides a Tcl interface to the Spirent TestCenter
Automation tools.

Interactive
Testing

Spirent TestCenter Automation supports interactive access to the test environment. You
can examine test results and modify the test configuration for a running test.

Automation in the Spirent TestCenter Environment
When you use Spirent TestCenter Automation, you provide test information by using a set
of Tcl functions to create a representation of a test configuration.

Figure 1-1 on page 12 shows the relationships between the test information that you
provide, Spirent TestCenter Automation, and the Spirent TestCenter core system (the
Spirent TestCenter software, firmware and system hardware).
Spirent TestCenter Automation Overview | 11

Chapter 1: Introduction
Automation in the Spirent TestCenter Environment
Figure 1-1. Spirent TestCenter Automation and the Spirent TestCenter Environment

You use the Spirent TestCenter API to create and run the test, and to retrieve the test
results. Spirent TestCenter Automation handles the communication with the firmware on
the Spirent TestCenter hardware (chassis and cards).

Tcl function calls

Spirent TestCenter Automation

Spirent TestCenter API

RFC2544 RFC2889

Spirent TestCenter firmware

Spirent TestCenter system hardware

Packet
Generator &
Analyzer

Multicast

Spanning Tree

Unicast

Multicast
Routing

MPLS

PPPoX

DHCP

Spirent TestCenter software
12 | Spirent TestCenter Automation Overview

Chapter 1: Introduction
The Spirent TestCenter API
The Spirent TestCenter API
Spirent TestCenter Automation provides an API that you use to create and run tests, and to
retrieve the test results. The API defines a set of functions that you can call from a Tcl
script or from a Tcl shell window.

The API consists of a common set of functions that are used for all of the Spirent
TestCenter Automation packages. This common set of functions reflects the architecture
of the Spirent TestCenter packages. Because the packages share a common architecture
and interface, once you have learned how to write a test program for one package, it is
easy to write tests for the other packages.

The API supports all of the features provided by Spirent TestCenter. It provides the
capability to run tests for virtually unlimited test durations, and it gives you access to the
test configuration and test results during execution.

Figure 1-2 shows what your application provides to Spirent TestCenter Automation (a test
description) and what Spirent TestCenter Automation produces (test results).
(Descriptions of items 1 - 4 in the figure begin on page 14.)

Figure 1-2. Using Spirent TestCenter Automation

Spirent
TestCenter
Chassis

DUT

Test Management PC

2

Results
data

Spirent
TestCenter

User
Application
(Tcl)

Result files
Log File
 [Diagnostic
 messages]

Test Output

4

Tcl Test Description

Test Input

3

Sp
ire

nt

Te
st

C
en

te
r

A
P

I

1

Test
configuration
Spirent TestCenter Automation Overview | 13

Chapter 1: Introduction
This Manual
1 Test input — Use the Spirent TestCenter API to define your test configuration. To
create a test description, you can use either a Tcl script or you use a Tcl shell window.
If you use a script, you place Tcl function calls to the API in your script, and then run
the script in a Tcl shell. Or, you can enter the function calls directly in the Tcl shell
window.

2 Test execution — Based on your test description, Spirent TestCenter Automation
creates an internal representation of the test configuration. Spirent TestCenter
Automation runs the test, handling the communication with the Spirent TestCenter
Chassis and directing the test execution.

3 Results data — Depending on context, results data are available to your application
through the Spirent TestCenter API or in output files. Real-time results are available
during the test, and Spirent TestCenter compiles results at the end of the test.

4 Test output — Spirent TestCenter Automation produces several kinds of output,
including results files and a log file that contains diagnostic messages.

This Manual
The remaining chapters in this manual provide the following information:

• Chapter 2, “The Spirent TestCenter Data Model,” describes the Spirent TestCenter
object model and how your tests use it in the Spirent TestCenter network performance
analysis system.

• Chapter 3, “Using the Spirent TestCenter API,” provides information about how to
use the API functions to create and use Spirent TestCenter Automation objects to run
your tests. This chapter also provides information about the different kinds of test
output, and how to use the Spirent TestCenter Automation API to access test results.
14 | Spirent TestCenter Automation Overview

Chapter 2

The Spirent TestCenter Data Model
Spirent TestCenter Automation defines a data model consisting of objects that represent
the different components of a test configuration. When you define a test, you use a subset
of the objects to create an object hierarchy that represents your particular test
configuration.

Spirent TestCenter Automation uses the object hierarchy to run your test; the attributes for
the objects provide the information that is required. For example, if you are testing a BGP
configuration using IPv4, you provide required data for BGP update messages by setting
the Origin and NextHop attributes for a BgpIpv4RouteConfig object.

In addition to the objects that describe a test configuration, the data model also includes
objects that define result data. When Spirent TestCenter collects test results, it sets the
value of the corresponding result attributes. (In addition to providing results through the
API, Spirent TestCenter provides additional results in output files.)

In this chapter...

• The Network Test Environment 16

• The Software Test Environment 17

• Common Object Types 18

• Creating a Spirent TestCenter Test 20

• A Spirent TestCenter Test (Traffic Generation and Analysis) 21

Chapter 3, “Using the Spirent TestCenter API” contains an example Tcl script. This
example is intended to demonstrate the use of the Spirent TestCenter data model.
Spirent TestCenter Automation Overview | 15

Chapter 2: The Spirent TestCenter Data Model
The Network Test Environment
The Network Test Environment
Spirent TestCenter objects are software definitions that represent the elements of an
emulated network test configuration. The Spirent TestCenter software runs in the Spirent
TestCenter network test environment, which includes:

• one or more Spirent TestCenter modules

• one or more Devices Under Test (DUTs).

This manual uses an example of a simple network configuration to show how the object
model is applied to the Spirent TestCenter test environment. Figure 2-1 shows a test
environment that contains a test management PC running Spirent TestCenter, a Spirent
TestCenter chassis containing a single Spirent TestCenter module with two ports. The
example test is configured to run a back-to-back test, in which one port on the module
transmits to the other (receiving) port.

Figure 2-1. A Spirent TestCenter Test Environment

As shown in Figure 2-1, Spirent TestCenter Automation (along with your application)
runs on a PC (1). The connection between the PC and the Spirent TestCenter chassis (2)
provides Spirent TestCenter Automation access to the chassis (and thus the capability of
running the test), but it is not part of the test configuration.

• The hardware test configuration is defined by (3) a Spirent TestCenter module and its
ports, along with any DUTs connected to the ports. The example used in this manual
is a simple back-to-back configuration that is intended to provide an overview of
using Spirent TestCenter Automation. In other configurations, the ports would be
connected to one or more DUTs.

• The software test configuration is defined by your application. The Spirent TestCenter
Automation software provides you with the means of superimposing a software
model (the object hierarchy) on top of the hardware test configuration.

Spirent
TestCenter
Chassis

Test Management PC

Spirent
TestCenter
Automation

User Application
(Tcl) Spirent

TestCenter
Module

Port

Port

2

1

3

16 | Spirent TestCenter Automation Overview

Chapter 2: The Spirent TestCenter Data Model
The Software Test Environment
Spirent TestCenter uses this software model to emulate a network environment; the
emulated network can contain hundreds or thousands of network hosts, producing a
simulation of real network traffic.

The Software Test Environment
In the Spirent TestCenter performance analysis system, your application uses Spirent
TestCenter Automation software to create a test, run the test, and retrieve the test results.
Figure 2-2 shows a general representation of the process of creating a test.

Figure 2-2. Creating a Spirent TestCenter Automation Test

When you create a test, your Tcl application uses the API to provide test input to Spirent
TestCenter Automation (1). Spirent TestCenter Automation creates the object hierarchy
(2), which it will use to run the test. Before running the test, Spirent TestCenter
Automation will validate the configuration described in the object hierarchy. If you have
created a valid configuration, Spirent TestCenter Automation will run the test.

Figure 2-3 on page 18 shows the effect of running the test.

Spirent
TestCenter
Chassis

Test Management PC

Spirent
TestCenter
Automation

User Application

Tcl test description

Test Input

Object Hierarchy

Sp
ire

nt

Te
st

C
en

te
r

A
P

I

1

2

Spirent TestCenter Automation Overview | 17

Chapter 2: The Spirent TestCenter Data Model
Common Object Types
Figure 2-3. Running a Spirent TestCenter Automation Test

Spirent TestCenter maintains the object hierarchy for the duration of the test session.
During the test, Spirent TestCenter collects test results and stores the data in the hierarchy
(1 – in the figure, objects are rendered in blue to indicate result objects that have been
created, and result attributes that have been updated). Your application can retrieve the
result attribute values and manipulate the objects in the hierarchy during test execution
(2). This gives you considerable control over the test environment.

Common Object Types
The network connections and traffic in your test environment are represented by two basic
components in Spirent TestCenter testing: ports and traffic. Spirent TestCenter defines
objects to represent these components and other components of a test configuration. The
particular set of object types and the number of objects that you use for your test is
determined by the Spirent TestCenter test that you are running and the way you structure
your test – how many ports you use and how you define the traffic in your test.

When you create a test configuration, you use Spirent TestCenter objects to create an
object hierarchy. Table 2-1 on page 19 shows some of the object types that are common to
many test configurations. In the table, the type names indicate specific object types; you
use these names when you create objects.

The particular set of objects that you use for a test is determined by the test type and
protocol. (For a diagram of the complete object hierarchy, and a complete description of
object types and attributes, see the Spirent TestCenter Automation Object Reference
Manual.)

Spirent
TestCenter
Chassis

Test Management PC
Spirent
TestCenter
Automation

User Application
(Tcl)

Object Hierarchy
w/ results

Sp
ire

nt

Te
st

C
en

te
r

A
P

I

2

1

18 | Spirent TestCenter Automation Overview

Chapter 2: The Spirent TestCenter Data Model
Common Object Types
Table 2-1. Common Spirent TestCenter Object Types

Object Type
(Examples)

Purpose Attributes (Examples)

Project A Project object is the root of the object
hierarchy. Every test configuration must
have a project object.

Active
Name

Port A Port object is a child of the project
object. You create a Port object to identify
a port on a Spirent TestCenter module.

Active
Location
Name

Host A Host object is a child of the Project
object. You create a Host object to emulate
a host system.

Active
DeviceCount

StreamBlock A StreamBlock object defines the
characteristics for a stream of network
traffic.

Active
FixedFrameLength
InterFrameGap

EthernetII An EthernetII object is an example of a
header object. An EthernetII object
defines the data for an Ethernet frame in
network traffic.

dstMac
etherType
preamble
srcMac

Router A Router object defines an emulated
router.

Active
DeviceCount
RouterId

BgpRouterConfig A BgpRouterConfig object is an example
of a router configuration object. A
BgpRouterConfig object defines the
characteristics of a BGP router for the
emulated network environment.

Active
GracefulRestart
HoldTimeInterval
IpVersion
KeepAliveInterval
Spirent TestCenter Automation Overview | 19

Chapter 2: The Spirent TestCenter Data Model
Creating a Spirent TestCenter Test
Creating a Spirent TestCenter Test
When you use Spirent TestCenter Automation to create a test, you create an object
hierarchy that will represent your test configuration. When you create Spirent TestCenter
objects, you also set attribute values for the objects. The attributes provide information
that determines the test characteristics. For example, Port objects have the attribute
Location; for a Port object, you set the Location attribute to identify a Spirent TestCenter
chassis, a slot containing a Spirent TestCenter module, and a port on the module.

When you create a Spirent TestCenter Automation test, you use the Spirent TestCenter
API to define your test. The API provides functions that you use to create and manipulate
the objects in the hierarchy. (Chapter 3 describes how to use the API.)

General Steps to Set Up and Run Tests

Table 2-2 lists the general steps required to set up and run a test.

To review test results (step 11), you can display the contents of results files using a
spreadsheet program, such as OpenOffice Calc, Gnumeric, or Microsoft® Excel®. To
retrieve the test results and use the data in your program, use the API to access the result
objects. (See Chapter 3 for information about test output.)

Table 2-2. General Steps to Set up and Run Tests

Step

1 Set up a communication link between your PC and your Spirent TestCenter chassis.

2 Prepare the DUT/SUT.

3 Connect the Spirent TestCenter chassis to the DUT/SUT.

4 Initialize the Spirent TestCenter API to establish the object set context.

5 Create a project object and set the project attributes.

6 Create Port objects and set the port attributes.

7 Create StreamBlock objects (and, if necessary, header objects for the traffic), and
set the appropriate attributes.

8 Set up the Spirent TestCenter generator and analyzer for traffic support.

9 Establish the software connection from your PC to the Spirent TestCenter chassis.

10 Start the test.

11 Review/Retrieve the test results.

12 Cleanup after the test has completed.
20 | Spirent TestCenter Automation Overview

Chapter 2: The Spirent TestCenter Data Model
A Spirent TestCenter Test (Traffic Generation and Analysis)
A Spirent TestCenter Test (Traffic Generation and Analysis)
The example in the following chapter is based on the simple network configuration
described in “The Network Test Environment” on page 16.

Figure 2-4 shows an object hierarchy for this test environment. The configuration for this
test uses two ports; traffic with the appropriate headers will be generated from the
transmitting port.

Figure 2-4. Spirent TestCenter Test Object Hierarchy

Figure 2-4 shows a representation of the object model that you create by calling functions
in the Spirent TestCenter Automation API. The object names that are rendered in red
indicate objects that Spirent TestCenter creates automatically. (Chapter 3 describes how
you use automatically created objects.)

A Spirent TestCenter object hierarchy is organized by a specific set of rules:

• The root of the hierarchy is a Project object.

• When you create objects, you must create a parent object before you create any of its
children. For a particular (parent) object type, the set of object types that are allowed
as its children is limited. For information about what object types are allowed, see the
Spirent TestCenter Automation Object Reference Manual.

Port (tx_port)

Ipv4

Test Management PC

Spirent
TestCenter
Automation

User Application
(Tcl)

Sp
ire

nt

Te
st

C
en

te
r

A
P

I

Spirent TestCenter
Chassis

Spirent TestCenter
Module

Port1

Port2

Traffic1

StreamBlock

EthernetII

Port (rx_port)

Generator AnalyzerResultDataSet ResultDataSet

Project
Spirent TestCenter Automation Overview | 21

22 | Spirent TestCenter Automation Overview

Chapter 3

Using the Spirent TestCenter API
In this chapter...

• Test Elements and Test Execution 24

• The API Functions 25

• Spirent TestCenter API Syntax 26

• Object Handles 28

• Object Attributes 29

• Automatic Object Creation 30

• Using Relations 31

• Test Output 32

• Spirent TestCenter Automation Run-Time Environment 35

• Creating Test Configurations 35

• Using the Tcl Interface (An Example) 36

• Test Completion 43
Spirent TestCenter Automation Overview | 23

Chapter 3: Using the Spirent TestCenter API
Test Elements and Test Execution
Test Elements and Test Execution
When you use Spirent TestCenter Automation to run a test, you write a Tcl script that uses
the following elements:

• Test Configuration Objects

• Relations

• Commands and Command Objects.

Test Configuration Objects

Test configuration objects describe the components of your test configuration. These
objects provide the data that Spirent TestCenter needs to create and run a test. Examples of
test configuration objects are:

Relations

Relations define the connections between the objects in your test configuration. Every
object is connected to at least one other object by a ParentChild relation. Spirent
TestCenter creates ParentChild relations automatically when you create objects. In other
cases, you must create relations to support specific test operations. For example, the
ExpectedRxPort relation connects a StreamBlock object to a Port object, to identify the
port that will receive traffic.

Commands and Command Objects

Spirent TestCenter Automation uses command objects to define test actions such as
StartProtocol, CaptureStart, and L2LearningStart. The command parameters are
defined as attributes for the associated command objects.

Note: Command names and command objects names are slightly different. Command
object names have the suffix “Command” added to the command name.

There are two methods of invoking commands:
1 You can use the perform function to invoke a command. For example:

stc::perform generatorStart -generatorList $generator

When you use the perform function, you specify the command name, along with
name-value pairs for attributes that are defined for the corresponding command
object. When you use perform, you must call the function each time you want to
execute an action.

Project
Host
Port
Router

StreamBlock
EthernetII
Vlans
Vlan

BgpRouterConfig
BgpIpv4RouteConfig
Ospfv3RouterConfig
Ospfv3RouterLSA
24 | Spirent TestCenter Automation Overview

Chapter 3: Using the Spirent TestCenter API
The API Functions
2 You can create command objects and use the sequencer to execute a set of commands.
When you use the sequencer, you add the set of command objects to the sequencer,
and then call the perform function to execute the SequencerStart command. (For
information about using the sequencer, see the Spirent TestCenter Automation Pro-
grammer’s Guide.)

Test Execution (Traffic Generation and Analysis)

The basic operations of test execution are traffic generation and analysis. Spirent
TestCenter Automation defines Generator and Analyzer objects to support these
operations. (Spirent TestCenter creates these objects automatically.)

Once you have created the objects and relations for your test configuration, use the
following commands to control generation and analysis:

• AnalyzerStart

• AnalyzerStop

• GeneratorStart

• GeneratorStop

See the Tcl script that is described beginning on page 36 for an example of using the
analyzer and generator components.

The API Functions
The Spirent TestCenter API provides a set of functions that you use to create and run tests.
These functions allow you to do the following:

• Create objects to build the object hierarchy for your test configuration.

• Set the value of object attributes to define the characteristics of your test.

• Get the value of object attributes, including result attributes.

• Run the test after it has been created.

• Connect to your Spirent TestCenter chassis.

Table 3-1 on page 26 shows the list of API functions. You use these functions to create
and run tests with any Spirent TestCenter test configuration. (See the Spirent TestCenter
Automation Programmer’s Guide for a complete description of these functions.)
Spirent TestCenter Automation Overview | 25

Chapter 3: Using the Spirent TestCenter API
Spirent TestCenter API Syntax
Spirent TestCenter API Syntax
This section provides an overview of the API syntax. For a more complete description of
the Spirent TestCenter Automation syntax, see the Spirent TestCenter Automation
Programmer’s Guide.

The Spirent TestCenter Automation functions use a standard syntax that allows you to
perform the operation of the function and, if appropriate, specify attribute settings at the
same time. For example, you can create an object and set the attribute values for the object
with a single call to the create function:

set hPort [stc::create Port -under $hProject \
 -location $chassis/$slot/$port]

Table 3-1. API Functions

Function Description

apply Applies a test configuration to the Spirent TestCenter firmware.

config Sets or modifies the value of an attribute.

connect Establishes a connection with a Spirent TestCenter chassis.

create Creates an object in a test hierarchy.

delete Deletes an object in a test hierarchy.

disconnect Removes a connection with a Spirent TestCenter chassis.

get Retrieves the value of an attribute.

help Displays help text in the Tcl window.

log Writes a diagnostic message to the log file.

perform Invokes an operation.

release Releases a port group.

reserve Reserves a port group.

sleep Suspends application execution.

subscribe Directs result output to a file or to standard output.

unsubscribe Removes a subscription.

waitUntilComplete Suspends your application until the sequence of commands has
finished executing.
26 | Spirent TestCenter Automation Overview

Chapter 3: Using the Spirent TestCenter API
Spirent TestCenter API Syntax
This statement creates a Port object (as a child of a Project object), and specifies the
location (chassis, slot, and port) in the same function call.

The syntax for a call to a Spirent TestCenter Automation function is as follows:
functionName [objectReference] [-attributeReference [...]]

To use a Spirent TestCenter Automation function, specify the name of the function,
followed by any parameters that may be required by the particular function. The set of
parameters may include an object reference and one or more attribute references.

• Object references are either an object type name, the handle of an existing object, or a
path name that identifies a set of object types or an object. For example, when you call
the create function to create an object, the object reference is the type of object to be
created. When you call the config function to set attribute values, the object reference
is the handle of the object you are modifying. (See “Object Handles” on page 28 for
information about how to use object handles.) For a complete description of object
references, see the syntax discussion in the Spirent TestCenter Automation
Programmer’s Guide.

• An attribute reference can be an attribute name, an attribute name-value pair, a path
name, or a relation reference. To specify the basic form of an attribute reference (an
attribute name-value pair), use the following format:
–attributeName attributeValue

The attribute name must start with a dash character (–). The attribute value is
separated from the name by a space.

Using the example given above:
create Port -under $hProject -location $chassis/$slot/$port

• The object reference Port specifies the type of object that you are creating.
• The attribute -under specifies the object handle (hProject) for the parent of the

newly created object.
• The attribute -location specifies the chassis-slot-port combination

($chassis/$slot/$port).

Note: The Spirent TestCenter API is referenced through the namespace “stc.” It is
recommended that you use the namespace syntax in your scripts to identify Spirent
TestCenter Automation functions (for example, stc::create).
Spirent TestCenter Automation Overview | 27

Chapter 3: Using the Spirent TestCenter API
Object Handles
Object Handles
In many cases, when you call Spirent TestCenter Automation functions, you either
provide or obtain an object handle. A handle is a value that identifies a Spirent TestCenter
Automation object. Object handles are the links between your application and the object
hierarchy maintained by Spirent TestCenter Automation. The following sections describe
how to create and use object handles.

Note: In some circumstances, Spirent TestCenter will create objects on your behalf. For
information about using these objects, see “Automatic Object Creation” on page 30.

Creating Object Handles

Spirent TestCenter Automation creates handles when it creates the objects in your object
hierarchy. When you call the create function, the object handle is the return value from the
function:

set project [stc::create Project -testName “TrafficTest”]

When the create function returns, the variable project is set to the value of the object
handle for the newly created Project object. Your application then uses the object handle
in other calls to Spirent TestCenter Automation functions.

Using Object Handles

You use object handles in the following circumstances:

• To identify the parent for a new object. With the exception of the Project object, you
must specify a parent when you create an object. For example:

set port_handle [stc::create Port -under $project_handle]

In this example, the -under attribute specifies the Project object handle as the parent
for the new Port object. The create function returns the handle for the Port object;
you use this object handle as the parent for Traffic objects or other objects that are
children of an Ethernet port object.

• To gain access to object attributes. You provide a handle when you call get to retrieve
an attribute value, or when you call config to modify an attribute value. You also use
handles when you perform an operation (for example, when you call the perform
function). See “Object Attributes” on page 29 for examples of using the get and
config functions.
28 | Spirent TestCenter Automation Overview

Chapter 3: Using the Spirent TestCenter API
Object Attributes
Direct Descendant Notation

Spirent TestCenter Automation syntax supports a path notation called Direct Descendant
Notation (DDN). An object reference that uses DDN begins with an object handle
followed by an object path (object type names separated by periods). For example, the
following call to the config function modifies the –location attribute for the first Port
child of the $project object.

stc::config $project.Port -location "mychassis1/1/2"

DDN specification allows you to reference attributes of descendant objects without
retrieving additional object handles. For a complete description of Direct Descendant
Notation, see the Spirent TestCenter Automation Programmer’s Guide.

Object Attributes
Objects represent the components of your test configuration. Object attributes specify the
characteristics of a particular type of object. For example, the StreamBlock object
attribute fixedFrameLength specifies the number of bytes in a frame for a stream of data
to be transmitted over the test network. In the course of creating a test configuration and
running a test, you will set and retrieve attribute values.

Setting Attributes

You set or modify object attributes under the following circumstances:

• When you create an object, its attributes have default values. You can override the
default values by setting attribute values in the call to the create function. For
example:
set tx_port [stc::create Port -under $project \
 -location $tx_port_location]

In this example, the call to create sets the port location attributes to override the
default values. (You can also call the config function to set attributes after you have
created an object.)

• During test execution, you can retrieve the value of result attributes. Then you can
change the test during execution by using the config function to modify attributes for
the test configuration objects. You can also modify object attributes after the test has
finished, and run the test again, without having to recreate the object hierarchy.

When you call the config function, you specify the object handle and one or more
attribute name-value pairs. Spirent TestCenter modifies the values of the attributes as
specified in the call.

In the previous example, the port location was specified in the create function call.
You can also set the location by calling the config function:
stc::config $tx_port -location $tx_port_location

In this case, the call to the config function specifies a Port object handle (tx_port), the
name of the attribute (-location), and the value for the attribute.
Spirent TestCenter Automation Overview | 29

Chapter 3: Using the Spirent TestCenter API
Automatic Object Creation
Retrieving Attribute Values

To retrieve the value of an object attribute, use the get function. When you call get, you
specify the handle for an object and, optionally, the name of one or more of its attributes;
the function returns the value of one or more attributes. In the following example, the get
function returns the values for all of the attributes for the Port object.

set txPortAttr [stc::get $tx_port]

In the following example, the get function returns the value of the location attribute:
set txPortLocation [stc::get $tx_port -location]

Descendant-Attribute Notation

Spirent TestCenter Automation syntax supports a path notation called Descendant-
Attribute Notation (DAN). An attribute specification that uses DAN includes an object
path (object type names separated by periods). For example, the following call to the
config function modifies the –active attribute for the first Port child of the $project
object.

stc::config $project -Port.active false

DAN specification allows you to reference attributes of descendant objects without
retrieving additional object handles. For a complete description of Descendant-Attribute
Notation, see the Spirent TestCenter Automation Programmer’s Guide.

Automatic Object Creation
In certain cases, Spirent TestCenter creates objects on your behalf. In these situations,
when you create an object, Spirent TestCenter creates the object that you specify in the
function call, and it creates one or more additional objects.

For example, when you create a StreamBlock object, Spirent TestCenter also creates
Ethernet and IPv4 header objects. The following example shows the function calls to
create a StreamBlock object, and then retrieve the handles to the automatically created
and EthernetII and IPv4 objects.

set streamBlock [stc::create streamBlock -under $tx_port]
set ethhead \
 [stc::get $streamBlock -children-ethernet:EthernetII]

set ip4head [stc::get $streamBlock -children-ipv4:Ipv4]

Note that the example uses the following syntax to retrieve a child object:
-children-ethernet:EthernetII

This child specification uses the ParentChild relation between the stream block and its
children. The specification consists of an abbreviated relation reference (–children)
followed by an object type name (-ethernet:EthernetII). The abbreviated reference is
called a side name. By specifying an object type (ethernet:EthernetII), Spirent TestCenter
30 | Spirent TestCenter Automation Overview

Chapter 3: Using the Spirent TestCenter API
Using Relations
filters the results of the retrieval operation, returning only the handles for the EthernetII
child objects of the specified StreamBlock object. For more information about relations,
see the following section.

Using Relations
Spirent TestCenter uses relations to manage the connections between objects in your test
configuration. The most common type of relation is the ParentChild relation. When you
create an object, Spirent TestCenter automatically creates the ParentChild relation
between the newly created object and the object identified by the –under parameter in the
call to the create function. For example:

set tx_port [stc::create Port -under $project] \
 -location $tx_port_location]

For those objects that Spirent TestCenter creates automatically, it also creates the
corresponding ParentChild relations. For example, when you create a Port object,
Spirent TestCenter also creates Analyzer and Generator objects automatically, and it
creates the ParentChild relations to connect the objects to the Port parent.

You can retrieve the handles for the children of an object by specifying the -children side
name in a call to the get function. A side name is a single name that corresponds to a
relation type and a specific side of that relation. For example, the following call returns a
list of all of the children of the tx_port object:

stc::get $tx_port -children

You can filter the resulting list by appending a specific type to the side name. The
following function call returns the handle to the Generator child of the tx_port object.

set generator [stc::get $tx_port -children-generator]

Note that Spirent TestCenter supports filtering of child objects only. For more detail about
side names, see the information about syntax in the Spirent TestCenter Automation
Programmer’s Guide.

In addition to ParentChild relations, Spirent TestCenter defines other relation types. In
some cases, you must create relations to support specific test operations. Use the config
function to create relations. When you call config, you specify an object and a relation
reference. The relation reference is a side name that specifies the relation type and the
remote side of the relation (source or target), along with the handle to the object to be used
for the remote side of the relation.

The following example shows how to create an AffiliationPort relation:
stc::config $txHost -AffiliatedPort $txPort

In this case, the AffiliationPort relation represents a connection between Host and Port
objects. The call to config specifies the –AffiliatedPort side name for the txHost object.
The side name corresponds to the target side of the AffiliationPort relation; the relation
reference identifies the remote object in the relation (txPort).
Spirent TestCenter Automation Overview | 31

Chapter 3: Using the Spirent TestCenter API
Test Output
Test Output
When you run a Spirent TestCenter test, Spirent TestCenter Automation produces two
types of output:

• Results data include all test results. Spirent TestCenter maintains test results in
memory by setting the value of result attributes for objects in the object hierarchy.
During a test, you can obtain test results by using the get function to retrieve the value
of result attributes. After the test has completed, Spirent TestCenter produces output
files containing the end-of-test results data. Spirent TestCenter Automation also
produces a log file.

• Capture data are network traffic (frame data) that has been collected according to a
specified filter.

The following sections describe how to use the API to access test results and how to use
Spirent TestCenter Automation to obtain capture data.

• Spirent TestCenter Test Results
• Data Capture.

Spirent TestCenter Test Results

Spirent TestCenter test results are collected for the duration of a test and, at the end of a
test run, Spirent TestCenter Automation writes the test results to files. To enable the
collection of test results, you must establish subscriptions for results.

 The following sections provide information about:

• Log Files: The Automation Options Object
• Result Files
• Using the API to Retrieve Test Results During Test Execution
• Using the API to Retrieve Test Results from a Results Database.

Log Files: The Automation Options Object

Spirent TestCenter defines the AutomationOptions object to store settings for logging
and Tcl error handling. The object has the following attributes:

• LogLevel - Defines the minimum severity level of logged diagnostic messages.

• LogTo - Specifies the output destination for diagnostic messages.

• SuppressTclErrors - Indicates whether or not Tcl errors will be supressed.

Spirent TestCenter creates the AutomationOptions object automatically. To set
automation options, first retrieve the handle for the object, and then call the config
function to set the values. For example:

set hOptions [stc::get system1 -children-AutomationOptions]
stc::config $hOptions -LogLevel ERROR

The call to config specifies that Spirent TestCenter will report ERROR level messages
only.
32 | Spirent TestCenter Automation Overview

Chapter 3: Using the Spirent TestCenter API
Test Output
Result Files

Spirent TestCenter produces two kinds of results files:

• Files formatted with comma-separated values (.csv file extension) – These files are
suitable for display using a spreadsheet progam, for example, Microsoft Excel,
OpenOffice Calc, or Gnumeric.

• A end-of-test results database file – You use Spirent TestCenter Automation
commands to create the database and to retrieve results from the database. You can
also use the Results Reporter to view the contents of the database. (The Results
Reporter is a Spirent TestCenter GUI application.)

In order to generate results files, you must use the subscribe function. To generate .csv
files, specify an output file when you establish a subscription. To generate a results
database, use the SaveResult command.

When you call the subscribe function, you identify the type of results to be collected, and
you specify the set of objects for which the results will be collected. By default, Spirent
TestCenter Automation does not produce a result output file. To produce an output file you
must specify the -filenamePrefix parameter. The following example shows a subscription
for port results collected from the analyzer. The results will be written to the file
APR_results.csv in the current default directory.

set rx_resinfo [stc::subscribe -parent $project \
 -resultParent $rx_port \
 -configType analyzer \
 -filenamePrefix “APR_results” \
 -resultType analyzerPortResults]

For more information, see the description of the subscribe function in the Spirent
TestCenter Automation Programmer’s Guide.

Using the API to Retrieve Test Results During Test Execution

When you run a Spirent TestCenter test, Spirent TestCenter Automation maintains a copy
of the test results by setting the value of result attributes defined for the objects in the test
object hierarchy. You can retrieve test results at any time during test execution, depending
on when a particular type of test result is available.

• Spirent TestCenter Automation continuously updates result attributes that reflect the
value of real-time counters or any discrete test measurement taken during test
execution. You can retrieve these values at any time.

• Spirent TestCenter Automation derives certain test results as statistics that reflect data
collection over time. This type of test result is available at the end of the test run.

To retrieve test result values, use the get function. The following example shows a call to
the get function that retrieves the value of the transmission frame count for the entire test
configuration.

set frame_count [stc::get txFrameCnt -from $project]
Spirent TestCenter Automation Overview | 33

Chapter 3: Using the Spirent TestCenter API
Test Output
Note: You can retrieve test results during test execution, and you can modify the
attributes of your test configuration in response to those results. When you modify
attributes during a test, you must call the apply function to activate the changes. When
you call the apply function, Spirent TestCenter Automation sends the modifications to the
chassis. The executing test is modified at that point, and the result values will reflect the
changes in real time. Depending on your configuration, the type of test you are running,
and the type of modifications to the configuration, there may be a short period of time
during which your results are inconsistent.

Using the API to Retrieve Test Results from a Results Database

You can use Spirent TestCenter Automation to save end-of-test results in a database and to
retrieve results from the database.

• To create an end-of-test results database, use the SaveResults command.

• To retrieve results from an end-of-test results database, use the QueryResult
command.

For more information about creating and accessing a results database, see the Spirent
TestCenter Automation Programmer’s Guide.

Data Capture

You can direct Spirent TestCenter Automation to capture frame data during a test. Spirent
TestCenter performs the capture operation at the port level. To support capture operations,
Spirent TestCenter automatically creates a set of capture objects for each Port object. To
start capture for a port, you must retrieve the handle of the Capture object associated with
the port, and use the handle with the CaptureStart command. For more information about
using the Spirent TestCenter capture support, see the Spirent TestCenter Automation
Programmer’s Guide.
34 | Spirent TestCenter Automation Overview

Chapter 3: Using the Spirent TestCenter API
Spirent TestCenter Automation Run-Time Environment
Spirent TestCenter Automation Run-Time Environment
Spirent TestCenter Automation supports the following Tcl software:

• Tcl Version 8.3.5 and 8.4.5

Creating Test Configurations
Figure 3-1 shows an object hierarchy for a simple test that generates traffic and collects
results data. (This is the object hierarchy shown in Figure 2-4 on page 21.) This test
configuration is used to generate traffic containing Ethernet and IPv4 headers. The figure
also shows the addresses used for the example.

Figure 3-1. Object Hierarchy for a Spirent TestCenter Frame Loss Test

The following sections provide an example of creating and using this object hierarchy.
The syntax of the Spirent TestCenter API gives you the flexibility to set attribute values
when you create an object or at some point afterward. The example shows both methods.
Note that parents are created before children. This is necessary because the parent object
handle is a required parameter in the call to create a child object.

Port (tx_port)

Ipv4

StreamBlock

EthernetII

Port (rx_port)

Generator AnalyzerResultDataSet ResultDataSet

Project

Spirent TestCenter Chassis
 IP: 10.100.19.92

Spirent TestCenter Module
Slot 9

Port 3 (Tx)

Port 4 (Rx)

MAC: 11.22.33.44.55.66
IP: 10.1.2.3

MAC: 77.88.99.AA.BB.CC
IP: 10.0.1.1
Spirent TestCenter Automation Overview | 35

Chapter 3: Using the Spirent TestCenter API
Using the Tcl Interface (An Example)
The following list shows the general steps to create a test configuration and run the test:
1 Initialize the interface.
2 Connect to the Spirent TestCenter chassis and reserve the ports that you intend to use.
3 Create the object hierarchy. The basic set of objects includes the project object (the

root of the hierarchy), port, router, and traffic-related objects. Choose the specific set
of object types that is appropriate for the test type. (For a complete list of object types,
see the Spirent TestCenter Automation Object Reference.)

4 Establish a subscription for test results.
5 Start the test.
6 After the test is complete, release the ports and disconnect from the chassis.

The following sections describe an example that shows these steps.

Using the Tcl Interface (An Example)
The following sections describe a short Tcl script that creates a test configuration for a
test that generates traffic and collects results.

• “Initialization”

• “Chassis Connection and Port Reservation” on page 37

• “Project and Port Objects” on page 37

• “Traffic Configuration” on page 38

• “Result Subscription” on page 39

• “Test Execution” on page 41

• “Cleanup” on page 42.

Note: You can create a test configuration either by using a file containing the Tcl
statements, or you can use a Tcl shell window to enter the statements one at a time.

Initialization

At the beginning of your test session, you must initialize the Spirent TestCenter
Automation interface. Spirent TestCenter Automation supplies the Tcl package
SpirentTestCenter that defines the Spirent TestCenter API. To use the API, include the
following line at the beginning of your Tcl script:

required
package require SpirentTestCenter
36 | Spirent TestCenter Automation Overview

Chapter 3: Using the Spirent TestCenter API
Using the Tcl Interface (An Example)
Chassis Connection and Port Reservation

To use a Spirent TestCenter chassis for a test, you must connect to the chassis and you
must also reserve the ports that you intend to use on the chassis.

The following code fragment shows the calls to connect the chassis and reserve the ports.

• To connect to a Spirent TestCenter chassis, specify the IP address of the chassis.

• When you call the reserve function, you specify the chassis IP address, together with
the slot number and the port number. Note that chassis-slot-port specification
identifies the group to which the port belongs. In this example, ports 3 and 4 belong to
the same group. It is necessary to explicitly reserve both ports so that Spirent
TestCenter will perform the appropriate initialization for each port. (For more
information about port groups, see the description of the reserve function in the
Spirent TestCenter Automation Programmer’s Guide.)

Notes: • When you reserve a port, you establish exclusive access to the port.

• Port numbering begins at 1.

Project and Port Objects

The first object that you create must be a Project object that will serve as the root of the
test hierarchy. Once you have created a Project object, you can then create the objects that
will describe the components of your test configuration.

A Port object is a child of the Project object. A Port object identifies the location of a
port that you will use on the Spirent TestCenter chassis. Port objects are a logical
representation of physical ports on a Spirent TestCenter chassis. Note that after you create
the Port objects for your test, you must execute the SetupPortMappings command to
establish the mapping between the logical and physical ports.

When you create a StreamBlock object, Spirent TestCenter automatically creates
EthernetII and Ipv4 header objects. As an alternative, you can specify a different format
using the FrameConfig attribute of the StreamBlock object.

Define variables for the chassis IP address and the ports.
Assume that both ports are on the same chassis.

set ip 10.100.19.92
set tx_port_location $ip/9/3
set rx_port_location $ip/9/4

Connect to the chassis and reserve the ports.
stc::connect $ip
stc::reserve $tx_port_location
stc::reserve $rx_port_location
Spirent TestCenter Automation Overview | 37

Chapter 3: Using the Spirent TestCenter API
Using the Tcl Interface (An Example)
This code fragment shows Tcl statements that create a Project and two Port objects, and
establish the port mappings. This example shows both methods of setting attributes –
either by specifying attribute name-value pairs in the call to the create function or by
using the config function.

Note: Remember that in order to use a port, you have to create the Port object and you
must reserve and map the port. (For an example of reserving a port, see “Chassis
Connection and Port Reservation” on page 37.)

Traffic Configuration

StreamBlock and frame header objects define the traffic streams that Spirent TestCenter
will generate from a port. A StreamBlock object is a child of a Port object. You can
create multiple StreamBlock objects for a single Port object.

When you create a StreamBlock object, Spirent TestCenter automatically creates
EthernetII and Ipv4 header objects. Use the protocol header objects to define the source
and destination addresses for the communication generated from the ports. To set the
header object attributes, you must first retrieve the header object handles from the
StreamBlock object.

The following code fragment shows the function calls to configure traffic for the example.
This code fragment:

• Creates a StreamBlock as a child of the transmitting Port object

• Retrieves handles for the automatically created EthernetII and Ipv4 objects

• Sets the source and destination MAC addresses in the EthernetII object

Create the Project object

set project [stc::create project]

Create the first port.

set tx_port [stc::create port -under $project]

Set the physical location of the port, identifying the chassis, slot, and port
(often referred to as "c/s/p").

stc::config $tx_port -location $tx_port_location

Create the second port and set the location at the same time

set rx_port [stc::create port -under $project -location $rx_port_location]

So far we have created logical ports and we have reserved physical
ports. Now we must associate each logical port with a physical port.
This depends on the port locations just established.

stc::perform setupPortMappings
38 | Spirent TestCenter Automation Overview

Chapter 3: Using the Spirent TestCenter API
Using the Tcl Interface (An Example)
• Sets the source and destination IP addresses in the Ipv4 object

• Calls the apply function to send the configuration to the chassis.

Result Subscription

To obtain results, you establish subscriptions for sets of result attributes. The following
code fragment establishes subscriptions for both the generator and the analyzer. The code
fragment:

• Retrieves the generator object handle

• Establishes a subscription for GeneratorPortResults data. The call to the subscribe
function specifies:
• The Project object handle
• The object handle of the parent for the automatically created results objects

(-resultParent)
• An object type that indicates the set of results (-resultType)
• The object type of the source object in the ResultChild relationship with the

configuration type object (-configType). In this case, the Generator object is
the source object and the generatorPortResults object is the target.

• Executes the same calls (handle retrieval, subscription) for the analyzer

• Suspends script execution for 3 seconds to allow time for configuring the
subscriptions

• Retrieves handles to the result objects for later use in retrieving result attribute values.

Generated traffic comes from stream blocks. There can be multiple
stream blocks associated with each port. For this example we will
have just one. Note that stream blocks are created under ports.

set streamBlock [stc::create streamBlock -under $tx_port]

By default, a stream block is automatically configured with
EthernetII and IPv4 headers. Get their handles.

set ethhead [stc::get $streamBlock -children-ethernet:EthernetII]
set ip4head [stc::get $streamBlock -children-ipv4:Ipv4]

Set the MAC addresses in the the ethernet header.

stc::config $ethhead -srcMac "11.22.33.44.55.66"
stc::config $ethhead -dstMac "77.88.99.AA.BB.CC"

Set the IP addresses too. You can configure multiple attributes
at once.

stc::config $ip4head -sourceAddr "10.1.2.3" -destAddr "10.0.1.1"

Send the configuration to the chassis.

stc::apply
Spirent TestCenter Automation Overview | 39

Chapter 3: Using the Spirent TestCenter API
Using the Tcl Interface (An Example)
Figure 3-2 on page 41 shows the objects in the test configuration that are identified by the
subscriptions. Based on the subscription, Spirent TestCenter will create the objects that it
needs to store result values (in this example, the ResultDataSet, GeneratorPortResults,
and AnalyzerPortResults objects).

Every port comes ready equipped with a packet generator, a packet
analyzer, and lots of other things too. For now, just get the handle
of the packet generator for the transmit port.

set generator [stc::get $tx_port -children-generator]

Set up to get statistics from the generator. tx_resinfo becomes
the handle of the resultDataSet object, which is mostly a list
of the individual result objects. For this example we only subscribe
to a single set of results.

set tx_resinfo [stc::subscribe -parent $project \
 -resultParent $tx_port \
 -configType generator \
 -resultType generatorPortResults]

Same thing on the receive side for the analyzer
set analyzer [stc::get $rx_port -children-analyzer]
set rx_resinfo [stc::subscribe -parent $project \
 -resultParent $rx_port \
 -configType analyzer \
 -resultType analyzerPortResults]

stc::sleep 3

From the results info objects we can get the handles of
results objects themselves. These are the objects that will
contain the actual results.
set tx_results [stc::get $tx_resinfo -resultHandleList]
set rx_results [stc::get $rx_resinfo -resultHandleList]
40 | Spirent TestCenter Automation Overview

Chapter 3: Using the Spirent TestCenter API
Using the Tcl Interface (An Example)
Figure 3-2. Subscription

In the figure, the automatically created objects are shown in red. Note that when you call
the subscribe function, some attributes require handle values (-parent, -resultParent)
and some attributes require object type values (-configType, -resultType). The subscribe
function returns a handle to a ResultDataSet object. Spirent TestCenter uses this object to
manage the result objects. You use the ResultDataSet handle to obtain handles to the
individual result objects.

Test Execution

Once you have created and applied your test configuration, and you have established
subscriptions, you can execute the test. To execute the test, start the analyzer and
generator. The following code fragment uses the analyzerStart and generatorStart
commands, providing the analyzer and generator object handles that were retrieved
earlier.

Port (tx_port) Port (rx_port)

Generator AnalyzerResultDataSet ResultDataSet

Project

GeneratorPortResults

-parent $project

-resultParent $tx_port

-configType generator

-resultType generatorPortResults

-resultParent $rx_port

-resultType analyzerPortResults

AnalyzerPortResults -configType analyzer

Start the traffic generation and analysis. The test run lasts
15 seconds. The generator is stopped after ten seconds, but
the analyzer is allowed to continue for five more seconds
to catch any long delayed packets.

stc::perform analyzerStart -analyzerList $analyzer
stc::perform generatorStart -generatorList $generator
Spirent TestCenter Automation Overview | 41

Chapter 3: Using the Spirent TestCenter API
Using the Tcl Interface (An Example)
The following code fragment contains a loop that retrieves tranmit and receive counts,
once every second. The generator is stopped after 10 seconds, but the loop continues for
another five iterations to account for any delayed packets.

Cleanup

After the test has completed, your script should do the following:

• Release any reserved port groups. You must release all the port groups that you have
reserved. Note that a port group may contain more than one port; any attempt to use a
port handle after it has been released will result in an error. (For a description of the
release function, see the Spirent TestCenter Automation Programmer’s Guide.) An
alternative to releasing ports is to exit the Tcl shell. This will also unreserve any ports,
disconnect from the chassis' and release any resources.

• Disconnect from the chassis.

• Delete the Project object to release any resources accumulated through use of the
API.

• Reset the configuration to return Spirent TestCenter Automation to its initial state.

puts [format "%2s %12s %12s %12s %12s" \
 "T" "Tx frames" "Tx octets" "Rx frames" "Rx octets"]

for {set t 0} {$t < 15} {incr t} {
 array set rx_counts [stc::get $rx_results]
 array set tx_counts [stc::get $tx_results]
 puts [format "%2d: %12d %12d %12d %12d" $t \
 $tx_counts(-GeneratorFrameCount) \
 $tx_counts(-GeneratorOctetCount) \
 $rx_counts(-TotalFrameCount) \
 $rx_counts(-TotalOctetCount)]
 if {$t == 10} {
 stc::perform generatorStop -generatorList $generator
 }
 stc::sleep 1
}
stc::perform analyzerStop -analyzerList $analyzer
42 | Spirent TestCenter Automation Overview

Chapter 3: Using the Spirent TestCenter API
Test Completion
The following code fragment shows an example of the function calls that you use to
perform cleanup.

Test Completion
In some situations, after you have created your test configuration and started test
execution, you may wish to suspend execution of your application until the sequence of
commands has completed. Spirent TestCenter Automation provides the
waitUntilComplete function for this purpose. The waitUntilComplete function is a
blocking function. When you call the function, Spirent TestCenter Automation does not
return control to your application until the sequence has completed.

Clean up.

stc::release $tx_port_location
stc::release $rx_port_location
stc::disconnect $ip
stc::delete $project
stc::perform resetConfig
Spirent TestCenter Automation Overview | 43

44 | Spirent TestCenter Automation Overview

Appendix A

Spirent TestCenter Licenses
In order to use Spirent TestCenter Automation, you must have the correct Spirent
TestCenter license(s). When you purchase a Spirent TestCenter system, the system box
(containing the hardware, software, and installation documentation) contains a License
Authorization Code (LAC).

• Use the License Authorization Code to obtain the license key files (LIC) for the
software packages that you have purchased. You obtain license key files from the
Spirent Communications Customer Support Center (CSC) web site. For more
information about this process, see the Getting Started with Spirent TestCenter
document that was included with your Spirent TestCenter system.

• License key files are saved in a directory on your PC. Use the Spirent TestCenter
application to install licenses on the chassis controller. For information about how to
install licenses, see the Spirent TestCenter online help.
Spirent TestCenter Automation Overview | 45

46 | Spirent TestCenter Automation Overview

Index
A
API functions 25
API syntax 26
API, Spirent TestCenter 13
apply function 34
Attributes, object 29
AutomationOptions object 32

C
Capture data 32
Chassis, Spirent TestCenter 16
Common object types 18
create function 28
Creating a Spirent TestCenter test 20
Creating object handles 28
Creating test configurations 35

D
DAN 30
Data capture 34
DDN 29
Descendant-Attribute Notation 30
Direct-Descendant Notation 29

E
End-of-test results database 33

F
Functions 25

G
get 28, 33

H
Handle, object. See Object handle

L
Log files 32

N
Network test environment 16

O
Object attributes 29
Object handle 28

creating 28
using 28

Object hierarchy 15
duration 18
organization 21
Tcl example 43

Object types 18

P
Path notation 29, 30
PC connection to chassis 16
perform function 28

R
related documentation 6
Relations 31
Results data 32
Results database 33
Results file (.csv format) 33
Root of object hierarchy 21

S
Software model (object hierarchy) 16
Spirent TestCenter

benefits 11
Spirent TestCenter API 13
Spirent TestCenter chassis 16
Spirent TestCenter Conformance 11
Spirent TestCenter fixed duration test

figure 21
Spirent TestCenter test, creating 20
subscribe 33
Syntax, API 26

T
Tcl error handling 32
Tcl Example

creating object hierarchy 43
Tcl version 35
test

general steps to set up 20
Test configuration, creating 35
Test environment, network 16
Test object

hierarchy root 21
Test output 32
Spirent TestCenter Automation Overview | 47

Index
Test results
retrieving 33

Test steps 20
Types, object 18

U
Using object handles 28
48 | Spirent TestCenter Automation Overview

	Spirent TestCenter Automation Overview Manual
	Contents
	About this Guide
	Introduction
	Related Documentation
	How to Contact Us

	1 - Introduction
	Spirent TestCenter Automation
	Spirent TestCenter Conformance
	Key Benefits of Spirent TestCenter Automation

	Automation in the Spirent TestCenter Environment
	The Spirent TestCenter API
	This Manual

	2 - The Spirent TestCenter Data Model
	The Network Test Environment
	The Software Test Environment
	Common Object Types
	Creating a Spirent TestCenter Test
	General Steps to Set Up and Run Tests

	A Spirent TestCenter Test (Traffic Generation and Analysis)

	3 - Using the Spirent TestCenter API
	Test Elements and Test Execution
	Test Configuration Objects
	Relations
	Commands and Command Objects

	The API Functions
	Spirent TestCenter API Syntax
	Object Handles
	Creating Object Handles
	Using Object Handles
	Direct Descendant Notation

	Object Attributes
	Setting Attributes
	Retrieving Attribute Values
	Descendant-Attribute Notation

	Automatic Object Creation
	Using Relations
	Test Output
	Spirent TestCenter Test Results
	Data Capture

	Spirent TestCenter Automation Run-Time Environment
	Creating Test Configurations
	Using the Tcl Interface (An Example)
	Initialization
	Chassis Connection and Port Reservation
	Project and Port Objects
	Traffic Configuration
	Result Subscription
	Test Execution
	Cleanup

	Test Completion

	A - Spirent TestCenter Licenses
	Index

