
Hardware accelerated packet filter
for 100Gbps

User documentation

Lukáš Kekely, Martin Žádník

Technical documentation FIT-TR-2014-XXX





Hardware paket �lter for 100GbpsLuká² Kekely, Martin �ádníkFakulta informa£níh tehnologiíVysoké u£ení tehniké v Brn¥Boºet¥hova 1/2, 612 66 Brno
{xkekel00, izadnik}�fit.vutbr.zAbstrakt Rapidly growing speed and omplexity of omputer networksimpose new requirements on fast lookup strutures whih are utilized inmany networking appliations (SDN, �rewalls, NATs, et.). A lot of hashor hash-CAM based lookup onepts have been proposed but they usu-ally su�er from the low memory utilization or insu�ient lookup per-formane. Therefore, we propose a novel lookup onept based on thewell-known ukoo hashing, whih an ahieve good memory utilization,supplemented by a binary searh tree for o�oading the olliding keysand supporting LPM lookup. We also propose a hardware arhitetureimplementing this lookup onept in the FPGA. Our solution is suitablefor lookup of the variable-length keys in 100+Gbps networks. Memoryutilization of the proposed onept is arefully evaluated and it is shownthat the onept is salable to external memory omponents.1 IntrodutionThe speed and omplexity of network is growing rapidly, reating a demand fornew approahes to a high-speed paket proessing. One major trend is to makehardware as simple as possible o�oading the omplexity of a ontrol path intothe software, e.g. software-de�ned networking (SDN) [5℄. The o�oad requiresthe hardware to look up a piee of data (e.g. ation, state) assoiated to a �owkey (e.g. IP pre�x, IP address or tuple of soure and destination IP addresses,ports and protool) per eah arriving paket. Moreover the assoiated data arereated dynamially, usually with every new �ow. The fast lookup is essentialnot only for SDN appliations but also in other existing appliations (e.g. NATs,�rewalls, load-balaners and network probes [1℄).Field Programmable Gate Arrays (FPGA) are popular platforms utilized innetworking appliations targeting high-speed paket proessing (e.g. [4℄). Traditi-onally, the lookup was performed by external Ternary Content-Addressable Me-mory (TCAM) or internal TCAM implemented in FPGA logi. Various memory-oriented approahes have been proposed and applied, replaing the resoure aswell as power demanding TCAM. A ommon drawbak of the memory-orientedapproah is ine�ient memory utilization and slow lookup requiring multiplememory aesses. 1



We propose a fast lookup onept designed spei�ally for FPGA-orientedplatforms. The onept ombines two well-known memory-oriented lookup al-gorithms � ukoo hashing [6℄ and binary searh tree (adapted for best/longestpre�x mathing [3℄). Eah algorithm e�iently omplements the other in areawhere the other fails. The onept ahieves almost 100% memory utilizationwith e�ient utilization of the memory and logi resoures in omparison to theTCAM or Hash-CAM onepts [9℄. At the same time, our onept allows fast lo-okups (200 mil. lookups/s designed for 100+ Gbps solutions). Our ontributionsalso inlude: (a) the possibility to utilize external memory when the number ofrules annot �t in the internal FPGA memory, (b) inreasing the lookup funti-onality with the longest pre�x math, () e�ient implementation of the wholesheme in FPGA inluding the update logi enabling on-the-�y updates and (d)evaluation of the onept in terms of ahievable memory and logi utilization.The rest of the paper is organized as follows. Related work on lookup algori-thms is disussed in Setion 2. Setion 3 provides design objetives and introdu-es the proposed onept. The FPGA implementation is desribed in Setion 4.Setion 5 evaluates the onept as well as provides the synthesis results. Thepaper is onluded with future work in Setion 6.2 Related WorkA naive approah to the lookup is represented by a linear searh.Unfortunately,the linear searh requires too many memory aesses and, therefore, is too slowto satisfy the needs for the fast lookup. Various approahes have been proposedto speed up the lookup up to the point of a onstant time and low number ofmemory aesses. These approahes take advantage of the partiular spei�ationof the lookup task, key struture, key set harateristis, target platform andothers.The basi lookup tests whether an element (a key) is a member of a set. Ifthe appliation an tolerate small perentage of false positive results (the keyis onsidered to be part of the set although it is not) then Bloom �lter and itsimprovements [7℄ have been shown to ahieve near optimal memory utilizationwith low number of memory aesses.But in many ases the appliation requires to assign some data per eahkey. Here, TCAM has traditionally been used, but due to its high ost, highresoure as well as power onsumption, it is often replaed by memory-orientedapproahes. The basi approah is to utilize naive hash table (NHT). The hashedkey is used as an index into a memory loation with the key (or its �ngerprintto verify suessful lookup) and the assoiated data. If a new key is inserted andthe loation is already oupied, a new memory loation is alloated and linkedto the oupied loation, forming a list of loations. A hardware implementationof the NHT divides the memory into an equally-sized bukets (eah holding Npossible loations). The issue of suh an approah is that it requires multiple (N)aesses to the memory and some of the bukets over�ow whereas some may notbe utilized at all. An exemplary hardware implementation of NHT approah2



using hash-CAM is desribed in [10℄. If more than N olliding keys our, anadditional TCAM is used to store the over�owing keys. An improved approahalso utilizes another hash funtion in order to inrease hash table utilization andderease the required size of the additional TCAM (eah key an be stored in
2N loations). The main drawbak of this approah is that this approah anonly be e�etively implemented using internal FPGA memory sine the 2N hashtables are implemented using parallel memories. Also the utilization inreaseswith lower value of N but the size of the ostly TCAM must then be inreased inorder to store all the olliding keys. Song et al. [8℄ extended the NHT approahwith ounting Bloom �lters to optimize utilization of the bukets by ountingtheir oupany, but the issue of multiple memory aesses remained.The goal of ukoo hashing [6℄ is to redue the number of memory aessesduring a lookup and thus speeding-up a lookup operation. Standard ukoo ha-shing utilizes two hash tables with two di�erent hash funtions but it an begeneralized for a higher number of hash tables (hash funtions). Standard u-koo hashing with two hash tables T1, T2 and two hash funtions h1, h2 stores akey x either in position T1[h1(x)] or T2[h2(x)], but never in both. Therefore, thelookup as well as the deletion of a key an be easily performed in onstant time.Insertion of a key x starts by heking the positions T1[h1(x)] and T2[h2(x)]. If atleast one of them is free, the key is inserted. But if none of them is free, the key
x is still inserted to the position T1[h1(x)], thus eviting the stored key y. Sub-sequently, the algorithm inserts the key y to the position T2[h2(y)]. If T2[h2(y)]is not free, the stored key z is evited. Note that it is su�ient to aess only theposition T2[h2(y)] and not T1[h1(y)] sine T1[h1(y)] was the previous position of
y and is now oupied by x. These steps are repeated until the free position isfound or a pre-de�ned number of steps is reahed. If the insertion proedure wasnot suessful, new hash funtions h1 and h2 have to be seleted and ompleterehashing takes plae (unaeptable in online appliations). Cukoo hashing gu-arantees onstant lookup time but the utilization of memory reahes only about50% for two hash tables and two hash funtions on average.There has been an implementation of ukoo hashing in FPGA for the pur-pose of pattern mathing [9℄. This arhiteture ontains dediated mathingbloks for all patterns of the same length (up to the length of 16 haraters).Eah mathing blok onsists of two single-port ukoo hash tables for storingaddresses to the dual-port memory storing the database of patterns. The arhi-teture also ontains two multiplexers and a ontrol logi whih together allowperforming either a pattern mathing operation or a pattern database update(insertion or deletion of a pattern). The approah o�ers only medium memoryutilization sine it does not utilize any type of over�ow memory and also annotsale well to external memory sine it is tailored to the properties of FPGAinternal memory.The advaned lookup proedures also inlude pre�x mathing (PM, i.e. thereis a single pre�x for a given key in the set but it is not known apriori) and longestpre�x math (LPM, i.e. seleting the longest mathing pre�x from the set for agiven key). Although the LPM itself is out of the primary sope in this paper,3



the unique ombination of ukoo hash and binary searh tree renders it possiblefor our implementation to support LPM lookup.3 DesignThe ore funtionality of our lookup shema is based on ukoo hashing prinipledesribed in the previous setion. We seleted this priniple beause it has anadvantage of a very fast lookup with only a few memory aesses needed for eahsearh. This feature favors the usage of ukoo hashing even on arhitetureswith limited memory interfae throughput (e.g. external memory). Also, thefuntionality of update operations (insert/delete key) used in ukoo hashing israther simple and an be e�etively implemented in hardware enabling on-the-�yupdates.On the other hand, ukoo hashing an su�er from a low ahievable utili-zation of the memory aused by hash on�its. To address this problem, ourdesign augments basi ukoo hashing priniple by the usage of a stash for of-�oading the on�iting keys. The proposed design of ukoo hashing with thestash is not entirely new. It has been already desribed in [2℄, where the authorsproposed and evaluated the usage of only a very small stash (apaity under 5keys implemented in TCAM) to improve the worst ase memory utilization ofukoo hashing.In our design we propose and evaluate the usage of a signi�antly largerstash � a stash with the apaity omparable to the apaity of the used ukoohash tables to improve not only the worst ase but also to improve averagememory utilization. Furthermore, our stash also supports LPM lookups, thusaugmenting the lookup funtionality of the basi ukoo hashing. The lookupsupport of not only the whole keys but also key pre�xes an be very usefulin many di�erent areas (e.g. paket �ltering). Instead of TCAM, we proposean FPGA implementation of a well-known binary searh algorithm adapted forthe LPM lookup (desribed in [3℄) as an e�etive approah to implement thelarger stash. The key idea behind the adaptation of the binary searh for LPMis to reognize eah pre�x p as a range of keys (values) from kp
min to kp

max,where kp
min is the lowest key with pre�x p and kp

max is the highest key withpre�x p. Now for eah pre�x p in the lookup set both kp
min and kp

max valuesare stored in a sorted array, kp
min is assoiated with data of pre�x p and kp

maxis assoiated with data of the longest pre�x from the set whih is a sub-pre�xof p. Furthermore, if for two pre�xes p1, p2, where p1 is shorter than p2, keys
kp1

min = kp2

min resp. kp1

max = kp2

max, the relation between keys is onsidered to be
kp1

min < kp2

min resp. kp1

max > kp2

max during sorting. Also, searhed key k suh as
k = kp

min resp. k = kp
max is onsidered k > kp

min resp. k < kp
max. A lookup of kis then implemented as a standard binary searh and the data of the last visitedsmaller key than k are used as a result. From the adaptation desription it islear, that eah pre�x oupies two reords in the memory.The binary searh o�ers basially the opposite features in omparison withthe ukoo hashing � the key lookup requires relatively large number of sub-4



Lookup

Engine

Key Data

Found

K
e
y

D
a
ta

In
s
e
rt

D
e
le
te

B
u
s
y

F
u
ll

Configuration
InterfaceObrázek 1. General lookup engine interfae (some signals are omitted for larity).sequent memory aesses, but the ahievable memory utilization is always 100%.Beause of the large number of memory aesses, binary searh based lookupshould be implemented only in the internal FPGA memory. In order to ahievehigh lookup throughput, the implementation of the binary searh must not besequential but rather divided into pipelined stages. This an be ahieved by es-tablishing a tree struture in the searhed array (binary searh tree �BST) andsliing it by the tree levels (eah tree level forms a pipeline stage). Finally, thefuntionality of update operations in the desribed BST an be easily implemen-ted in the hardware with support of on-the-�y updates.4 FPGA arhiteture4.1 Lookup engine interfae and funtionalityWe start the desription by the general design of an interfae and funtionalityof a lookup engine (either ukoo or BST). Both engines implement the same in-terfae independently on the details of their lookup proedure. Fig. 1 illustratespartiular signals forming the interfae. The signals an be divided into 3 basigroups: input (left), output (right) and on�guration (bottom). The only inputof a lookup engine is the value of a key to searh. The lookup implementationshould be able to proess new input key every lok yle. For eah input key,the engine produes one result on the output based on performed lookup. Thelookup result onsists of arbitrary data (e.g. routing deision, mathed key iden-ti�ation) assoiated with the searhed key and one bit information about thekey lookup suess (Found). When the input key is not found, the value of dataon the output is unspei�ed (invalid).The on�guration signals an be further divided into two subgroups: updaterequests and status �ags. The update requests are used to manage an ative keyset and the assoiated data in the engine. The keys an be inserted or deletedone by one. When insertion of a new key is requested, the value of the key andthe assoiated data must be both spei�ed. If the key is already in the set, theinsertion fails and the set remains unhained (same keys would quikly buildup a list of hained reords). When deletion of a key is requested, only thevalue of the key itself needs to be spei�ed (the assoiated data are ignored).Furthermore, when the lookup engine supports LPM, the key value in the updaterequest must be aompanied by the length of a valid pre�x. The status �ags5



Memory

Table 1Hash 1

Table 2Hash 2

Table dHash d

=

=

=

Key

=

R
e

s
u

lt A
g

g
re

g
a

tio
n

Data

Found

Reconfig.
Controller Register

Configuration InterfaceObrázek 2. Coneptual shema of ukoo hash based lookup engine.inform about the speial states of lookup engine on�guration logi. An ativebusy �ag means that an update of a key set is running and new updates annotbe requested until the update �nishes. The �ag is ativated by the engine rightafter eah valid request and remains ative for �nite time. A full �ag is ativatedwhen the supported lookup apaity is reahed and new key insertions annotbe requested. Delete requests are still possible even when the full �ag is ativeand they an lead to its deativation. When no deletes are issued, the full �agan remain ative for in�nite time or is deativated if the on�its are resolvedeventually.Finally, the lookup engine (and its interfae) is on�gurable by these threebasi generi parameters: key width (maximum width of key representation inbits), data width (width of data representation in bits), maximum apaity(theoretial size limit for the set of keys, representation may di�er).4.2 Cukoo hash lookup engineFig. 2 depits a basi shema of ukoo hash engine implementation. The lookupproess starts by parallel omputing of key hash values (outputs of hash bloks).As the basis for the hash bloks we utilize CRC implementation generated forommonly used polynomials. The lookup ontinues with hash values being usedas addresses for reading reords from hash tables in memory. Eah reord formsa pair omposed of a key and data assoiated with the key. A reord an also bestored in a register outside the tables (the purpose of the register is explainedin the next paragraph). Subsequently, the input key is ompared with the keysfrom the memory (and the register) reords for equality. At most one omparisonmay be suessful, beause eah unique key appears only in a single plae at atime. Therefore, aggregation of result is very simple � if none of the omparedkeys is equal to the searhed key, the found �ag is not set, otherwise it is set anddata assoiated with the mathing key are provided.Update of an ative key set is entirely managed by the reon�guration on-troller based on requests reeived from the on�guration interfae. When inser-6



ting a new key, the ontroller an take advantage of the reon�guration registerinluded in the lookup path. Using this register the ontroller an evit reordsfrom hash tables on-the-�y preserving the set of ative keys. More preisely, theinsertion of a new key x starts with storing x in the register. Then all possible lo-ations for x in the hash tables (Ti[hi(x)]) are heked sequentially. If one of themis empty, x is inserted into the table and the reon�guration ends. Otherwisea vitim y is seleted and evited from the table, leaving free spae for x. Theevited reord y is atually swapped with x and the insertion ontinues with yexept x annot be seleted as the next vitim. The reon�guration yle anrepeat itself multiple times, until the register is freed or an even repeat itselfin�nite times when a hain of ollisions our. Until the register is freed theukoo hash engine is onsidered full, but not busy. Therefore, deletion of a keyis possible even during ative insertion reon�guration. Deletion of x starts bypausing the reon�guration proess and ontinues with sequential heking ofall possible loations for x (i.e. the register and all Ti[hi(x)] sine our imple-mentation supports arbitrary number of hash tables). If a key idential to x isfound in one of those positions, it is invalidated. After the deletion ends, thereon�guration proess is resumed. During the deletion proess, the ukoo hashengine is onsidered busy.The maximum apaity of the ukoo hash engine an be on�gured by twovalues: d � the number of used hash tables (hash funtions) and t � the size ofindividual table. Theoretial apaity limit is de�ned by formula Ccuckoo = d ×

t + 1. The plus one aounts for the additional reon�guration register.4.3 Binary searh tree lookup engineFig. 3 depits a basi shema of our BST lookup engine. The engine starts thelookup by a pipelined and sequential searh of an input key (red arrows) throughthe levels of the tree. Eah tree level forms a pipeline stage with its dediatedpiee of memory and a key omparator. The output of a stage is an address of anode where to ontinue binary searh in the next tree level and the searhed key.The address from the last tree level is used to address the data array ontainingassoiated data to the key. The lookup result must be orreted aording to areord in the reon�guration register due to atomiity of operations.Update of an ative key set is entirely managed by the reon�guration ont-roller based on requests reeived from the on�guration interfae. The ontrolleran take advantage of the single reon�guration register inluded in the lookuppath during the update. More preisely, the update (deletion of x or insertionof x) starts with storing the reord x in the register. Subsequently, the updateproess onsists of three sequential steps. (1) The key x is searhed in the treesequentially. The searh must fail when inserting x. The searh must sueedwhen deleting x. (2) The reord x is ativated in the register to orret thelookup proess in the last stage. (3) Sequential reon�guration is performed tomerge x into the nodes and the data array. Finally, the update proess ends andthe reon�guration register is freed. During the update proess, the BST engineis onsidered busy. Therefore, deletion and insertion annot be ative together as7



Key Data

Found

Configuration Interface

L
e
v
e
l n

-1

L
e
v
e
l 1

L
e
v
e
l 0

Binary Search Tree

R
e
s
u
lt

C
o
rre

c
tio

n

D
a
ta

A
rra

y

RegisterReconfig. ControllerObrázek 3. Coneptual shema of binary searh tree based lookup engine.
Obrázek 4. Coneptual shema of our top-level lookup engine.in ukoo hash engine. The full status may be issued after the suessful insertionand an only end after suessful deletion.The apaity of the BST based engine an be on�gured by the number ofBST levels l. The apaity is then de�ned by formula Cbst = 2l

− 1 when adap-tation for LPM is not used or Cbst = 2l−1
− 1 when LPM lookup is supported.Our implementation supports the adaptation for LPM, but if LPM is not ne-eded, it an be easily modi�ed (simpli�ed) to support only preise key lookupgaining two times higher apaity.4.4 Top-level lookup engineFig. 4 depits a top-level shema of our ukoo hash with BST stash lookupengine implementation. The lookup of an input key (red arrows) is implementedin both ukoo hash and BST engines in parallel. The results are then storedin FIFOs, beause the two engines do not have same proessing delays. Resultaggregation then selets data from engine with suessful lookup. When bothengines suessfully �nd a key, the result from ukoo hash is preferred, beausein that ase the result from BST is only for a mathing pre�x, but the resultfrom ukoo hash is for the whole mathing key.Reon�guration of the key sets in both engines is managed by the top levelreon�guration ontroller. All updates for pre�xes are diretly forwarded intothe BST stash. Deletions of the whole keys are implemented in both engines8



in parallel. Insertions of the whole keys are forwarded into the ukoo hash.If ukoo hash reahes full state (its reon�guration register is oupied) andnew key insertion is requested, then the key that is urrently in ukoo hashreon�guration register is moved into the stash and the new key is inserted intoukoo hash. The top-level engine is in the full state when both the ukoo hashand the BST stash are full. The top engine is in busy state when at least one ofthem is busy. Furthermore, in our implementation the on�guration interfae ofthe top-level lookup engine is onneted to the blok with address deoder andregisters for key, data, requests and status �ags. This blok is then aessiblefrom the software using standard memory interfae. This way the managementof the ative key set an be easily ontrolled from the software.The maximum apaity of the ukoo hash with stash lookup engine an bede�ned by three parameters: parameters d and t of the ukoo hash and the stashsize s. Theoretial apaity limit is then de�ned by formula Ctotal = d× t+1+s.5 Evaluation and resultsThe proposed arhiteture was implemented in VHDL and synthesized intoFPGA. We onduted experiments to evaluate ahievable memory utilizationand FPGA resoures onsumption in di�erent on�gurations of the arhiteture.The results of these evaluations are summed up in this setion.We start the evaluation by experiments on ahievable memory utilizationof our onept. The ahieved utilization an be omputed in two basi ways:
Ucuckoo = (n − m)/Ccuckoo, Utotal = n/Ctotal, where n is the total number ofsuessfully inserted keys before the memory beame full and m is the numberof keys that resides in the stash. Beause, our implementation uses stash whihan be always �lled up to 100% of its apaity, we an always put m = s. Thevalues of n must be aquired from the test runs.In the �rst series of tests we have evaluated the relation between ahievablememory utilization of ukoo hash and the used sizes of stash for di�erent pa-rameters. The results of these evaluations are shown in the graphs in Fig. 5, 6and 7. We have tested three di�erent values of d parameter (2, 3 and 4), threedi�erent values of t parameter (128, 1 024 and 8 192) and multiple values of s(from 0 to t). We have also tested di�erent key sizes (32 b, 64 b and 128 b), butthe ahieved results have been very similar, therefore we do not show di�erentgraphs for eah key size. The memory utilization plotted in the graphs is Ucuckooand the size of the stash (s) is plotted as a portion of t. The graphs show mean(thik darker lines) and minimal resp. maximal (thin lighter lines) ahieved uti-lizations from 10 000 tests with random generated keys for eah ombination ofvalues of d, t and s. From data plotted in the graphs it is lear that the meanahieved memory utilization of ukoo hash is independent on the values of t. Pa-rameter t only in�uenes the di�erene between minimal and maximal ahievedutilization, when the span is higher for smaller values of t.Moreover, Fig. 5 shows that the in�uene of stash size to the ahievablememory utilization is signi�ant for two ukoo hash tables � the mean utilization9



raises from 50% in the ase without the stash to 75% with s = t/10 or evenaround 90% for s > t/2. Also the di�erenes between minimal and maximalahieved utilizations are redued with the raising size of stash. Fig. 6 and 7 showthat the importane of stash in ase of more than two ukoo hash tables is notthat high as for two tables. But as you an see, it an help to ahieve nearly100% mean memory utilization of ukoo hash tables.The seond series of memory utilization tests is oriented to more preiseexamination of ahievable memory utilizations for a few seleted sizes of stash.The results of these evaluations are shown in the graphs in Fig. 8, 9 and 10. Herewe have also tested three di�erent values of d parameter (2, 3 and 4), but only asingle value of t = 1 024 and only a few values of s (0, t/64, t/16, t/4, t/2 and t).The graphs show histograms of probability (perentage of all onduted tests)that ahieved preisely the spei�ed utilization (Ucuckoo used) with highlightedmean (dashed line) and minimal resp. maximal utilizations (points). The areaunder eah histogram line is exatly 100% even though the individual values arerather small. The results are from 1 000 000 tests with random generated keysfor eah ombination of values of d and s. From data plotted in the graphs itis lear that the dispersion of ahieved utilizations is lower for the rising stashsize. Also the e�et of stashes with size s < t/16 for the ukoo hash with d > 2is negligible.The dispersion redution is notieable espeially for the ukoo hash withtwo tables (Fig. 8). For two tables without a stash there is a very real hane ofahieving memory utilization that is signi�antly lower than the mean utilization(marked by red arrows). The solution to this problem is even a relatively smallstash (s = t/64 or s = t/16). This partiular situation is very important whenukoo hash is implemented using large external memory to store ukoo hashtables. The bottlenek in suh an implementation lays in the throughput ofexternal memory interfae, whih limits the number of usable ukoo hash tablesusually to only 2. These results suggests that stash of size s = t/64 or s = t/16an signi�antly improve the ahievable memory utilizations in exatly this ase.So for example, the implementation of ukoo hash with d = 2 and t = 220 inexternal memory require stash with size only s = 220/16 = 65 536 to ahievemean external memory utilization of 70% (mean apaity over 1.5 million keys)with very low hane to ahieve utilization under 65%.Finally, we present the FPGA resoures requirements of our lookup enginesin seleted on�gurations. The requirements in terms of LUTs, registers andBlokRAMs are shown in Tables: 1 for ukoo hash based lookup engine alone,2 for binary searh tree based stash alone and 3 for the top-level lookup enginearhiteture. Also the maximal lok frequenies are shown. Values in tables areaquired from the synthesis by XST tool for the XilinxVirtex-7 870HT FPGAand data width of 32 bits. Variable key widths (32 and 128 bits as lengths of IPv4and IPv6 addresses were seleted) and apaity parameters are shown diretlyin the tables. Furthermore, Table 3 have olumns with mean ahievable memoryutilization (Utotal is used) and apaity based on test results presented earlierin this setion. Also, ahieved frequenies over 200MHz and the fat that eah10



Key FPGA Resoures FrequenyWidth d t LUTs FFs BRAMs [MHz℄32 2 1 024 592 186 3 284.71532 2 8 192 630 195 25 277.31332 3 1 024 827 223 5 265.60032 3 8 192 863 235 38 287.11532 4 1 024 1 053 260 6 277.79532 4 8 192 1 138 275 50 235.238128 2 1 024 2 075 322 9 264.886128 2 8 192 2 190 331 73 265.799128 3 1 024 2 798 367 14 261.985128 3 8 192 2 927 379 110 262.953128 4 1 024 3 500 412 18 263.576128 4 8 192 3 655 427 146 263.902Tabulka 1. FPGA resoures requirements of our ukoo hash implementation in se-leted on�gurations.lookup implementation is apable of one lookup on eah lok yle suggest,that our arhiteture is apable of over 200million lookups per seond, whih issu�ient for paket �ltering on 100+Gbps networks.6 ConlusionThe paper proposed a new lookup onept based on the well-known ukoo hashaugmented by the adapted binary searh tree for o�oading the olliding keys andsupporting LPM lookup. The proposed arhiteture elaborated the ombinationof the ukoo hash engine with BST engine with a fous on parallel implemen-tation in FPGA. The onept was evaluated in terms of ahievable memoryutilization as well as utilization of memory and logi resoures of the FPGA.The results show that the onept is feasible allowing not only fast lookups forevery arriving paket on the 100+Gbps links but also e�etive utilization ofFPGA resoures.Our future work will test the onept in use ases of paket �ltering in legalintereption probe and as a �ow ahe lookup proedure in a software de�nedmonitoring probe [1℄. In both these use ases the LPM support is vital as thepre�xes would have to be represented by multiple exat math rules.Referene1. Kekely, L.; Pus, V.; Korenek, J.: Software De�ned Monitoring of AppliationProtools. In INFOCOM, To be published, 2014.2. Kirsh, A.; Mitzenmaher, M.; Wieder, U.: More Robust Hashing: CukooHashing with a Stash. In ESA, LNCS, Springer, 2008, ISBN 978-3-540-87743-1.11



Key FPGA Resoures FrequenyWidth Capaity LUTs FFs BRAMs [MHz℄32 255 1 618 1 024 3 323.23632 511 1 744 1 117 5 319.47232 1 023 1 833 1 098 7 283.62432 2 047 1 916 1 151 12 282.01632 4 095 1 987 1 205 21 280.58032 8 191 2 115 1 260 41 275.558128 255 5 173 2 974 6 309.900128 511 5 593 3 205 10 266.280128 1 023 5 865 3 144 15 290.370128 2 047 6 153 3 293 25 278.861128 4 095 6 318 3 443 46 277.439128 8 191 6 731 3 594 90 275.461Tabulka 2. FPGA resoures requirements of our binary searh tree implementationin seleted on�gurations.Key FPGA Resoures Frequeny Mean MeanWidth d t s LUTs FFs BRAMs [MHz℄ Utilization Capaity32 2 8 192 2 047 3 721 2 111 45 264.116 83.5% 15 38832 3 8 192 4 095 4 138 2 221 71 265.437 96.7% 27 711128 2 1 024 255 8 336 4 059 15 257.631 83.5% 1 923128 3 1 024 511 9 564 4 304 23 263.704 96.7% 3 463Tabulka 3. FPGA resoures requirements and memory utilizations of our lookupengine implementation.3. Lampson, B.; Srinivasan, V.; Varghese, G.: IP Lookups Using Multiway andMultiolumn Searh. In INFOCOM, 1998, s. 1248�1256.4. Naous, J.; et al.: Implementing an OpenFlow Swith on the NetFPGA Platform.In Proeedings of ANCS, NY, USA, 2008, ISBN 978-1-60558-346-4, s. 1�9.5. ONF Market Eduation Committee: Software-De�ned Networking: The NewNorm for Networks. Onf white paper, Palo Alto, CA, USA, 2012.6. Pagh, R.; Rodler, F. F.: Cukoo Hashing. J. Algorithms, ro£ník 51, £. 2, Kv¥ten2004: s. 122�144, ISSN 0196-6774.7. Putze, F.; Sanders, P.; Singler, J.: Cahe-, Hash-, and Spae-e�ient BloomFilters. J. Exp. Algorithmis, ro£ník 14, Leden 2010: s. 4:4.4�4:4.18, ISSN1084-6654, doi:10.1145/1498698.1594230.8. Song, H.; et al.: Fast Hash Table Lookup Using Extended Bloom Filter: An Aidto Network Proessing. SIGCOMM Comput. Commun., 2005, ISSN 0146-4833,doi:10.1145/1090191.1080114.9. Tran, T.; Kittitornkun, S.: FPGA-Based Cukoo Hashing for Pattern Mathingin NIDS/NIPS. In MNGNS, LNCS, 2007, ISBN 978-3-540-75475-6.10. Yang, X.; et al.: High-Performane random data lookup for network proessing.In SOC Conferene, 2010, ISSN Pending, s. 272�277.12



0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

s [% of t] 

U
 [%

]

 

 

t=128
t=1024
t=8192Obrázek 5. Ahievable memory utilization for ukoo hash with two tables (d = 2)for di�erent sizes of stash.

0 10 20 30 40 50 60 70 80 90 100
85

90

95

100

s [% of t]

U
 [%

]

 

 

t=128
t=1024
t=8192Obrázek 6. Ahievable memory utilization for ukoo hash with three tables (d = 3)for di�erent sizes of stash.

0 10 20 30 40 50 60 70 80 90 100
90

92

94

96

98

100

s [% of t] 

U
 [%

]

 

 

t=128
t=1024
t=8192Obrázek 7. Ahievable memory utilization for ukoo hash with four tables (d = 4)for di�erent sizes of stash. 13



0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

U [%]

P
ro

ba
bi

lit
y 

[%
]

 

 

s=0
s=t/64
s=t/16
s=t/4
s=t/2
s=t

Obrázek 8. Probability distribution of ahievable memory utilization for ukoo hashwith two tables (d = 2, t = 1024).

85 90 95 100
0

1

2

3

4

5

U [%]

P
ro

ba
bi

lit
y 

[%
]

 

 

s=0
s=t/64
s=t/16
s=t/4
s=t/2
s=t

Obrázek 9. Probability distribution of ahievable memory utilization for ukoo hashwith three tables (d = 3, t = 1024).

95 95.5 96 96.5 97 97.5 98 98.5 99 99.5 100
0

1

2

3

4

5

6

7

8

U [%]

P
ro

ba
bi

lit
y 

[%
]

 

 

s=0
s=t/64
s=t/16
s=t/4
s=t/2
s=t

Obrázek 10. Probability distribution of ahievable memory utilization for ukoo hashwith four tables (d = 4, t = 1024). 14


