Coverage Metrics for Saturation-based and
Search-based Testing of Concurrent Software

Bohuslav Kfena, Zdenék Letko, and Tomas Vojnar

FIT, Brno University of Technology, Czech Republic
{krena, iletko, vojnar}@it.vutbr.cz

Abstract. Coverage metrics play a crucial role in testing. They allowe to es-
timate how well a program has been tested and/or to contedietsting process.
Several concurrency-related coverage metrics have begoged, but most of
them do not reflect concurrent behaviour accurately enolrgthis paper, we
propose several new metrics that are suitable primarilys&turation-based or
search-based testing of concurrent software. Their djsiiming feature is that
they are derived from various dynamic analyses designedefacting synchro-
nisation errors in concurrent software. In fact, the wagéhmetrics are obtained
is generic, and further metrics can be obtained in a simitar from other analy-
ses. The underlying motivation is that, within such anadysehavioural aspects
crucial for occurrence of various bugs are identified, anmthét makes sense to
track how well the occurrence of such phenomena is coveretgdiing. Next,
coverage tasks of the proposed as well as some existingcsiateé combined
with an abstract identification of the threads participgtin generation of the
phenomena captured in the concerned tasks. This way, funtioge precise met-
rics are obtained. Finally, an empirical evaluation of theppsed metrics, which
confirms that several of them are indeed more suitable fora@n-based and
search-based testing than the previously known metrigseisented.

1 Introduction

Despite the constant development of various approachesification and bug finding
based on formal rootsoftware testinggstill belongs among the most common ways
of discovering errors in programs. However, it has to faoe nkallenges related to
the changes in programming paradigms commonly used inipead¢h particular, in
the past yeargoncurrent programmingas become much more common than before.
Testing concurrent software is much more difficult due tortbhe-determinism present
in scheduling executions of concurrent threads. Varioyswaw to improve testing of
concurrent software have been proposed, including, é&g.use of noise injection or
various dynamic analyses.

In testing, a crucial role is played by the so-calteal/erage metricsA coverage
metric is based on eoverage domaithat is a set otoverage tasksepresenting dif-
ferent phenomena (such as reachability of a certain lirsgh@bility of a situation in
which a certain variable has a certain value, etc.) whoseroecce in the behaviour
of a tested program is considered to be of interest. One @nrtteasure how many
of the phenomena corresponding to the coverage tasks hawesben in the withessed
behaviours of the tested program. Such a measurement caetle¢aiasses how well
the program has been tested. Moreover, in the so-callagation-based testind 6],
one looks for the moment when the obtained coverage stopgrggpand hence the

testing can be stopped. Furthersigarch-based testind 2], a fithess function driving
an optimisation algorithm used to control the testing pssasn be based on the values
of a coverage metric.

For metrics used in saturation-based or search-basedgestie can identify sev-
eral specific properties that they should exhibit. Firsthimithe testing process, the ob-
tained coverage should as often as possible grow for a whildteen stabilise. Hence,
it should not immediately jump to some value and stabilis&.c@n the other hand, it
should not take too much time for the coverage to stabilisen Ao enable a reliable de-
tection of stabilisation, the coverage should grow as shigais possible, i.e., without
growing through a series of distinctive shoulders. Nextadse of testing an erroneous
program, the stabilisation should ideally not happen keforerror is detected. Finally,
the increase in coverage should be linked with witnessingeraod more behaviours
that differ in their potential of exhibiting a bug.

In this paper, we propose seversw coverage metricsuitable for saturation-
based or search-based testing of concurrent programse Tinegsics are based on cov-
erage tasks derived from the information about program \iebathat is gathered
or computed by variougynamic analysethat have been proposed fdiscovering
synchronisation-related errors in concurrent progranis fact, the idea of inferring
new metrics from these analyses is rather generic and capdiiedto other dynamic
as well as static analyses (even those that will appear ifutbee) too. The proposal is
motivated by the idea that within the development of suclyaea, behavioural aspects
of concurrent programs that are highly relevant for thetekise of synchronisation-
related errors have been identified. Hence, it makes sense#asure how well the
aspects of the behaviour tracked by such analyses have beered during testing.

Further, we also combine coverage tasks of the newly prapasevell as some
existing metrics withabstract identifiers of the threadisvolved in generating the phe-
nomena reflected in the concerned tasks. The identifierssabsaivay the concrete nu-
merical identifiers of the threads, but preserve infornratio their type, the history of
their creation, etc. This way, an increased number of cgestiasks is obtained, forming
a new, more precise variant of the original metric.

We have performed aampirical comparisomf the use of the newly proposed met-
rics against three common concurrency-related metricsshigsv that several of the
newly proposed metrics indeed meet the criteria of suitglfdr saturation-based and
search-based testing in a significantly better way than téeéqusly known metrics.

Plan of the papein Section 2, we discuss the related work. Section 3 detaéipto-
posed way of deriving new coverage metrics and presentsa@amcrete new metrics.
For comparison purposes, the section then also presentsriiicam way several ex-
isting metrics (one of these metrics is slightly extendes).t&ection 4 describes our
experimental setting and the techniques we use for an abglemtification of objects
and threads. Section 5 provides our experimental resuftallf; Section 6 concludes
the paper and provides some notes on the possible future work

2 Related Work

As said already in the previous section, testing is one ofrtbet common approaches
used for discovering concurrency bugs. The testing prasggpically empowered in

2

some way to cope with the fact that concurrency bugs oftereappnly under very
special scheduling circumstances. To increase chancgmting a concurrency bug,
various ways ofnfluencing the schedulirgre often used. An example of this approach
is random or heuristic noise injection used in the IBM Comency Testing Tool (Con-
Test) [4] or a systematic exploration of all schedules upama number of context
switches as used in the Microsoft CHESS tool [13].

Another way to improve traditional concurrency testingagry to extrapolate the
behaviour seen within a testing run and to warn about a plessibor even if such an
error was not in fact seen in the test execution. Such appesaare calledlynamic
analysesMany dynamic analyses have been proposed for detectirgpsptasses of
bugs, such as data races [2,5, 14, 15], atomicity violat[@f$ or deadlocks [1, 7].
These techniques may find more bugs than classical testihgntihe other hand, their
computational complexity is usually higher, and they cao g@roduce false alarms.

An alternative to testing and dynamic analyses is the usgatic analysesThey
avoid execution of the given program or execute it on a higibgtract level only.
Various static analyses of concurrent software exist,uiclg light-weight analyses
that look for specific patterns in the code that might lead bu@ [6] or, e.g., various
dataflow-based analyses that try to identify bugs like datas [8] or deadlocks [20].
Model checkindg3] (sometimes viewed as a heavy-weight static analysi} tiies to
systematically analyse all possible interleavings of ddeein a given program (the
CHESS approach can, in fact, be seen as a form of bounded rloelgking). Light-
weight static analyses may produce many false alarms and/vegight approaches
may have troubles with scalability. There also exist appinea that combine static and
dynamic analyses in an attempt to suppress their deficiencie

We build our new coverage metrics on the information thatathgred or com-
puted by several different dynamic analyses mentioned e@hoamely, Eraser [15],
GoldiLocks [5], AVIO [10], and GoodLock [1]. In our experimes with these metrics,
we use ConTest and its noise injection mechanisms to gerdiftgrent legal interleav-
ing scenarios in repeated executions of the consideredasss. Although not explored
in this paper, new coverage metrics could be derived fronouarstatic analyses too.

Many different coverage metrics have been proposed tagptobably all areas of
testing in the past decades. Testing of concurrent softigaret an exception. Out of
the existingconcurrency-related metricemong the ones that we find as the probably
most promising from the point of view of their practical ajopbility there is the metric
based on du-pairs proposed in [21], the metric based on camdyairs of events from
[2], and the synchronisation coverage [18]. We discussethestrics in more detail in
Section 3.3, and we experimentally compare our metrics thém in Section 5.

The idea of extending coverage tasks of metrics by furtfferimation has also been
presented in [16] where saturation-based testing of coantiprograms is introduced.
The authors propose three types of context information kvban be used to refine
existing metrics. Theair contexthandles situations where two events in the concurrent
programs interact and makes this information explicit far tnetric. Thegroup context
makes explicit the type of thread that performed an eveig {¢ha special case of our
abstract thread identifiers). Finally, thieread contexexplicitly identifies the thread
which performed the event.

3 Concurrency Coverage Metrics

Our goal is to create metrics that are suitable for saturdtimsed and search-based
testing of concurrent software. As we have already saiderintroduction, metrics to
be used in this context should have some special propdrtiparticular, during testing,
the coverage should as often as possible first increase ifioe seasonable amount of
time and then stabilise. The stabilisation should not happe early nor too late. This
typically implies that the number of coverage tasks showutbe too small nor too
large. The growth should not generate distinctive shoslderthat saturation can be
reasonably detected. In case of testing an erroneous pnotira stabilisation should as
often as possible happen after the error is detected. Fiaairowth of coverage should
be in some relation to withessing more and more behaviostidi from the point of
view of their potential for generating some concurrencyein addition, one should
also consider a generic requirement for the metrics not todeostly to use

We now first discuss a methodology how metrics satisfyingatheve can be ob-
tained, and then propose several new concrete metricsllyFifta comparison pur-
poses, we describe (and in one case also extend) some gxisinics too.

3.1 Methodology of Deriving Suitable Coverage Metrics

To derive metrics satisfying the criteria set up above, veppse to get inspired by vari-
ous existinglynamic (and possibly even static) concurrency error detad¢echniques
This is motivated by two observations: (1) These detectmhiques focus on those
events occurring in runs of the analysed programs that appksant for detection of
various concurrency-related errors. (2) The techniquéd lnd maintain a represen-
tation of the context of such events that is important foedgbn of possible bugs in
the program. Hence, trying to measure how many of such ebeants been seen, and
possibly in how many different contexts, seems promisiognfthe point of view of
relating the growth of a metric to an increasing likelihoddpotting an error.

The described idea is very generic, and we can speak about elass of concur-
rency coverage metrics that can be obtained in the descmila@dher. A crucial step in
the creation of a new coverage metric based on some erroetidetelgorithm is to
choose suitable pieces of information available to or cagby the detection algo-
rithm, which are then used to construct the domain of the rexgm@ge metric such that
the other, above mentioned criteria are met. This leads tade toff among the preci-
sion of the metric and the amount of information tracked associated computational
complexity, and speed of saturation. One extreme is to lauddverage metric directly
on warnings about concurrency errors issued by the detealimrithm. In this case, we
need to implement the detection algorithm entirely. Anotidreme is to build a cov-
erage metric counting just the events tracked by the deteeigorithm, without their
context. In such a case, we often obtain very similar metdedready existing metrics.
Within this process—which can hardly be made algorithmid aich requires cer-
tain ingenuity and also experimental evidence, it can alsmorse turn out that some
detection algorithms are not suitable as a basis of a cogenagric at all.

Let us demonstrate the described problem on an example afymamic data race
detection algorithms. Theector-clock-based algorithms.g., [14], maintain for each
thread an internal clock which is an integer value reprasgrnihe number of synchro-
nisation events that the thread executed so far. The algorihen also maintains for

4

each thread, each lock, and each variable vectors of clegkesenting synchronisa-
tion bindings among events performed on these program aelesimEhe goal is to obtain
the so-callechappens-before relatiothat says which events agelaranteedo happen
before other events, meaning that such events cannotipatémn a data race (where
the order of the events must not be fixed). Neverthelessprseof clocks are not suit-
able for our purposes because they encode the history ¢arsieg a too large number
of values. This would lead to a huge number of coverage tasiisy progress towards
saturation, and also a high cost of measuring the obtainestage.

On the other hand, the Eraser algorithm [15] computes theaBiedlocksets For
each thread, the algorithm computes a set of locks curréetly by the thread, and
for each variable access, the algorithm uses these setsite tige set of locks that
were held by each thread that had so far accessed the vaiidlelse so-called locksets
are maintained according tostateassigned to each variable which represents how
the variable has been operated so far (e.g., exclusivelymaine thread, shared among
threads, for reading only, etc.). This algorithm is moréathle for our purposes because
the history context used by it gives rise to a reasonable muwfitoverage tasks (as we
show below).

Finally, we note that, according to our experimental evidementioned later on, the
precision of the constructed metrics can further be suyitatjusted by combining their
coverage tasks with sonabstract identification of the threadsvolved in generating
the phenomena reflected in the concerned tasks. The idatitifishould of course not
be based on the unique thread identifiers, but it can preggiamenation on their type,
the history of their creation, etc. A similar identificatioan then also be used whenever
the coverage tasks contain some dynamically instantidipetts (e.g., locks).

3.2 New Coverage Metrics

We are now going to derive sev- Table 1.The considered coverage metrics
eral new concrete coverage metricgmetric [|coverage task [notd
As we have already said, they ar¢avio (pl1, pl2, pls) N
all based on some dynamic analysesvio* (pla, pla, pls, var, t1,t2) N
used for detecting errors in synchrofEraser (ply, state, lockset) N
nisation of concurrent programs. InErasef (pl1, var, state, lockset, t1) N
order to allow for a quick com- |GoldiLock ||(pls, goldiLockSetSC) N
parison among the metrics, Table 1GoldiLock” || (pls, var, goldiLockSetSC, t1)| N
presents an overview of all the pro}G00dLock ||(pl, plz, 11, 12) N
posed metrics, together with som¢g>00dLocK ||(pl, pla, b1, 12, t1) N
other metrics that we will consider1BPaIr __ [|(pl, pl2, syncObj) N
in our experiments. For each mett1BPaIr__ ||(pl1, pla, syncOby, ta, t2) N
ric, the second column shows a tuplgEoncurPairg(pls, plz, switch) E
defining coverage tasks of the met2YPairs _||(ph, pl, var) E
ric, and the third column contains in{2YPars_[|(ph, plz, var, b, t2) M
formation whether the metric is new>Y"C (ph, mode) E

(N), already existing (E), or whether it is our modificatidrsome already known met-
ric (M). The first item of each of the tuples representing aerage task (denoted as
pl1) gives a primary program location which generates the giask when reached by
some thread. The rest of the tuples can then be viewed as extamider which the

location is reached. For most of the metrics, we provide texsions: a basic version

5

and a version with an extended context, denotedl. by the following paragraphs, the
versions with the extended context are described only. Bs&lversions can easily be
derived from them by dropping some elements of the context.

In order to make the description more concrete, in the reiteopaper, we assume
theJava memory modgl1]. In the text below, we use the following notatidn.is a set
of identifiers of instances of non-volatile variables (iron-volatile fields of objects)
that may be used in the tested program at handg a set of identifiers of instances
of volatile variables used in the program,is a set of identifiers of locks used in the
program/T" is a set of identifiers of all threads that may be created byptbgram, and
P is a set of all program locations in the program. We discusspmssible concrete
way how the needed identifiers may be obtained in Section 4.1.

A coverage metric based on Eras@ihe coverage metric Erasdas based on the Eraser
algorithm [15] whose basics have been sketched above M&sage tasks have the form

of a tuple(ply, var, state, lockset,t1) wherepl; € P identifies the program location

of an instruction accessing a shared variakle € V, state € {virgin, exclusive,
exclusive’, shared, modi fied, race} gives the state in which the Eraser’s finite con-
trol automaton is when the given location is reached (weidenshe extended version

of Eraser using thexzclusive’ state as introduced in [19], which is more suitable for
the Java memory model), ahackset C L denotes a set of locks currently guarding
the variablevar. Finally,t; € T represents the thread performing the access operation.

A coverage metric based on GoldiLockSoldiLocks [5] is one of the most advanced
lockset-based algorithms. The main idea of this algorithrthat it combines the use
of locksets with computing the happens-before relatiosdtdiLocks, locksets are al-
lowed to contain not only locks but also volatile variables ¢hreads. If a threatdap-
pears in the lockset of a shared variable when the varialalecsssed, it means thas
properly synchronised for using the given variable becallsgher accesses that might
cause a data race are guaranteed to happen before the aguesd. The algorithm uses
a limited number of elements placed in the lockset to repitess® important part of the
synchronisation history preceding an access to a sharablarThis is in contrast with
the vector-clocks-based algorithms mentioned above. &ke l65oldiLocks algorithm
is still relatively expensive but can be optimised by thecatied short circuit checks
(SC) which are three cheap checks that are sufficient fodderirace freedom be-
tween the two last accesses to a variable. The originaligthgois then used only when
SC cannot prove race freedom. Our GoldiLock-based metridiGack* is based on
coverage tasks having the form of tuples;, var, goldiLockSet, t;) wherepl; € P
gives the location of an instruction accessing a variabtec V' within athread; € T,
andgoldiLockSet C O U L U T represents the lockset computed by GoldiLocks.

A coverage metric based on Avidhe Avio algorithm that detects atomicity violation
over one variable is presented in [10]. We choose this dlyorbecause it does not
require any additional information from the user aboutringions that should be exe-
cuted atomically. The algorithm considers any two conseeaiccesses; andas from
one thread to a shared variahier to form an atomic blockB. Serialisability is then
defined based on an analysis of what can happen whiennterleaved with some read
or write accesss from another thread to the variahler. Out of the eight total cases
arising in this way, four (namely, r/w/r, wiw/r, wir/w, r/wj are considered to lead to

6

an unserialisable execution. Tracking of all accessesoit@atr concurrently to a block
B can be very expensive. Therefore, we define our criteriorotwsider only the last
interleaving access to the concerned variable from a éiffiethread. Our Avid met-
ric uses coverage tasks in the form of tuples , pls, pls, var, t1, t2) wherevar € V,
pl1,pla,pls € P, andty,to € T. The considered atomic blodk spans betweepl;
andpls, and it is executed by a thread Finally, pi3 gives a location of an instruction
executed in a threag that interferes with the block.

A coverage metric based on GoodLodkoodLock is a popular deadlock detection
algorithm that exists in several modifications—we, in marar, build on its modifi-
cation published in [1]. The algorithm builds the so-caltgdarded lock graphwhich

is a labelled oriented graph where nodes represent locklsedges represent nested
locking within which a thread that already has some lock d&skanother one. Labels
over edges provide additional information about the thitkad creates the edge. The
algorithm searches for cycles in the graph wrt. the edgdddaberder to detect dead-
locks. Our metric focuses on occurrence of nested lockiagisrconsidered interesting
by GoodLock. We omit collection of the locksets of the threadhich the original al-
gorithm uses as one element of the edge label because thisation is used in the
algorithm to suppress certain false alarms only. Our Goc#t.anetric is therefore
based on coverage tasks in the form of tugles, pls, l1, 12, t1) wherepl;, pla € P,
11,1, € L,andt; € T. Such a task is covered when the threatias obtained the lock
[, atply, and now the same thread is obtaining the lbcat pls.

A coverage metric based on happens-before paliisis coverage metric is motivated
by observations we get from the GoldiLocks algorithm andvetor-clock algorithms,
both of them depending on computation of the happens-bedtation. In order to get
rid of the possibly huge number of coverage tasks producethéyector-clock al-
gorithms and trying to decrease the computational comgiex¢eded when the full
GoldiLocks algorithm is used, we focus on pieces of infoiorathe algorithms use
for creating their representations of the analysed prodrainaviours (without actually
computing and using these representations). All of thegeri#thms rely on synchro-
nisation events observed along the execution path. Irgpiyethis, we propose the
HBPair- metric that tracks successful synchronisation eventscbasdocks, volatile
variables, wait-notify operations, and thread start arid fiperations used in Java.
A coverage task is defined as a tuphé, , pla, syncObj, t1,t2) wherepl; € P is a pro-
gram location in a threat} € T that was synchronised with the locatiph € P of
the thread, € T using the synchronisation objecigncObj € LUO U{L}. Here, L
represents a thread start or a successful join synchr@msahere no synchronisation
object is needed.

3.3 Existing Metrics

In order to compare our metrics with already existing metniee further consider—and
in one case also extend—the following metrics.

Coverage based on concurrently executing instructionsi(QdPairs). The coverage
of concurrent pairs of events proposed in [2] is a metric inclieach coverage task is
composed of a pair of program locations that are assumed éodmuntered consecu-
tively in a run and a third item that igue or false. Itis false iff the two locations are

7

visited by the same thread athd.e otherwise—that isirue means that there occurred a
context switch between the two program locations. This imptovides statement cov-
erage information (using thgalse flag) and interleaving information (using theue
flag) at once. In our notation, each task of the metric is aet(gh , pl2, switch) where
pl1, pla € P represent the consecutive program locations (only coenuayrprimitives
and variable accesses are monitored),andch € {true, false} denotes whether the
context switch occurs in between of them. Since this metacpces a large number
of coverage tasks even for small programs, we decided natrtoheit with any further
context information.

Definition-use coverageThis coverage metric is based on thk-du-pathcoverage
metric for parallel programs described in [21]. This metnsiders coverage tasks in
the form of triples(var, d, u) wherevar is a shared variabld,is a node in the parallel
program flow graph (PPFG) where the valuevaf is defined, and: is a node in the
PPFG where the value is read. The du-pair therefore denategisting path in the
PPFG from a nodd to a nodeu where the value ofar from d is still available, i.e.,
there is no node redefining the valuewaf- on the path betweedandu. We consider
the original all-du-pair coverage metric (denoted as Dfyaand we also extend it
to a metric which adds more context information to the cogertasks. Our metric
DUPairs' is based on coverage tasks in the form of tuglgs, pla, var, t1, t2) where
pl1,pla € P represent program locations where the value of the variabtec V is
defined and used, respectively,c T' denotes the thread that performed the definition
of var atply, andt, € T denotes the thread that subsequently uses the vahig at

Synchronisation coverage (Syncyhe synchronisation coverage [18] focuses on the
use of synchronisation primitives and does not directlysider thread interleavings.
Coverage tasks of the metric are defined based on varioirsatiigt situations that can
occur when using each specific type of synchronisation fixies. For instance, in the
case of a synchronised block (defined using the Java keyswond hr oni sed), the
obtained tasks areynchronisation visitedynchronisation blockingandsynchronisa-
tion blocked The synchronisation visited task is basically just a cooleetage task.
The other two are reported when there is an actual contebtmeen synchronised
blocks—when a threat} reaches a synchronised blogkand stops because another
threadt, is inside a blockB synchronised on the same lock. In this casés reported
as blocked, an@ as blocking (both, in addition, as visited). In our notafitire metric

is defined using tuples of the for(pl;, mode) wherepl; € P represents the program
location of a synchronisation primitive, antbde represents an element from the set of
the distinctive situations relevant for the given type afdyronisation.

4 The Infrastructure Used for Experiments

Our architecture for collecting concurrency related cageris built upon the IBM Java
Concurrency Testing Tool (ConTest) [4]—an advanced tootdsting, debugging, and
measuring test coverage for concurrent Java programs.obherovides a facility for
bytecode instrumentation and a listeners infrastructlioeveng one to creat@lug-ins
for collecting various pieces of information about the mthteaded Java programs
being executed as well as to easily implement various alyas for dynamic analyses.
The tool is itself able to collect structural coverage nust{basic blocks, methods) and

8

some concurrency-related metrics (ConcurPairs, Sync)donTest further provides a
noise injection facility which injects the so-called noiséo the execution of a tested
application and so allows us to observe different legatieéeings if the test is executed
repeatedly. We use our platform called SearchBestie [%tag and execute tests with
ConTest, and to collect, maintain, and export results prediy ConTest and its plug-
ins from multiple executions of a test.

4.1 Abstract Object and Thread Identification

Our coverage metrics introduced in Section 3 are based &g that include identifi-
cation of threads and instances of variables and locks. avee\drtual machine (JVM)
generates identifiers of objects and threads dynamicallsh ®lentifiers are, however,
not suitable for our purposes: (1) In long runs, too many ehthmay be generated.
(2) We would like to be able to match semantically equivatesks generated in dif-
ferent runs (may be not precisely, but at least with a redsdenarecision), and the
identifiers generated by JVM for the same threads (from theaséical point of view)
in different runs will quite likely be different.

Previous works, such as [16], used Java types to identigatis. We consider this
type-based identification of elements as too rough. Our gotd create identifiers
which distinguish behaviour of objects and threads withafgrogram more accurately,
but still keeping a reasonable level of abstraction so thefseuch abstract identifiers
remains of a moderate size.

Our abstracbbject identification(used to identify locks as well as instances of
variables) is based on the observation that, usually, objects creattee same place
in the program are used in a similar way. For instance, theresually many instances
of the classSt r i ng in an average Java program, but all strings that are credthohw
invocations of the same method will probably be manipulaiedlarly. Therefore, we
define an object identifier as a tuplgype, loc) wheretype refers to the type of the
object, andoc refers to the top of the stack (excluding calls to constmgjtevhen the
object is created. The record at top of the stack containsthadesource file, and line
of code.

Our abstracthread identifications based on an observation that the type and place
of creation are not sufficient to build a thread identifievéal threads created at the
same program location (e.g., in a loop) can subsequentlgeprodifferent data and
therefore behave differently. We need more informationceoning the thread execu-
tion trace to better capture the behaviour of threads. Toergwve use as the identifier a
tuple (type, hash) wheretype denotes the type of the object implementing the thread,
and hash contains a hash value computed over a sequencefivét method identi-
fiers that the thread executed after its creation (if theatthterminates sooner, then all
methods it executed are taken into account). The valueinfluences precision of the
abstraction. Of course, when a pool of threads (a set ofdisret@arted once and used for
several tasks) is used, the computation of the hash valuebreusstarted immediately
after picking the thread up from the pool.

!nstances of variables are identified by an object identifiet the appropriate field of the
object.

5 Experiments

We have evaluated our metrics on four small test cases (@ptilosophers, Airlines,
Crawler, and FtpServer) and one big test case (TIDOrbj).

The Dining philosopherdest case is an implementation of the well-known syn-
chronisation problem of dining philosophers. Our impletaséion is taken from the
distribution of the Java PathFinder model checker. The pamggenerates a set of 6
philosophers (each represented by a thread) and the samgenwishared objects
representing forks. A deadlock can occur when executingetstecase.

The Airlines test case is a simple artificial program simulating an aketiceser-
vation system. It generates a database of air tickets amdatmvs 2 resellers (each
represented by a separate thread) to sell tickets to 4 sdf8 ofistomers (each set is
represented by a separate thread). Finally, a check wheteearumber of customers
with tickets is equal to the number of sold tickets is dones program contains a high-
level atomicity violation whose occurrence makes the fitalok fail.

The three other considered programs are real-life caseestiidebCrawletis a part
of an older version of a major IBM production software. It demtrates a tricky con-
currency bug detected in this software. The crawler cremtet of threads waiting for
a connection. If a connection simulated by a testing envirennt is established, a worker
thread serves it. There is a bug in a method that is called Wieeorawler shuts down.
The bug causes an exception sometimes leading to a deadlloekickiness of the bug
can be seen from its very low error probability shown in Téble

Our second real-life case study is an early developmeniorecd an open-source
FTPServemproduced by Apache. This case study has 120 classes. Ther sepates
a new worker thread for each new incoming connection to sérifée version of the
server we used contains several data races that can cawsgiexrs during the shut
down process when there is still an active connection. Tobalility of spotting an
error when noise injection is enabled is quite high in thiareple because there are
multiple places in the test where an exception can be gestkerat

Our biggest test caseT8DorbJ—a CORBA-compliant ORB (Object Request Bro-
ker) product that is a part of the MORFEO Community MiddlesvBfatform [17]. The
instrumented part of the middleware has 1399 classes. We Ursed theEcho con-
current test which checks how the infrastructure handles multiplecarrent simple
requests. The test starts an instrumented server and theheh®, each sending 5
requests to the server. There was originally no error intéss and therefore we intro-
duced one by commenting osg/nchr oni sed statement in the part of code that is
executed by the test. This way we introduced a high-levehatity violation that leads
to a null pointer exception.

We used our infrastructure introduced in Section 4 to colietevant data from
10,000 executions of the small test cases and 4,000 exaswioTIDOrbj. In order
to see as many different legal interleaving scenarios asilges we set up ConTest
to randomly inject noise into the executions. We have imgleted ConTest plug-ins
to collect coverage information and set up SearchBestiestectl occurrences of er-
rors (deadlocks were detected using a timeout, other dosodetection of unhandled
exceptions). All further studies of the metrics were dorniagithe collection of execu-
tions obtained this way. For instance, we often needed tluateathe behaviour of the
metrics on series of executions. To generate the needest sdrexecutions, we used

10

Table 2. Test cases and abstract identifiers

Error |ObjectAbstraction ThreadAbstraction
ClassesRatio| Real |Type Abs|Reall TypelAbs;o|Abszo
Dining phil. 2 104151 130 | 3 |3 | 7 | 2 2 2
Airlines 8]0.033315210| 6 | 6 | 60| 3 3 4
Crawler 19 |0.0006 1828 | 13 | 14 | 180| 4 9 12
FtpServer 120 |0.4032 26110| 27 | 29 |1641 5 5 6
TIDOrbJ echo 1399 | 0.017|180320 98 |129| 79 | 5 9 11

SearchBestie to randomly select a needed number of exasutiat of the recorded
collection and to compute accumulated values of the chos#rias on such series. All
tests were executed on a computer with an Intel 6600 procassib?2 GB of memory,
running Sun Java version 1.6 under GNU Linux.

Table 2 gives some statistics about our test cases. Thedeotumn of the table
shows the number of instrumented classes for each test Tasdollowing column
shows the probability of spotting an error during a test eiea when random noise
injection is used (computed as the number of executionsenda@error occurs divided
by the total number of executions). The rest of the columpsige information about
the size of the case studies in terms of the numbers of thisadi®bjects created in
them. These columns also illustrate how our abstract ifilergtiof objects and threads
work. TheRealcolumn contains the total number of distinct objects (oe#us) we
encountered in 10 performed executions of the tests.Typecolumn shows the total
number of distinct object (or thread) types we have spottaeAbscolumns show the
total number of distinct abstract objects (or threads) vetimtjuish using our abstract
identifiers introduced in Section 4.1. For the thread abstm, two values are given
showing the influence of the lengthof the considered sequence of methods called by
the threads.

5.1 Results of Experiments

A typical behaviour of the considered coverage metrics @aaden in Figure 5.1. All
four sub-figures show the cumulative number of coveragestakkhe metrics covered
during one randomly chosen series of the Crawler test casmigrns (with the thread
abstraction variable set to 20).

Figure 1(a) shows the behaviour of the metrics that, acogrth our opinion, do
not capture the concurrent behaviour accurately enough.coverage metric for non-
concurrent code measuring the numbebasic blocksovered during tests is added to
demonstrate the difference between classical and commyrrelated coverage metrics.
The coverage obtained under the metric based on basic bkuoksrly constant all the
time because we are repeatedly executing the same codehwifame inputs. For the
rest of the metrics shown in Figure 1(a), the cumulative nematbtasks covered during
test executions increases only within approximately th@ f28t executions, and then
a saturation is reached. The only metrics which slightlyedifrom the others in this
group are Eraser and DUPairs. The Eraser metric has a sipgtaviour to thedvio
metric (and the metrics close to it) but approximately faarets higher numbers of
covered tasks. This is caused by the fact that the trackeddariables usually get to

11

250 —_—— 110
ettt e se s e R TS s LT S -
200 f i wl

,,,,, e 80 |
150 F E 70t

60

100 [~ 3 0 I

- - 40 fro e

50 s

20 4

0 L L L L L L L L L

0 200 400 600 800 1000 1200 1400 1600 1800 2000 10 L L L L L L L L L

20 40 60 80 100 120 140 160 180 200
Avio GoodLock BasicBlock - -~
DUPairs -------- HBPair —---- Avio GoodLock Sync -
Eraser - Sync - DUPairs -------- HBPair ——---
(@) (b)

1200 T T T T T T T T T 40000 T T

35000

30000

25000

20000

15000

10000

5000

0 L L L L L L L L L e
0 200 400 600 800 1000 1200 1400 1600 1800 2000 ok L . L +
0 2000 4000 6000 8000 10000
Avio* Eraser* -- GoodLock* ——---
DUPairs* --------- GoldiLock HBPair* ----- ConcurPairs GoldiLock* --------
(©) (d)

Fig. 1. Saturation of different metrics on the Crawler test case [itrizontal axis gives the num-
ber of executions, the vertical axis gives the cumulativeper of covered tasks)

four Eraser states. The DUPairs metric has also higher nisnabeovered tasks but it
is almost all the time stabilised.

The most interesting part of Figure 1(a) between 0 and 200uiams is zoomed
in Figure 1(b). One can see that the saturation effect o@artier (at about 100 execu-
tions) for the HBPair and Sync metrics which both focus orcsyanisation events only.
The Avio metric (and also the Eraser metric which is not shaat focus on accesses
to shared variables saturate a bit later. The depicted sal@eonstrate one further dis-
advantage of the concerned metrics—a presence of disenstioulders. A repeated
execution of the test case does examine different condusedraviours (which is indi-
cated by the later discussed metrics) but the metrics coaden the figure are not able
to distinguish differences in these behaviours, and toeeafie can see clear shoulders
in the curves (i.e., sequences of constant values). Themee®f such shoulders makes
automatic saturation detection harder.

Figure 1(c) demonstrates a positive effect of considerimg@ended context of
the tracked events as proposed in Section 3. The metriceowead in this sub-figure
(i.e., Avio*, Eraset, DUPairs, HBPair, GoodLockK, and GoldiLock) are able to dis-
tinguish differences in the behaviour of the executed tesise accurately, leading to
shorter shoulders, bigger differences in the cumulatedesgland a later occurrence
of the saturation effect—indicating that the concernedriteebehave in a way much
better for saturation-based testing. As can be seen fromi&asijump in the obtained
coverage of the HBPdir Eraset, and Avio® metrics at around 1300 executions, the

12

extended context can sometimes have a dramatic influenegufiiip is caused by the
abstract thread identifiers. At the given point, a threadhwaitnew abstract identifier
appears, and all tasks involving this thread are differerthbse already known. This
leads to a much more significant increase in the cumulativerege. On the other
hand, a special attention should be paid to the GoldiLockiméthis metric does not
suffer from shoulders nor sudden, dramatic increases oblbiteined coverage, and it
reaches saturation near the saturation points of the otéeiasn This is a very positive
behaviour, and the GoldiLock metric is clearly winning here

Figure 1(d) shows problems of metrics that are too accunaeely, ConcurPairs
and GoldiLocK. These metrics work fine for small test cases but when usedmyar
test case they tend to saturate late and produce enormourensiof covered tasks.

Quantitative properties of the considered metrics in afltest cases can be seen in
Table 3. The table shows for each metric and each test casevailues computed from
a set of 100 different random series consisting of 2,000arstutions. The columns
labelled asTotal show the average total number of distinct tasks producetidynet-
ric. This number demonstrates a big disadvantage of the @Bags coverage metric,
namely, its problem with scalability. The metric producezany 5 million of distinct
tasks for 2,000 executions of the TIDOrbJ test case whichemékther analyses quite
time demanding.

The columns of Table 3 labelled Aserage percentagepresent the ratio between
the Total and average number of tasks covered within oneuéirec A high number in
this column means that most of the total number of coverddstagre covered within
one execution. The cumulative coverage under such mefac®UPairs, Eraser, and
Sync) usually stabilises early or grows very slowly. In boflthese cases, the detec-
tion of saturation is problematic. Contrary, if the averggecentage is too low (for
ConcurPairs and GoldiLo¢k, the cumulative coverage grows for a very long time.

Finally, the columns of Table 3 labell&démooth percentaggive an insight in how
smooth the growth of the accumulated coverage is. The cokwontains the ratio be-
tween the average number of the distinct cumulative coeevaflies reached under a
metric when going through the considered executions andtingber of test execu-
tions (2,000). High values (for ConcurPairs and GoldiL9akean that the cumulated
coverage under the metric changed many times, and thertsfere was contiguously
growing. Low values (for Avio, DUPairs, Eraser, GoodLockdeSync) mean that the
cumulated coverage changed only a few times, and theréfere either occurred a fast
saturation or there appeared long shoulders. Both of thesegmena are problematic
for a good metric to be used in saturation-based testing.

The table also shows a disadvantage of the GoodLowitric. The metric focuses
on nested locking as was described in Section 3.2. If sucleaghenon does not occur
in the tested program, the metric provides no informatiocearsbe seen in the Airlines
and FtpServer test cases. On the other hand, the metric oait@radditional infor-
mation which cannot be directly inferred by other metricpingrams which contains
this phenomenon. In total, the evaluation in Table 3 giveslar champions for a good
metric to be used in saturation-based testing as what wers&igure 1(c). Namely,
this is the case of the Avig Eraset, DUPairs, HBPair, and GoldiLock metrics.

13

Table 3. A quantitative comparison of the metrics

Dinin%phil. Airlings Crawler FtpServer | TIDOrbJ echo
SRS s s RIS RIS

_|BIE| - |2I8| - |88 - |B|8| - |B|%

8| g 8 o g 8 o g 8 o g 8 | g

PlZ|la| B |6 B |26 B |R|6| B |Z|&
Avio 6 [470| 17 |60/ 1| 40 |22/1| 529 |45 10| 822 |50 8
Avio* 30 |10/ O | 490 | 2|10 418 | 3|9| 1023 |33 16| 3280 |29 22
ConcurP. |4059 6 [38|1673(6 |85|20864 3 |83/526280 6 |{1004908100 2 |100
DUPairs | 18 |76/ 0| 43 |97/0| 105 |81/ 1| 330 |92 2| 1933 |98 2
DUPair* 72 |19/ 01401 3|9| 921 (11/8| 646 |82 3 | 3092 |90| 4
Eraser 29 |76/ 0| 73 |96/ 0| 217 |64/ 2| 684 |88 4 | 2978 |90 4
Erasef 89 |25/ 0| 1429|5|8| 861 |19/ 5| 1086 |79 4 | 4886 |83 6
GoldiLock | 26 (73| 0 | 102 (64 2| 384 |20{12| 1091 |61] 9 | 6265 |51| 29
GoldiLock*| 119(16| 0 | 4217| 1|20| 3335| 3 |26| 2210 |47| 12| 10434 (41| 46
GoodLock | 9 |56/ 0| O |[-|0| 57 |52]1 0 -1 0 321 |63 3
GoodLocK | 22 |23/ 0| O |-|0| 258|174 O |-|0| 915 |34 6
HBPair 6 (62 0| 25 |79 0| 61 |39/1| 13 (73 O 131 |70 2
HBPair* 29 (131 0|1013|2|13| 984 | 4|12] 28 |49 O 420 |46 5
Sync 8 |56/ 0| 27 |78/ 0| 49 |46/{1| 22 |66 O 172 |79 2

6 Conclusions and Future Work

We have proposed a methodology of deriving new coverageeaétrbe used in testing
of concurrent software from dynamic (and possibly alsotainalyses designed for
discovering bugs in concurrent programs. Using this ideahave derived several new
concrete metrics. We have performed an empirical evalnaidhese metrics, which
has shown that several of them are indeed better for usetiresian-based and search-
based testing than various previously known metrics.

As an additional advantage of the metrics that we have pespage can mention
their better applicability in debugging. For debuggingderstandability of each cover-
age task is important. We believe that tasks generated byetiics provide much more
problem-related information to the tester than existingrioe such as ConcurPairs or
DUPairs. The tester can track the threads and objects tipaajn the covered tasks
to their place of creation or use some additional infornrafmg., a lockset) present in
the tasks to better understand what happened during thessi#d executions.

In the future, more experimental evidence about the prapasetrics should be
obtained to further explore their properties. Metrics lolase other dynamic as well as
static analyses could be considered too. Finally, an etiatuaf the metrics within the
entire framework of search-based testing should be done.

Acknowledgement his work was supported by the Czech Science Foundatioje(iso
no. P103/10/0306 and 102/09/H042), the Czech Ministry afdation (projects COST
0C10009 and MSM 0021630528), and the internal BUT projettlAl-1.

14

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

. S. Bensalem and K. Havelund. Dynamic Deadlock Analysidalti-threaded Programs. In
Proc. of HVC'05 LNCS 3875, Springer-Verlag, 2005.

. A. Bron, E. Farchi, Y. Magid, Y. Nir, and S. Ur. Applicatisiof Synchronization Coverage.
In Proc. of PPoOPP’'05ACM Press, 2005.

. E. Clarke, O. Grumberg, and D. Pelddodel CheckingMIT Press, 1999.

. O. Edelstein, E. Farchi, E. Goldin, Y. Nir, G. Ratsaby, &dJr. Framework for Testing
Multi-threaded Java ProgramsConcurrency and Computation: Practice and Experience
15(3-5):485-499, 2003.

. T. Elmas, S. Qadeer, and S. Tasiran. Goldilocks: A RaceTeatsaction-aware Java Run-
time. InProc. of PLDI'07, ACM Press, 2007.

. D. Hovemeyer and W. Pugh. Finding Concurrency Bugs in.JéwaProc. of PODC’'04
ACM Press, 2004.

. P. Joshi, C.-S. Park, K. Sen, and M. Naik. A Randomized Byo&rogram Analysis Tech-
nigue for Detecting Real Deadlocks. Btoc. of PLDI'09 ACM Press, 2009.

. V. Kahlon, Y. Yang, S. Sankaranarayanan, and A. Gupta.dfasAccurate Static Data-race
Detection for Concurrent Programs.mnoc. of CAV’07 LNCS 4590, Springer-Verlag, 2007.

. B.Kfena, Z. Letko, T. Vojnar, and S. Ur. A Platform for $ef&based Testing of Concurrent

Software. InProc. of PADTAD'1QACM Press, 2010.

S. Lu, J. Tucek, F. Qin, and Y. Zhou. Avio: Detecting Atoityi Violations via Access

Interleaving Invariants. IfProc. of ASPLOS’06ACM Press, 2006.

J. Manson, W. Pugh, and S. V. Adve. The Java Memory Modé?rdc. of POPL'05 ACM

Press, 2005.

P. McMinn. Search-based Software Test Data GenerafidBurvey: Research Articles.

Software Testing, Verification, and Reliability4(2):105-156, 2004.

M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Naiaad . Neamtiu. Finding and Re-

producing Heisenbugs in Concurrent Programd?roc. of OSDI'08 USENIX Association,

2008.

E. Pozniansky and A. Schuster. Efficient On-the-fly DaaaeRDetection in Multithreaded

C++ Programs. IiProc. of PPoPP’03ACM Press, 2003.

S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and defson. Eraser: A Dynamic Data

Race Detector for Multi-threaded Programs Plroc. of SOSP’97ACM Press, 1997.

E. Sherman, M. B. Dwyer, and S. Elbaum. Saturation-bassting of Concurrent Programs.

In Proc. of ESEC/FSE'QACM Press, 2009.

J. Soriano, M. Jimenez, J. M. Cantera, and J. J. Hierrivedimg Mobile Enterprise Services

on Morfeo’s MC Open Source Platform. Rroc. of MDM'06 IEEE CS, 2006.

E. Trainin, Y. Nir-Buchbinder, R. Tzoref-Brill, A. Zlatck, S. Ur, and E. Farchi. Forcing

Small Models of Conditions on Program Interleaving for @&t of Concurrent Bugs. In

Proc. of PADTAD'09 ACM Press, 2009.

C.von Praun and T. R. Gross. Object Race DetectioRrdn. of OOPSLA'0OLACM Press,

2001.

A. Williams, W. Thies, and M. D. Ernst. Static Deadlockt&stion for Java Libraries. In

Proc. of ECOOP’05LNCS 3586, Springer-Verlag, 2005.

C.-S.D. Yang, A. L. Souter, and L. L. Pollock. All-du-patoverage for Parallel Programs.

In Proc. of ISSTA'98ACM Press, 1998.

15

